Skip to main content
Log in

Xylitol Production from Corncob Hydrolysate by an Engineered Escherichia coli M15 as Whole-Cell Biocatalysts

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Xylitol is used in the food and pharmaceutical industries as a sweetener, and its consumption rate has remarkably increased over the years. Currently, xylitol is produced through a chemical reduction method. However, considering the global climate change issue, the development of eco-friendly, renewable, and sustainable substrates for the production of high-value platform chemicals such as xylitol is the need of the hour. Hence, the present study aimed to use a microbial process for xylitol production.

Methods

Escherichia coli M15 platform was used to overexpress the D-xylose reductase (XR) gene from a mesophilic yeast, Candida tropicalis GRA1. The 37-KDa CtXR sequence exhibited a highly conserved active site structure, where a tetrad of residues (Tyr51, Lys80, His113, and Asp46) was located at the base of the substrate-binding pocket. To mitigate the rate-limiting step of cofactor supply in the bioconversion of xylose to xylitol, overexpression of XR genes coupled with auxiliary substrates was used toward in vivo cofactor regeneration.

Results

In the presence of xylose as the only carbon source, the M15 CtXRΔ produced 2.1 g L−1 of xylitol. The xylitol titer showed a steady-state increase with the addition of auxiliary substrates glucose and glycerol to 3.4 and 6.4 g L−1, respectively. Further, M15 CtXRΔ as a whole-cell biocatalyst in alkali pretreated detoxified corncob hydrolysate produced xylitol titer of 3.7 g L−1.

Conclusion

Therefore, we successfully produced xylitol from corncob hydrolysates using the engineered E. coli M15 as whole-cell biocatalysts. Further, this process can be up scaled for the synthesis of eco-friendly high-value green chemicals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article and its supplementary information files.

References

  1. Chattopadhyay, S., Raychaudhuri, U., Chakraborty, R.: Artificial sweeteners—a review. J. Food Sci. Technol. 51, 611–621 (2014)

    Article  Google Scholar 

  2. Lugani, Y., Sooch, B.S.: Xylitol, an emerging prebiotic: a review. Int J. Appl. Pharm. Biol. Res. 2, 67–73 (2017)

    Google Scholar 

  3. Arcaño, Y.D., García, O.D.V., Mandelli, D., Carvalho, W.A., Pontes, L.A.M.: Xylitol: a review on the progress and challenges of its production by chemical route. Catal. Today 344, 2–14 (2020)

    Article  Google Scholar 

  4. Ravella SR, Gallagher J, Fish S, Prakasham RS: Overview on commercial production of xylitol, economic analysis and market trends. In: d-Xylitol, pp. 291–306. Springer, New York (2012)

  5. de Paula, R.G., Antoniêto, A.C.C., Ribeiro, L.F.C., Srivastava, N., O’Donovan, A., Mishra, P.K., Gupta, V.K., Silva, R.N.: Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol. Adv. 37, 107347 (2019)

    Article  Google Scholar 

  6. Van Dyk, J.S., Pletschke, B.I.: A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 30, 1458–1480 (2012)

    Article  Google Scholar 

  7. Granström, T.B., Izumori, K., Leisola, M.: A rare sugar xylitol. Part II: biotechnological production and future applications of xylitol. Appl. Microbiol. Biotechnol. 74, 273–276 (2007)

    Article  Google Scholar 

  8. Rafiqul, I.S.M., Sakinah, A.M.M.: Processes for the production of xylitol—a review. Food Rev. Intl. 29, 127–156 (2013)

    Article  Google Scholar 

  9. Nidetzky, B., Klimacek, M., Mayr, P.: Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Biochemistry 40, 10371–10381 (2001)

    Article  Google Scholar 

  10. Winkelhausen, E., Kuzmanova, S.: Microbial conversion of D-xylose to xylitol. J. Ferment. Bioeng. 86, 1–14 (1998)

    Article  Google Scholar 

  11. Jeffries, T.W., Jin, Y.S.: Metabolic engineering for improved fermentation of pentoses by yeasts. Appl. Microbiol. Biotechnol. 63, 495–509 (2004)

