Skip to main content
Log in

Unravelling the genetic potential of untapped crop wild genetic resources for crop improvement

  • Technical Review
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

The wild species are the reservoir of novel alleles/genes for agronomical important traits. The wild species plants have the capacity to show tolerance/resistance against various biotic and abiotic stresses. The domesticated or artificial selected crop varieties are prone to diseases and insect-pests that can be improved by the potential use of novel alleles/genes from wild species. Till date few of the novel genes have been identified in wild species and transferred to the cultivated species. The advances in chromosome manipulation and biotechnological techniques including high-throughput sequencing can facilitate the utilization of wild plant species in varietal developmental programmes more precisely. The present review provides information on the important wild species harbouring alleles/genes for agriculturally important traits and their successful utilization in plant breeding programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All the data is presented in the manuscript.

References

  • Ali N, Heslop-Harrison H, Ahmad RA, Graybosch GL, Schwarzacher H (2016) Introgression of chromosome segments from multiple alien species in wheat breeding lines with wheat streak mosaic virus resistance. Heredity 117(2):114–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amarasinghe SL, Su S, Dong X, Zappia L, Ritchie ME, Gouil Q (2020) Opportunities and challenges in long-read sequencing data analysis. Genome Biol 21:30. https://doi.org/10.1186/s13059-020-1935-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnold ML (2004) Natural hybridization and the evolution of domesticated, pest and disease organisms. Mol Ecol 13:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Bhandari HR, Bhanu AN, Srivastava K, Singh MN, Shreya, Hemantaranjan A (2017) Assessment of genetic diversity in crop plants: an overview. Adv Plants Agric Res 7(3):279–286. https://doi.org/10.15406/apar.2017.07.00255

    Article  Google Scholar 

  • Bhaskar PB, Raasch JA, Kramer LC, Neumann P, Wielgus SM, Austin-Phillips S, Jiang JM (2008) Sgt1, but not Rar1, is essential for the RB-mediated broad-spectrum resistance to potato late blight. BMC Plant Biol 8:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhat JA, Salgotra RK, Dar MY (2015) Phenomics: a challenge for crop improvement in genomic era. Mol Plant Breed 6(20):1–8. https://doi.org/10.5376/mpb.2015.06.0020

    Article  Google Scholar 

  • Biselli C, Urso S, Bernardo L, Tondelli A, Tacconi G, Martino V, Grando S, Vale G (2010) Identification and mapping of the leaf stripe resistance gene Rdg1a in Hordeum spontaneum. Theor Appl Genet 120:1207–1218

    Article  CAS  PubMed  Google Scholar 

  • Bouyioukos C, Moscou MJ, Champouret N, Hernández-Pinzón I, Ward ER, Wulff BBH (2013) Characterisation and analysis of the Aegilops sharonensis transcriptome, a wild relative of wheat in the sitopsis section. PLoS ONE 8:e72782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brar DS, Khush GS (2018) Wild relatives of rice: a valuable genetic resource for genomics and breeding research. In: The wild Oryza genomes. pp 1–25. Springer

  • Brown CR, Zhang L, Mojtahedi H (2014) Tracking the RMc1 gene for resistance to race 1 of Columbia root-knot nematode (Meloidogyne chitwoodi) in three Mexican wild potato species with different ploidies. Am J Potato Res 91:180–185

    Article  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14:1070–1085

    Article  CAS  PubMed  Google Scholar 

  • Brozynska M, Omar ES, Furtado A, Crayn D, Simon B, Ishikawa R, Henry R (2014) Chloroplast genome of novel rice Germplasm identified in Northern Australia. Trop Plant Biol 7:111–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner S, Stirnweis D, Diaz Quijano C, Buesing G, Herren G, Parlange F, Barret P, Tassy C, Sautter C, Winzeler M (2012) Transgenic Pm3 multilines of wheat show increased powdery mildew resistance in the field. Plant Biotechnol J 10:398–409

    Article  CAS  PubMed  Google Scholar 

  • Burgess DJ (2018) Genomics: next regeneration sequencing for reference genomes. Nat Rev Genet 19(3):125. https://doi.org/10.1038/nrg.2018.5

    Article  CAS  PubMed  Google Scholar 

  • Cai XK, Spooner DM, Jansky SH (2011) A test of taxonomic and biogeographic predictivity: resistance to potato virus Y in wild relatives of the cultivated potato. Phytopathology 101(9):1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Capistrano-Gossmann GG, Ries D, Holtgräwe D, Minoche A, Kraft T, Frerichmann SLM, Rosleff Soerensen T, Dohm JC, González I, Schilhabel M, Varrelmann M, Tschoep H, Uphoff H, Schütze K, Borchardt D, Toerjek O, Mechelke W, Lein JC, Schechert AW, Frese L, Himmelbauer H, Weisshaar B, Kopisch-Obuch FJ (2017) Crop wild relative populations of Beta vulgaris allow direct mapping of agronomically important genes. Nat Commun 6(8):15708. https://doi.org/10.1038/ncomms15708

    Article  CAS  Google Scholar 

  • Campbell LG, Snow AA, Ridley CE (2006) Weed evolution after crop gene introgression: greater survival and fecundity of hybrids in a new environment. Ecol Lett 11:1198–1209