    Article  Google Scholar 

  12. Atzmüller, D., Ullmann, N., Zwirzitz, A.: Identification of genes involved in xylose metabolism of Meyerozyma guilliermondii and their genetic engineering for increased xylitol production. AMB Express 10, 1–11 (2020)

    Article  Google Scholar 

  13. Chen, X., Jiang, Z.-H., Chen, S., Qin, W.: Microbial and bioconversion production of D-xylitol and its detection and application. Int. J. Biol. Sci. 6, 834 (2010)

    Article  Google Scholar 

  14. Rao, L.V., Goli, J.K., Gentela, J., Koti, S.: Bioconversion of lignocellulosic biomass to xylitol: an overview. Biores. Technol. 213, 299–310 (2016)

    Article  Google Scholar 

  15. Sampaio, F.C., Silveira, W.B.D., Chaves-Alves, V.M., Passos, F.M.L., Coelho, J.L.C.: Screening of filamentous fungi for production of xylitol from D-xylose. Braz. J. Microbiol. 34, 325–328 (2003)

    Article  Google Scholar 

  16. Akinterinwa, O., Cirino, P.C.: Heterologous expression of D-xylulokinase from Pichia stipitis enables high levels of xylitol production by engineered Escherichia coli growing on xylose. Metab. Eng. 11, 48–55 (2009)

    Article  Google Scholar 

  17. Louie, T.M., Louie, K., DenHartog, S., Gopishetty, S., Subramanian, M., Arnold, M., Das, S.: Production of bio-xylitol from d-xylose by an engineered Pichia pastoris expressing a recombinant xylose reductase did not require any auxiliary substrate as electron donor. Microb. Cell Fact. 20, 1–13 (2021)

    Article  Google Scholar 

  18. Zhang, L., Chen, Z., Wang, J., Shen, W., Li, Q., Chen, X.: Stepwise metabolic engineering of Candida tropicalis for efficient xylitol production from xylose mother liquor. Microb. Cell Fact. 20, 1–12 (2021)

    Article  Google Scholar 

  19. de Albuquerque, T.L., da Silva Jr, I.J., de Macedo, G.R., Rocha, M.V.P.: Biotechnological production of xylitol from lignocellulosic wastes: a review. Process Biochem. 49, 1779–1789 (2014)

    Article  Google Scholar 

  20. Buijs, N.A., Siewers, V., Nielsen, J.: Advanced biofuel production by the yeast Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 17, 480–488 (2013)

    Article  Google Scholar 

  21. Park, J.M., Vinuselvi, P., Lee, S.K.: The mechanism of sugar-mediated catabolite repression of the propionate catabolic genes in Escherichia coli. Gene 504, 116–121 (2012)

    Article  Google Scholar 

  22. Parachin, N.S., Bergdahl, B., van Niel, E.W.J., Gorwa-Grauslund, M.F.: Kinetic modelling reveals current limitations in the production of ethanol from xylose by recombinant Saccharomyces cerevisiae. Metab. Eng. 13, 508–517 (2011)

    Article  Google Scholar 

  23. Young, E.M., Tong, A., Bui, H., Spofford, C., Alper, H.S.: Rewiring yeast sugar transporter preference through modifying a conserved protein motif. Proc. Natl. Acad. Sci. 111, 131–136 (2014)

    Article  Google Scholar 

  24. Karhumaa, K., Fromanger, R., Hahn-Hägerdal, B., Gorwa-Grauslund, M.-F.: High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 73, 1039–1046 (2007)

    Article  Google Scholar 

  25. Du, J., Li, S., Zhao, H.: Discovery and characterization of novel d-xylose-specific transporters from Neurospora crassa and Pichia stipitis. Mol. BioSyst. 6, 2150–2156 (2010)

    Article  Google Scholar 

  26. Khankal, R., Chin, J.W., Cirino, P.C.: Role of xylose transporters in xylitol production from engineered Escherichia coli. J. Biotechnol. 134, 246–252 (2008)