    Article  Google Scholar 

  • Ceccarelli S (2014). In: Drought (Jackson M, Ford-Lloyd B, Parry M (eds) Plant genetic resources and climate change. CAB International, Wallingford, pp 221–235

    Chapter  Google Scholar 

  • Chaudhary HK, Manoj NV, Singh K (2021) Innovations and new horizons in chromosome elimination-mediated DH breeding: five decades journey of speed breeding in wheat. Improving Cereal Productivity Through Climate Smart Practices. https://doi.org/10.1016/B978-0-12-821316-2.00001-7

    Article  Google Scholar 

  • Chen G, Liu Y, Ma J, Zheng Z, Wei Y, McIntyre L, Zheng YL, Liu C (2013) A novel and major quantitative trait locus for fusarium crown rot resistance in a genotype of wild barley (Hordeum spontaneum L.). PLoS ONE 8(3):e58040. https://doi.org/10.1371/journal.pone.0058040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu Y, Holbrook CC, Timper P, Ozias-Akins P (2007) Development of a PCR-based molecular marker to select for nematode resistance in peanut. Crop Sci 47:841–847

    Article  CAS  Google Scholar 

  • DaCosta JM, Sorenson MD (2016) ddRAD-seq phylogenetics based on nucleotide, indel, and presence-absence polymorphisms: analyses of two avian genera with contrasting histories. Mol Phylogenet Evol 94:122–135. https://doi.org/10.1016/j.ympev.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  • Dalmacio RD, Brar DS, Virmani SS, Khush GS (1996) Male sterile line in rice (Oryza sativa) developed with O. glumaepatula cytoplasm. Int Rice Res Notes 21(1):22–23

    Google Scholar 

  • Daurova A, Daurov D, Volkov D, Zhapar K, Raimbek D, Shamekova M, Zhambakin K (2020) Doubled haploids of interspecific hybrids between Brassica napus and Brassica rapa for canola production with valuable breeding traits. OCL 27:45

    Article  CAS  Google Scholar 

  • Denoeud F, Carretero-Paulet L, Dereeper A, Droc G, Guyot R, Pietrella M, Zheng C, Alberti A, Anthony F, Aprea G, Aury JM, Bento P, Bernard M, Bocs S, Campa C, Cenci A, Combes MC, Crouzillat D, Da Silva C, Daddiego L, De Bellis F, Dussert S, Garsmeur O, Gayraud T, Guignon V, Jahn K, Jamilloux V, Joët T, Labadie K, Lan T, Leclerc J, Lepelley M, Leroy T, Li LT, Librado P, Lopez L, Muñoz A, Noel B, Pallavicini A, Perrotta G, Poncet V, Pot D, Priyono, Rigoreau M, Rouard M, Rozas J, Tranchant-Dubreuil C, VanBuren R, Zhang Q, Andrade AC, Argout X, Bertrand B, de Kochko A, Graziosi G, Henry RJ, Jayarama Ming R, Nagai C, Rounsley S, Sankoff D, Giuliano G, Albert VA, Wincker P, Lashermes P (2014) The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345:1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Desplanque B, Boudry P, Broomberg K, Saumitou-Laprade P, Cuguen J, Van Dijk H (1999) Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor Appl Genet 98:1194–1201

    Article  CAS  Google Scholar 

  • Devi SJSR, Singh K, Umakanth B, Vishalakshi B, Rao KVS, Suneel B, Sharma SK, Kadambari GKM, Prasad MS, Senguttvel P, Syamaladevi DP, Madhav MS (2020) Identification and characterization of a large effect QTL from Oryza glumaepatula revealed Pi68(t) as putative candidate gene for rice blast resistance. Rice 13(1):1–13. https://doi.org/10.1186/s12284-020-00378

    Article  Google Scholar 

  • Di BD, Thiyagarajan K, Latini A, Cantale C, Felici F, Galeffi P (2011) Exploring the genetic diversity of the DRF1 gene in durum wheat and its wild relatives. Plant Genet Resour 9:247–250

    Article  CAS  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc Nat Acad Sci USA 97:7043–7050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Ann Rev Ecol Syst 30:539–563

    Article  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eshed Y (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL developments over the last 20 years. Euphytica 156:1–13

    Google Scholar 

  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Sci Report 5:12217

    Article  CAS  Google Scholar 

  • Fonceka D, Tossim HA, Rivallan R, Vignes H, Lacut E et al (2012) Construction of chromosome segment substitution lines in peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS ONE 7:e48642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forcada C, Guajardo V, Chin-Wo SR, Moreno M (2019) Association mapping analysis for fruit quality traits in Prunus persica using SNP markers. Front Plant Sci 9:2005. https://doi.org/10.3389/fpls.2018.02005

    Article  Google Scholar 

  • Forster BP, Thomas WTB (2005) Doubled haploids in genetics and plant breeding. In: Janick J (ed) Plant breeding reviews, vol 25. Wiley, Hoboken, pp 57–883

    Google Scholar 

  • Frelichowski JE, Juvik JA (2001) Sesquiterpene carboxylic acids from a wild tomato species affect larval feeding behavior and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol 94:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics–technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644. https://doi.org/10.1016/j.tplants.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  • Gaikwad KB, Singh N, Bhatia D, Kaur R, Bains NS, Bharaj TS, Kuldeep, Singh (2014) Yield-enhancing heterotic QTL transferred from wild species to cultivated rice Oryza sativa L. PLoS ONE 9(6):1–11

    Article  CAS  Google Scholar 

  • Gaikwad KB, Singh N, Kaur P, Rani S, Babu HP, Singh K (2021) Deployment of wild relatives for genetic improvement in rice (Oryza sativa L.). Plant Breed 140:23–52

    Article  CAS  Google Scholar 

  • Goyal A, Bhowmik PK, Saikat BK (2009) Minichromosomes: the second generation genetic engineering tool. Plant Omics J 2(1):1–8

    CAS  Google Scholar 

  • Guimaraes PM, Brasileiro AC, Morgante CV, Martins AC, Pappas G, Silva OB Jr et al (2012) Global transcriptome analysis of two wild relatives of peanut under drought and fungi infection. BMC Genom 13:387

    Article  CAS  Google Scholar 

  • Ha BK, Vuong TD, Velusamy V, Nguyen HT, Shannon JG, Lee JD (2013) Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja). Euphytica 193:79–88

    Article  CAS  Google Scholar 

  • Haggard JE, St Clair DA (2015) Combining ability for Phytophthora infestans quantitative resistance from wild tomato. Crop Sci 55:240–254

    Article  CAS  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hamernik AJ, Hanneman RE, Jansky SH (2009) Introgression of wild species germplasm with extreme resistance to cold sweetening into the cultivated potato. Crop Sci 49:529–542

    Article  Google Scholar 

  • Han SF, Zhang H, Qin LQ, Zhai CK (2013) Effects of dietary carbohydrate replaced with wild rice (Zizania latifolia (Griseb) Turcz) on Insulin resistance in rats fed with a high-fat/cholesterol diet. Nuts 5:552–564

    CAS  Google Scholar 

  • Haque MS, Kjaer KH, Rosenqvist E, Ottosen CO (2015) Continuous light increases growth, daily carbon gain, antioxidants, and alters carbohydrate metabolism in a cultivated and a wild tomato species. Front Plant Sci 6:522

    Article  PubMed  PubMed Central  Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxonomy 20:509–517

    Article  Google Scholar 

  • He WA, Huang DH, Li RB, Qiu YF, Song JD, Yang HN et al (2012) Identification of a resistance gene bls1 to bacterial leaf streak in wild rice Oryza rufipogon Griff. J Integr Agric 11:962–969

    Article  CAS  Google Scholar 

  • Henry RJ, Nevo E (2014) Exploring natural selection to guide breeding for agriculture. Plant Biotechnology 12:655–662

    Article  Google Scholar 

  • Hesler LS (2013) Resistance to soybean aphid among wild soybean lines under controlled conditions. Crop Prot 53:139–146

    Article  Google Scholar 

  • Hiscock S, Tabah D (2003) The different mechanisms of sporophytic self-incompatibility. Phil Trans R Soc B 358:1037–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 9:e97047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huang N, Angeles ER, Domingo J, Magpantay G, Singh S, Zhang G, Kumaravadivel N, Bennett J, Khush GS (1997) Pyramiding of bacterial blight resistance genes in rice: Marker-assisted selection using RFLP and PCR. Theor Appl Genet 95:313–320. https://doi.org/10.1007/s001220050565

    Article  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X et al (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Nat Acad Sci USA 99:8133–8138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CL, Hwang SY, Chiang YC, Lin TP (2008) Molecular evolution of the Pi-ta gene resistant to rice blast in wild rice (Oryza rufipogon). Genetics 179:1527–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Nie X, Shen C, You C, Li W, Zhao W, Zhang X, Lin Z (2017) Population structure and genetic basis of the agronomic traits of upland cotton in China revealed by a genome-wide association study using high-density SNPs. Plant Biotechnol J 15:1374–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang C, Chu P, Wu Y, Chan WR, Wang YH (2020) Identification of functional SSR markers in freshwater ornamental Shrimps Neocaridina denticulata using transcriptome sequencing. Mar Biotechnol. https://doi.org/10.1007/s10126-020-09979-y

    Article  Google Scholar 

  • Hutin M, Sabot F, Ghesquiere A, Koebnik R, Szurek B (2015) A knowledge-based molecular screen uncovers a broad spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J 84:694–703

    Article  CAS  PubMed  Google Scholar 

  • Iehisa JCM, Shimizu A, Sato K, Nasuda S, Takumi S (2012) Discovery of high-confidence single nucleotide polymorphisms from large-scale de novo analysis of leaf transcripts of Aegilops tauschii, a wild wheat progenitor. DNA Res 19:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inomata N (1993) Embryo rescue techniques for wide hybridization. In book: Breeding Oilseed Brassicas. https://doi.org/10.1007/978-3-662-06166-47

  • Jain M, Olsen HE, Paten B, Akeson M (2016) The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol 17(1):239. https://doi.org/10.1186/s13059-016-1103-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansky SH (2011) Parental effects on the performance of cultivated wild species hybrids in potato. Euphytica 178:273–281

    Article  Google Scholar 

  • Jansky SH, Simon R, Spooner DM (2009) A test of taxonomic predictivity: Resistance to the Colorado potato beetle in wild relatives of cultivated potato. J Econ Entomol 102:422–431

    Article  CAS  PubMed  Google Scholar 

  • Jena SK (2010) The species of the genus Oryza and transfer of useful genes from wild species into cultivated rice, O. sativa Breed Sci 60:518–523