    Article  Google Scholar 

  27. Hasona, A., Kim, Y., Healy, F.G., Ingram, L.O., Shanmugam, K.T.: Pyruvate formate lyase and acetate kinase are essential for anaerobic growth of Escherichia coli on xylose. J. Bacteriol. 186, 7593–7600 (2004)

    Article  Google Scholar 

  28. Sumiya, M., Davis, E.O., Packman, L.C., McDonald, T.P., Henderson, P.J.: Molecular genetics of a receptor protein for D-xylose, encoded by the gene xylF, in Escherichia coli. Recept. Chann. 3, 117–128 (1995)

    Google Scholar 

  29. Ahlem, C., Huisman, W., Neslund, G., Dahms, A.S.: Purification and properties of a periplasmic D-xylose-binding protein from Escherichia coli K-12. J. Biol. Chem. 257, 2926–2931 (1982)

    Article  Google Scholar 

  30. Sofia, H.J., Burland, V., Daniels, D.L., Plunkett Iii, G., Blattner, F.R.: Analysis of the Escherichia coli genome. V. DNA sequence of the region from 76.0 to 81.5 minutes. Nucleic Acids Res. 22, 2576–2586 (1994)

    Article  Google Scholar 

  31. Ariyan, M., Uthandi, S.: Xylitol production by xylose reductase over producing recombinant Escherichia coli M15. Madras Agric. J. 106, 205–209 (2019)

    Google Scholar 

  32. Kawaguchi, H., Vertès, A.A., Okino, S., Inui, M., Yukawa, H.: Engineering of a xylose metabolic pathway in Corynebacterium glutamicum. Appl. Environ. Microbiol. 72, 3418–3428 (2006)

    Article  Google Scholar 

  33. Wang, Y., Shi, W.-L., Liu, X.-Y., Shen, Y., Bao, X.-M., Bai, F.-W., Qu, Y.-B.: Establishment of a xylose metabolic pathway in an industrial strain of Saccharomyces cerevisiae. Biotech. Lett. 26, 885–890 (2004)

    Article  Google Scholar 

  34. Young, E., Lee, S.-M., Alper, H.: Optimizing pentose utilization in yeast: the need for novel tools and approaches. Biotechnol. Biofuels 3, 1–12 (2010)

    Article  Google Scholar 

  35. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., Picataggio, S.: Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267, 240–243 (1995)

    Article  Google Scholar 

  36. Cirino, P.C., Chin, J.W., Ingram, L.O.: Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnol. Bioeng. 95, 1167–1176 (2006)

    Article  Google Scholar 

  37. Qi, X., Zhang, H., Magocha, T.A., An, Y., Yun, J., Yang, M., Xue, Y., Liang, S., Sun, W., Cao, Z.: Improved xylitol production by expressing a novel D-arabitol dehydrogenase from isolated Gluconobacter sp. JX-05 and co-biotransformation of whole cells. Bioresour. Technol. 235, 50–58 (2017)

    Article  Google Scholar 

  38. Jin, L.-Q., Yang, B., Xu, W., Chen, X.-X., Jia, D.-X., Liu, Z.-Q., Zheng, Y.-G.: Immobilization of recombinant Escherichia coli whole cells harboring xylose reductase and glucose dehydrogenase for xylitol production from xylose mother liquor. Biores. Technol. 285, 121344 (2019)

    Article  Google Scholar 

  39. Ostergaard, S., Olsson, L., Nielsen, J.: Metabolic engineering of Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 64, 34–50 (2000)

    Article  Google Scholar 

  40. Watanabe, S., Kodaki, T., Makino, K.: Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 280, 10340–10349 (2005)

    Article  Google Scholar 

  41. Watanabe, S., Saleh, A.A., Pack, S.P., Annaluru, N., Kodaki, T., Makino, K.: Ethanol production from xylose by recombinant Saccharomyces cerevisiae expressing protein engineered NADP+-dependent xylitol dehydrogenase. J. Biotechnol. 130, 316–319 (2007)