    Article  Google Scholar 

  • Jhanwar S, Priya P, Garg R, Parida SK, Tyagi AK, Jain M (2012) Transcriptome sequencing of wild chickpea as a rich resource for marker development. Plant Biotechnol J 10:690–702

    Article  CAS  PubMed  Google Scholar 

  • Jones DA, Thomas CM, Hammondkosack KE, Balintkurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  CAS  PubMed  Google Scholar 

  • Jones JDG, Witek K, Verweij W, Jupe F, Cooke D, Dorling S, Tomlinson L, Smoker M, Perkins S, Foster S (2014) Elevating crop disease resistance with cloned genes. Philos Trans R Soc A. https://doi.org/10.1098/rstb.2013.0087

    Article  Google Scholar 

  • Joseph M, Gopalakrishnan S, Sharma RK, Singh VP, Singh AK, Singh NK, Mohapatra T (2004) Combining bacterial blight resistance and Basmati quality characteristics by phenotypic and molecular marker-assisted selection in rice. Mol Breed 13:377–387

    Article  CAS  Google Scholar 

  • Jun Y, Fang W, Haibo Q, Guoxiong C, Eviatar N, Fahima T, Jianping C (2011) Natural variation in grain selenium concentration of wild barley, Hordeum spontaneum, populations from Israel. Biol Trace Elem Res 142:773–786

    Article  CAS  Google Scholar 

  • Kadam S, Vuong TD, Qiu D, Meinhardt CG, Song L, Deshmukh R et al (2016) Genomic-assisted phylogenetic analysis and marker development for next generation soybean cyst nematode resistance breeding. Plant Sci 242:342–350

    Article  CAS  PubMed  Google Scholar 

  • Kalladan R, Worch S, Rolletschek H, Harshavardhan V, Kuntze L, Seiler C, Sreenivasulu N, Roder M (2013) Identification of quantitative trait € loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breed 32:71–90

    Article  Google Scholar 

  • Khush GS, Brar DS (1992) Overcoming the barriers in hybridization. Theor Appl Genet 47–61

  • Khush GS, Bacalangco E, Ogawa T (1990) A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet Newslett 7:121–122

    Google Scholar 

  • Khush GS, Ling KC, Aquino RC, Aquiero VM (1977) Breeding for resistance to grassy stunt in rice. In: Proc. 3rd Intern. Congr. SABRAO, pp 3–9. Plant Breeding Papers 1[4] Canberra

  • Kim M, Hyten DL, Niblack TL, Diers BW (2011) Stacking resistance alleles from wild and domestic soybean sources improves soybean cyst nematode resistance. Crop Sci 51:934–943

    Article  Google Scholar 

  • Kunzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam HM, Xu X, Liu X, Chen WB, Yang GH, Wong FL et al (2010) Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42:1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Leung H, Hettel GP, Cantrell RP (2002) International Rice Research Institute: roles and challenges as we enter the genomics era. Trends Plant Sci 7:139–142

    Article  CAS  PubMed  Google Scholar 

  • Li WT, Huang X, Wang JR, Chen GY, Nevo E, Zheng YL, Wei Y (2010) Genetic analysis and ecological association of Hina genes based on single nucleotide polymorphisms (SNPs) in wild barley, Hordeum spontaneum Hereditas 147:18–26

    Article  PubMed  Google Scholar 

  • Li JQ, Shahid MQ, Feng JH, Liu XD, Zhao XJ, Lu YG (2012) Identification of neutral alleles at pollen sterility gene loci of cultivated rice (Oryza sativa L.) from wild rice (O. rufipogon Griff.). Plant Syst Evol 298:33–42

    Article  CAS  Google Scholar 

  • Li J, Wang XH, Wang XP, Wang YJ (2014) Embryo rescue technique and its applications for seedless breeding in grape. Plant Cell Tissue Organ Cult 120:861–880

    Article  Google Scholar 

  • Li X, Wei YU, Li J, Yang F, Chen Y, Chen Y, Guo S, Sha A (2020) Identification of QTL TGW12 responsible for grain weight in rice based on recombinant inbred line population crossed by wild rice (Oryza minuta) introgression line K1561 and indica rice G1025. BMC Genet 21(1):10. https://doi.org/10.1186/s12863-020-0817-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Neal Stewart C, Jr Li J, Wei W (2018) One species to another: sympatric Bt transgene gene flow from Brassica napus alters the reproductive strategy of wild relative Brassica juncea under herbivore treatment. Ann Bot 122(4):617–625. https://doi.org/10.1093/aob/mcy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL (2008) Prioritizing climate change adaptation needs for food security in 2030. Science 319:607–610

    Article  CAS  PubMed  Google Scholar 

  • Luo XJ, Wu S, Tian F, Xin XY, Zha XJ, Dong XX et al (2011) Identification of heterotic loci associated with yield-related traits in Chinese common wild rice (Oryza rufipogon Griff.). Plant Sci 181:14–22

    Article  CAS  PubMed  Google Scholar 

  • Maluszynski M, Kasha KJ, Szarejko I et al (2003) Published doubled haploid protocols in plant species. In: Maluszynski M et al (eds) Doubled haploid production in crop plants. Kluwer Academic Publishers, Dordrecht, pp 309–335

    Chapter  Google Scholar 

  • Marrano A, Birolo G, Prazzoli ML, Lorenzi S, Valle G, Grando MS (2017) SNP-discovery by RAD-sequencing in a germplasm collection of wild and cultivated grapevines (V. vinifera L.). PLoS ONE 12(1):e0170655. https://doi.org/10.1371/journal.pone.0170655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuoka Y, Vigouroux Y, Goodman MMG, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Nat Acad Sci USA 99:6080–6084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maxted N, Ford-Lloyd BV, Jury S, Kell S, Scholten M (2006) Towards a definition of a crop wild relative. Biodivers Conserv 15:2673–2685

    Article  Google Scholar 

  • Mehetre SS, Aher AR (2004) Embryo rescue: a tool to overcome incompatible interspecific hybridization in Gossypium Linn. a review. Indian J Biotechnol 3:29–36

    Google Scholar 

  • Melendez-Martinez AJ, Fraser PD, Bramley PM (2010) Accumulation of health promoting phytochemicals in wild relatives of tomato and their contribution to in vitro antioxidant activity. Phytochemicals 71:1104–1114

    Article  CAS  Google Scholar 

  • Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251

    Article  CAS  PubMed  Google Scholar 

  • Mohapatra D, Bajaj YPS (1987) Interspecific hybridization in Brassica juncea × Brassica hirta using embryo rescue. Euphytica 36:321

    Article  Google Scholar 

  • Morrell P, Clegg M (2011) Hordeum. In: Kole C (ed) Wild Crop Relatives: Genom and Breed Resour. Springer, Berlin, pp 309–319

    Chapter  Google Scholar 

  • Multani DS, Khush GS, delos Reyes BG, Brar DS (2003) Alien genes introgression and development of monosomic alien addition lines from Oryza latifolia Desv. to rice, Oryza sativa L. Theor Appl Genet 107(3):395–405

    Article  CAS  PubMed  Google Scholar 

  • Nemeth C, Yang C, Kasprzak P, Hubbart S, Scholefield D, Mehra S, Skipper E, King I, King J (2015) Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement. Genome 58:71–79. https://doi.org/10.1139/gen-2015-0002

    Article  CAS  PubMed  Google Scholar 

  • Nevo E, Chen GX (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environment 33:670–685

    Article  CAS  PubMed  Google Scholar 

  • Ning J, Moghe G, Leong B, Kim J, Ofner I, Wang Z et al (2015) A feedback insensitive isopropylmalate synthase affects acylsugar composition in cultivated and wild tomato. Plant Physiol 169:1821–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niroula RK, Pucciariello C, Ho VT, Novi G, Fukao T, Perata P (2012) SUB1A-dependent and ‐independent mechanisms are involved in the flooding tolerance of wild rice species. Plant J 72:282–293

    Article  CAS  PubMed  Google Scholar 

  • Niu Z, Jiang A, Hammad WA, Oladzadabbasabadi A, Xu SS, Mergoum M, Elias EM, Pakniyat H, Namayandeh A (2007) Salt tolerance associations with RAPD markers in Hordeum vulgare L. and H. spontaneum C. Koch. Pakistan Journal of Biological Science 10:1317–1320

    Article  Google Scholar 

  • Niu Z, Jiang A, Hammad WA, Oladzadabbasabadi A, Xu SS, Mergoum M, Elias EM (2014) Review of doubled haploid production in durum and common through wheat x maize hybridization. Plant Breeding 133:313-320 4

    Article  CAS  Google Scholar 

  • Ogawa T, Lin L, Tabien RE, Khush GS (1987) A new recessive gene for resistance to bacterial blight of rice. Rice Genetics Newsletter 4:98–100

    Google Scholar 

  • Ogawa T, Yamamoto T, Khush GS, Mew TW, Kaku H (1988) Near-isogenic lines as differentials for resistance to bacterial blight of rice. Rice Genetics Newsletter 5:106–107

    Google Scholar 

  • Pabuayon I, Sun Y, Guo W (2019) High-throughput phenotyping in cotton: a review. J Cotton Res 2:18. https://doi.org/10.1186/s42397-019-0035-0

    Article  Google Scholar 

  • Pakniyat H, Namayandeh A (2007) Salt tolerance associations with RAPD markers in Hordeum vulgare L. and H. spontaneum C. Koch. Pak J Biol Sci 10:1317–1320

  • Papa R, Gepts P (2003) Asymmetry of gene flow and differential geographical structure of molecular diversity in wild and domesticated common bean (Phaseolus vulgaris L.) from Mesoamerica. Theor Appl Genet 106:239–250

    Article  CAS  PubMed  Google Scholar 

  • Park S, Son S, Shin M, Fuji N, Hoshino T, Park S (2019) Transcriptome-wide mining, characterization, and development of microsatellite markers in Lychnis kiusiana (Caryophyllaceae). BMC Plant Biology 19: 14, doi,10.1186/s12870-018-1621-x

  • Pickering R, Ruge-Wehling B, Johnston PA, Schweizer G, Ackermann P, Wehling P (2006) The transfer of a gene conferring resistance to scald (Rhynchosporium secalis) from Hordeum bulbosum into H. vulgare chromosome 4HS. Plant Breeding 125:576–579