    Article  Google Scholar 

  42. Yan, N.: Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem. Sci. 38, 151–159 (2013)

    Article  Google Scholar 

  43. Mussatto, S.I., Santos, J.C.: Roberto IeC: effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J. Chem. Technol. Biotechnol. 79, 590–596 (2004)

    Article  Google Scholar 

  44. Valliammai G: Xylan derived products by fermentation. Master Thesis 2017.

  45. Chang, A.Y., Chau, V.W., Landas, J.A., Pang, Y.: Preparation of calcium competent Escherichia coli and heat-shock transformation. JEMI Methods 1, 22–25 (2017)

    Google Scholar 

  46. He F: Laemmli-sds-page. Bio-protocol 2011:e80–e80.

  47. He F: Bradford protein assay. Bio-protocol 2011:e45–e45.

  48. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F.T., de Beer, T.A.P., Rempfer, C., Bordoli, L.: SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018)

    Article  Google Scholar 

  49. Tian, K., Zhao, X., Zhang, Y., Yau, S.: Comparing protein structures and inferring functions with a novel three-dimensional Yau-Hausdorff method. J. Biomol. Struct. Dyn. 37, 4151–4160 (2019)

    Article  Google Scholar 

  50. Smiley, K.L., Bolen, P.L.: Demonstration of D-xylose reductase and D-xylitol dehydrogenase in Pachysolen tannophilus. Biotechnol. Lett. 4, 607–610 (1982)

    Article  Google Scholar 

  51. Veras, H.C.T., Parachin, N.S., Almeida, J.R.M.: Comparative assessment of fermentative capacity of different xylose-consuming yeasts. Microb. Cell Fact. 16, 1–8 (2017)

    Article  Google Scholar 

  52. Rajakumari, S., Grillitsch, K., Daum, G.: Synthesis and turnover of non-polar lipids in yeast. Prog. Lipid Res. 47, 157–171 (2008)

    Article  Google Scholar 

  53. Saloheimo, A., Rauta, J., Stasyk, V., Sibirny, A.A., Penttilä, M., Ruohonen, L.: Xylose transport studies with xylose-utilizing Saccharomyces cerevisiae strains expressing heterologous and homologous permeases. Appl. Microbiol. Biotechnol. 74, 1041–1052 (2007)

    Article  Google Scholar 

  54. Görke, B., Stülke, J.: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624 (2008)

    Article  Google Scholar 

  55. Kim, J.-H., Block, D.E., Mills, D.A.: Simultaneous consumption of pentose and hexose sugars: an optimal microbial phenotype for efficient fermentation of lignocellulosic biomass. Appl. Microbiol. Biotechnol. 88, 1077–1085 (2010)

    Article  Google Scholar 

  56. Yokoyama, S.-I., Suzuki, T., Kawai, K., Horitsu, H., Takamizawa, K.: Purification, characterization and structure analysis of NADPH-dependent D-xylose reductases from Candida tropicalis. J. Ferment. Bioeng. 79, 217–223 (1995)

    Article  Google Scholar 

  57. Kostrzynska, M., Sopher, C.R., Lee, H.: Mutational analysis of the role of the conserved lysine-270 in the Pichia stipitis xylose reductase. FEMS Microbiol. Lett. 159, 107–112 (1998)

    Article  Google Scholar 

  58. Petschacher, B., Leitgeb, S., Kavanagh, K.L., Wilson, D.K., Nidetzky, B.: The coenzyme specificity of Candida tenuis xylose reductase (AKR2B5) explored by site-directed mutagenesis and X-ray crystallography. Biochem. J. 385, 75–83 (2005)

    Article  Google Scholar 

  59. Silva, S.S., Vitolo, M., Pessoa, A., Jr., Felipe, M.G.A.: Xylose reductase and xylitol dehydrogenase activities of D-xylose-xylitol-fermenting Candida guilliermondii. J. Basic Microbiol. 36, 187–191 (1996)