    Article  CAS  Google Scholar 

  • Placido DF, Campbell MT, Folsom JJ, Cui XP, Kruger GR, Baenziger PS, Walia H (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161:1806–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard MO, Gurdasani D, Mentzer AJ, Porter T, Sandhu MS (2018) Long reads: their purpose and place. Hum Mol Genet 27(R2):234–241. https://doi.org/10.1093/hmg/ddy177

    Article  CAS  Google Scholar 

  • Pramanik K, Sahoo JP, Mohapatra PP, Acharya LK, Jena C (2021) Insights into the embryo rescue: a modern in-vitro crop improvement approach in horticulture. Plant Cell Biotechnology Molecular Biology 22(15–16):20–33

    Google Scholar 

  • Prieto (2020) Chromosome Manipulation for Plant Breeding Purposes. Agronomy 10:1695. https://doi.org/10.3390/agronomy10111695

    Article  Google Scholar 

  • Prusty MR, Kim SR, Vinarao R, Entila F, Egdane J, Diaz MG, Jena KK (2018) Newly identified wild rice accessions conferring high salt tolerance might use a tissue tolerance mechanism in leaf. Frontiers of Plant Science 9:417. https://doi.org/10.3389/fpls.2018.00417

    Article  Google Scholar 

  • Przywara L, White DWR, Sander PM, Maher D (1989) Interspecific hybridization of Trifolium repens with Trifolium hybridum using ovule embryo and embryo culture. Ann Bot 64:613–624

    Article  Google Scholar 

  • Puja R, Kumar S, Salgotra RK, Samnotra RK, Falguni, Sharma (2014) Development of interspecific F1 hybrids (Solanum melongena × Solanum khasianum) in eggplant through embryo rescue technique Plant Cell Tissue Organ Culture. https://doi.org/10.1007/s11240-014-0591-4

    Article  Google Scholar 

  • Qi XP, Li MW, Xie M, Liu X, Ni M, Shao GH, Song C, Yim AK et al (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communication 5:4340

    Article  CAS  Google Scholar 

  • Raghavan V (1980) Embryo culture. International Review of Cytology Supplementary 11B 113:209–240

    Google Scholar 

  • Raghvan V (1986) Embryogenesis in angiosperms: a developmental and experimental study. University Press, Cambridge

    Google Scholar 

  • Rahman L, Khanam S, Roh JH, Koh HJ (2011) Mapping of QTLs involved in resistance to rice blast (Magnaporthe grisea) using Oryza minuta introgression lines. Czech Journal of Genetics Plant Breeding 47:85–94

    Article  CAS  Google Scholar 

  • Raina M, Salgotra RK, Pandotra P, Rathour R, Singh K (2019) Genetic enhancement for semi-dwarf and bacterial blight resistance with enhanced grain quality characteristics in traditional Basmati rice through marker-assisted selection. C R Biology 342:142–153

    Article  Google Scholar 

  • Rao ES, Kadirvel P, Symonds RC, Geethanjali S, Thontadarya RN, Ebert AW (2015) Variations in DREB1A and VP1.1 genes show association with salt tolerance traits in wild tomato (Solanum pimpinellifolium). PLoS ONE 10:e0132535

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawat N, Tiwari VK, Singh N, Randhawa GS, Singh K, Chhuneja P, Dhaliwal HS (2009) Evaluation and utilization of Aegilops and wild Triticum species for enhancing iron and zinc content in wheat. Genetics Resources Crop Evolution 56:53–64

    Article  Google Scholar 

  • Ray S, Satya P (2014) Next generation sequencing technologies for next generation plant breeding. Frontier Plant Science 5:367. https://doi.org/10.3389/fpls.2014.00367

    Article  Google Scholar 

  • Rodriguez-Suarez C, Gimenez MJ, Gutierrez N, Avila CM, Machado A, Huttner E et al (2012) Development of wild barley (Hordeum chilense)‐derived DArT markers and their use into genetic and physical mapping. Theor Appl Genet 124:713–722

    Article  CAS  PubMed  Google Scholar 

  • Rohini G, Mohit V, Shashank A, Rama S, Manoj M, Mukesh J (2014) Deep transcriptome sequencing of wild halophyte rice, Porteresia coarctata, provides novel insights into the salinity and submergence tolerance factors. DNA Res 21:69–84

    Article  CAS  Google Scholar 

  • Romay G, Bragard C (2017) Antiviral defenses in plants through genome editing. Frontier of Microbiology 8:47

    Google Scholar 

  • Rong J, Song ZP, de Jong T, Zhang XS, Sun SG et al (2010) Modelling pollen-mediated gene flow in rice: risk assessment and management of transgene escape. Plant Biotechnol J 8:1–13

    Article  Google Scholar 

  • Sabelli PA, Hoerster G, Lizarraga LE, Brown SW, Gordon-Kamm WJ, Larkins BA (2009) Positive regulation of minichromosome maintenance gene expression, DNA replication, and cell transformation by a plant retinoblastoma gene. Proceedings of the National Academic of Science 106: 4042–4047

  • Sahu PK, Sao R, Mondal S, Vishwakarma G, Gupta SK, Kumar V, Singh S, Sharma D, Das BK (2020) Next generation sequencing based forward genetic approaches for identification and mapping of causal mutations in crop plants: a comprehensive review. Plants 9(10):1355. https://doi.org/10.3390/plants9101355