    Article  Google Scholar 

  60. Suzuki, T., Yokoyama, S.-I., Kinoshita, Y., Yamada, H., Hatsu, M., Takamizawa, K., Kawai, K.: Expression of xyrA gene encoding for D-xylose reductase of Candida tropicalis and production of xylitol in Escherichia coli. J. Biosci. Bioeng. 87, 280–284 (1999)

    Article  Google Scholar 

  61. Zhang, J., Zhang, B., Wang, D., Gao, X., Hong, J.: Improving xylitol production at elevated temperature with engineered Kluyveromyces marxianus through over-expressing transporters. Biores. Technol. 175, 642–645 (2015)

    Article  Google Scholar 

  62. Zhang, X., Shen, Y., Shi, W., Bao, X.: Ethanolic cofermentation with glucose and xylose by the recombinant industrial strain Saccharomyces cerevisiae NAN-127 and the effect of furfural on xylitol production. Biores. Technol. 101, 7093–7099 (2010)

    Article  Google Scholar 

  63. Tochampa, W., Sirisansaneeyakul, S., Vanichsriratana, W., Srinophakun, P., Bakker, H.H.C., Chisti, Y.: A model of xylitol production by the yeast Candida mogii. Bioprocess Biosyst. Eng. 28, 175–183 (2005)

    Article  Google Scholar 

  64. Khankal, R., Luziatelli, F., Chin, J.W., Frei, C.S., Cirino, P.C.: Comparison between Escherichia coli K-12 strains W3110 and MG1655 and wild-type E. coli B as platforms for xylitol production. Biotechnol. Lett. 30, 1645–1653 (2008)

    Article  Google Scholar 

  65. Gonzalez, R., Tao, H., Shanmugam, K.T., York, S.W., Ingram, L.O.: Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose. Biotechnol. Prog. 18, 6–20 (2002)

    Article  Google Scholar 

  66. Carmel-Harel, O., Storz, G.: Roles of the glutathione-and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Ann. Rev. Microbiol. 54, 439–461 (2000)

    Article  Google Scholar 

  67. Hedeskov, C., Capito, K., Thams, P.: Cytosolic ratios of free [NADPH]/[NADP+] and [NADH]/[NAD+] in mouse pancreatic islets, and nutrient-induced insulin secretion. Biochem. J. 241, 161–167 (1987)

    Article  Google Scholar 

  68. Arruda, P.V., Felipe, M.G.: Role of glycerol addition on xylose-to-xylitol bioconversion by Candida guilliermondii. Curr Microbiol 58, 274–278 (2009)

    Article  Google Scholar 

  69. Ahmad, I., Shim, W.Y., Kim, J.-H.: Enhancement of xylitol production in glycerol kinase disrupted Candida tropicalis by co-expression of three genes involved in glycerol metabolic pathway. Bioprocess Biosyst. Eng. 36, 1279–1284 (2013)

    Article  Google Scholar 

  70. Kumar, S., Dheeran, P., Singh, S.P., Mishra, I.M., Adhikari, D.K.: Bioprocessing of bagasse hydrolysate for ethanol and xylitol production using thermotolerant yeast. Bioprocess Biosyst. Eng. 38, 39–47 (2015)

    Article  Google Scholar 

  71. López-Linares, J.C., Romero, I., Cara, C., Castro, E., Mussatto, S.I.: Xylitol production by Debaryomyces hansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Biores. Technol. 247, 736–743 (2018)

    Article  Google Scholar 

  72. Pereira, I., Madeira, A., Prista, C., Loureiro-Dias, M.C., Leandro, M.J.: Characterization of new polyol/H+ symporters in Debaryomyces hansenii. PLoS ONE 9, e88180 (2014)

    Article  Google Scholar 

  73. Dasgupta, D., Bandhu, S., Adhikari, D.K., Ghosh, D.: Challenges and prospects of xylitol production with whole cell bio-catalysis: a review. Microbiol. Res. 197, 9–21 (2017)