    Article  CAS  PubMed Central  Google Scholar 

  • Saintenac C, Zhang WJ, Salcedo A, Rouse MN, Trick HN, Akhunov E, Dubcovsky J (2013) Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group. Science 341:783–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha S, Tullu A, Yuan HY, Lulsdorf MM, Vandenberg A (2015) Improvement of embryo rescue technique using 4-chloroindole-3 acetic acid in combination with in vivo grafting to overcome barriers in lentil interspecific crosses Plant Cell Tissue Organ Culture 120:109–116

    Article  CAS  Google Scholar 

  • Salgotra RK, Stewart CN Jr (2020) Functional markers for precision plant breeding. Int J Mol Sci 21:4792

    Article  CAS  PubMed Central  Google Scholar 

  • Salgotra RK, Gupta BB, Sood M (2015) Biotechnological interventions and their role in sustainable hill agriculture. Journal of Plant Sciences Research 2(1):1–8

    Google Scholar 

  • Santalla M, Rodiño AP, De Ron AM (2002) Allozyme evidence supporting southwestern Europe as a secondary center of genetic diversity for the common bean. Theor Appl Genet 104:934–944

    Article  CAS  PubMed  Google Scholar 

  • Santra M, Wang H, Seifert S, Haley S (2017) Prem L. Bhalla and Mohan B. Singh (eds.), Wheat Biotechnology: Methods and Protocols, Methods in Molecular Biology, vol.1679, DOI https://doi.org/10.1007/978-1-4939-7337-8_14

  • Scandalios JG (1969) Genetic control of multiple molecular forms of enzymes in plants. A review. Biochemical Genetics 37–79

  • Schaeffer SM, Nakat PA (2015) CRISPR/Cas9-mediated genome editing and gene replacement in plants: transitioning from lab to field. Plant Sci. https://doi.org/10.1016/j.plantsci.2015.09.011

    Article  PubMed  Google Scholar 

  • Schmalenbach I, Korber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106

    Article  PubMed  Google Scholar 

  • Sharma A, Srivastava P, Mavi GS, Kaur S, Kaur J, Bala R, Singh TP, Sohu VS, Chhuneja P, Bains NS, Singh GP (2021) Resurrection of wheat cultivar PBW343 using marker-assisted gene pyramiding for rust resistance. Front Plant Sci 12:570408. https://doi.org/10.3389/fpls.2021.570408

    Article  PubMed  PubMed Central  Google Scholar 

  • Shavrukov Y, Gupta N, Miyazaki J, Baho M, Chalmers K, Tester M, Langridge P, Collins N (2010) HvNax3-a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genom 10:277–291

    Article  CAS  Google Scholar 

  • Singh RJ, Nelson RL (2015) Intersubgeneric hybridization between Glycine max and G. tomentella: Production of F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants. Theor Appl Genet 128:1117–1136

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Wang X, Kumar U, Gao L, Noor M, Imtiaz M, Singh RP, Poland J (2019) High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. Front Plant Sci 10:394. https://doi.org/10.3389/fpls.2019.00394

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh DP, Asheesh K, Singh A (2021) Plant genetic resources. In: Singh DP, Singh AK, Singh A (eds) Plant breeding and cultivar development. Academic Press, Cambridge. https://doi.org/10.1016/B978-0-12-817563-7.00009-X

    Chapter  Google Scholar 

  • Sonah H, Bastien M, Iquira E, Tardivel A, Tardivel A, Legare G, Boyle B, Normandeau E, Laroche J, Larose S, Jean M, Belzile F (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8:e54603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Jansky SH, Simon R (2009) Tests of taxonomic and biogeographic predictivity: resistance to disease and insect pests in wild relatives of cultivated potato. Crop Sci 49:1367–1376

    Article  Google Scholar 

  • Stevanato P, Broccanello C, Pajola L, Biscarini F, Richards C, Panella L, Hassani M, Formentin E, Chiodi C, Concheri G, Heidari B (2017) Targeted next-generation sequencing identification of mutations in disease resistance gene analogs (RGSs) in wild and cultivated beets. Genes 8(10):264. https://doi.org/10.3390/genes8100264

    Article  CAS  PubMed Central  Google Scholar 

  • Stewart CN, Halfhill MD, Warwick SI (2003) Transgene introgression from genetically modified crops to their wild relatives. Nat Rev Genet 4:806–817

    Article  CAS  PubMed  Google Scholar 

  • Sudan J, Singh R, Sharma S, Salgotra RK, Sharma V, Singh G, Sharma I, Sharma S, Gupta SK, Zargar SM (2019) ddRAD sequencing-based identification of inter-genepool SNPs and association analysis in Brassica juncea BMC Plant Biol 19:594. https://doi.org/10.1186/s12870-019-2188-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sundaram RM, Vishnupriya MR, Biradar SK, Laha GS, Reddy GA, Shobha Rani N, Sarma NP, Sonti RV (2008) Marker-assisted introgression of bacterial blight resistance in Samba Mahsuri, an elite indica rice variety. Euphytica 80:411–422

    Article  Google Scholar 

  • Tabashnik BE (2010) Communal benefits of transgenic corn. Science 330:189–190

    Article  CAS  PubMed  Google Scholar 

  • Takeshita M, Kato M, Tokumasu S (1980) Application of ovule culture to the production of intergeneric or interspecific hybrids in Brassica and Raphanus Jpn J Genet 55:373–387

    Article  Google Scholar 

  • Talbert LE, Doebley JF, Larson S, Chandler VL (1990) Tripsacum andersonii is a natural hybrid involving Zea and Tripsacum: molecular evidence. Am J Bot 77:722–726

    Article  CAS  Google Scholar 

  • Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822

    Article  CAS  PubMed  Google Scholar 

  • Tiwari JK, Devi S, Sharma S, Chandel P, Rawat S, Singh BP (2015) Allele mining in Solanum germplasm: cloning and characterization of RB-homologous gene fragments from late blight resistant wild potato species. Plant Mol Biol Rep 33:1584–1598

    Article  CAS  Google Scholar 

  • Tripathi JN, Lorenzen J, Bahar O, Ronald P, Tripathi L (2014) Transgenic expression of the rice Xa21 pattern-recognition receptor in banana (Musa sp.). Plant Biotechnol J 12(6):663–673. https://doi.org/10.1111/pbi.12170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Viard F, Bernard J, Desplanque B (2002) Crop–weed interactions in the Beta vulgaris complex at a local scale: allelic diversity and gene flow within sugar beet fields. Theor Appl Genet 104:688–697

    Article  CAS  PubMed  Google Scholar 

  • Wang WB, He QY, Yang HY, Xiang SH, Zhao TJ, Gai JY (2013) Development of a chromosome segment substitution line population with wild soybean (Glycine soja Sieb. et Zucc.) as donor parent. Euphytica 189:293–307

    Article  Google Scholar 

  • Wu S, Clevenger JP, Sun L, Visa S, Kamiya Y, Jikumaru Y et al (2015) The control of tomato fruit elongation orchestrated by sun, ovate and fs8.1 in a wild relative of tomato. Plant Sci 238:95–104

    Article  CAS  PubMed  Google Scholar 

  • Xavier A, Muir WM, Rainey KM (2016) Assessing predictive properties of genome-wide selection in soybeans. G3 (Bethesda) 6:2611–2616

    Article  Google Scholar 

  • Xiao J, Grandillo S, Ahn SN, McCouch SR, Tanksley SD, Yuan L (1996) Genes from wild rice improve yield. Nature 384:223–224

    Article  CAS  Google Scholar 

  • Xu DH, Abe J, Gai JY, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor Appl Genet 105:645–653

    Article  CAS  PubMed  Google Scholar 

  • Xue F, Ji WQ, Wang CY, Zhang H, Yang BJ (2012) High-density mapping and marker development for the powdery mildew resistance gene PmAS846 derived from wild emmer wheat (Triticum turgidum var.dicoccoides). Theor Appl Genet 124:1549–1560

    Article  CAS  PubMed  Google Scholar 

  • Yahiaoui N, Kaur N, Keller B (2009) Independent evolution of functional Pm3 resistance genes in wild tetraploid wheat and domesticated bread wheat. Plant J 57:846–856

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Lin J, Cheng L, Zhou H, Chen S, Liu F, Li R, Qiu Y (2020) Identification of a novel planthopper resistance gene from wild rice (Oryza rufipogon Griff). Crop J. https://doi.org/10.1016/j.cj.2020.03.011

    Article  Google Scholar 

  • Yuan Y, Bayer PE, Batley J, Edwards D (2017) Improvements in genomic technologies: application to crop genomics. Trends Biotechnol 35(6):547–558. https://doi.org/10.1016/j.tibtech.2017.02.009

    Article  CAS  PubMed  Google Scholar 

  • Yun SJ, Gyenis L, Hayes PM, Matus I, Smith KP, Steffenson BJ, Muehlbauer GJ (2005) Quantitative trait loci for multiple disease resistance in wild barley. Crop Sci 45:2563–2572

    Article  CAS  Google Scholar 

  • Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H (2012) Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol 12:182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q (2007) Strategies for developing green super rice. Proc Natl Acad Sci 104:16402–16409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Showalter AM (2020) CRISPR/Cas9 genome editing technology: a valuable tool for understanding plant cell wall biosynthesis and function. Front Plant Sci 11:589517. https://doi.org/10.3389/fpls.2020.589517

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Sun HY, Dai HX, Zhang GP, Wu FB (2010) Difference in response to drought stress among Tibet wild barley genotypes. Euphytica 172:395–403

    Article  CAS  Google Scholar 

  • Zhu YQ, Ellstrand NC, Lu BR (2012) Sequence polymorphisms in wild, weedy, and cultivated rice suggest seed-shattering locus sh4 played a minor role in Asian rice domestication. Ecol Evol 2:2106–2113

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors acknowledged the opportunity given under Endeavour Executive Fellowship Programme by Australian Government to work at The University of Queensland, Queensland, Australia.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the ideas: BSC, RS. Performed the experiments: BSC, RS and TS. FV and HA wrote most of the manuscript, and all authors contributed to drafts.

Corresponding author

Correspondence to Romesh K Salgotra.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be constructed as a potential conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salgotra, R.K., Thompson, M. & Chauhan, B.S. Unravelling the genetic potential of untapped crop wild genetic resources for crop improvement. Conservation Genet Resour 14, 109–124 (2022). https://doi.org/10.1007/s12686-021-01242-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-021-01242-3

Keywords

Navigation