    Article  Google Scholar 

  74. Cheng, H., Wang, B., Lv, J., Jiang, M., Lin, S., Deng, Z.: Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltosa. Microb. Cell Fact. 10, 1–12 (2011)

    Article  Google Scholar 

  75. Abd Rahman, N.H., Jahim, J.M., Munaim, M.S.A., Rahman, R.A., Fuzi, S.F.Z., Illias, R.M.: Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme Microb. Technol. 135, 109495 (2020)

    Article  Google Scholar 

  76. Yuan, X., Tu, S., Lin, J., Yang, L., Shen, H., Wu, M.: Combination of the CRP mutation and ptsG deletion in Escherichia coli to efficiently synthesize xylitol from corncob hydrolysates. Appl. Microbiol. Biotechnol. 104, 2039–2050 (2020)

    Article  Google Scholar 

  77. Reshamwala, S.M.S., Lali, A.M.: Exploiting the NADPH pool for xylitol production using recombinant Saccharomyces cerevisiae. Biotechnol. Prog. 36, e2972 (2020)

    Article  Google Scholar 

  78. da Silva, E.G., Borges, A.S., Maione, N.R., Castiglioni, G.L., Suarez, C.A.G., Montano, I.D.C.: Fermentation of hemicellulose liquor from Brewer’s spent grain using Scheffersomyces stipitis and Pachysolen tannophilus for production of 2G ethanol and xylitol. Biofuels Bioprod. Biorefin. 14, 127–137 (2020)

    Article  Google Scholar 

  79. Kim, S.-Y., Oh, D.-K., Kim, J.-H.: Evaluation of xylitol production from corn cob hemicellulose hydrolysate by Candida parapsilosis. Biotech. Lett. 21, 891–895 (1999)

    Article  Google Scholar 

  80. Li, M., Meng, X., Diao, E., Du, F.: Xylitol production by Candida tropicalis from corn cob hemicellulose hydrolysate in a two-stage fed-batch fermentation process. J. Chem. Technol. Biotechnol. 87, 387–392 (2012)

    Article  Google Scholar 

  81. Ping, Y., Ling, H.-Z., Song, G., Ge, J.-P.: Xylitol production from non-detoxified corncob hemicellulose acid hydrolysate by Candida tropicalis. Biochem. Eng. J. 75, 86–91 (2013)

    Article  Google Scholar 

  82. Mardawati E, Andoyo R, Syukra KA, Kresnowati M, Bindar Y: Production of xylitol from corn cob hydrolysate through acid and enzymatic hydrolysis by yeast. 2018. IOP Publishing.

  83. Prabhu, A.A., Ledesma-Amaro, R., Lin, C.S.K., Coulon, F., Thakur, V.K., Kumar, V.: Bioproduction of succinic acid from xylose by engineered Yarrowia lipolytica without pH control. Biotechnol. Biofuels 13, 1–15 (2020)

    Article  Google Scholar 

  84. Prabhu, A.A., Thomas, D.J., Ledesma-Amaro, R., Leeke, G.A., Medina, A., Verheecke-Vaessen, C., Coulon, F., Agrawal, D., Kumar, V.: Biovalorisation of crude glycerol and xylose into xylitol by oleaginous yeast Yarrowia lipolytica. Microb. Cell Fact. 19, 1–18 (2020)

    Article  Google Scholar 

  85. Baptista, S.L., Costa, C.E., Cunha, J.T., Soares, P.O., Domingues, L.: Metabolic engineering of Saccharomyces cerevisiae for the production of top value chemicals from biorefinery carbohydrates. Biotechnol. Adv. 47, 107697 (2021)

    Article  Google Scholar 

  86. Yuan, X., Wang, J., Lin, J., Yang, L., Wu, M.: Efficient production of xylitol by the integration of multiple copies of xylose reductase gene and the deletion of Embden–Meyerhof–Parnas pathway-associated genes to enhance NADPH regeneration in Escherichia coli. J. Ind. Microbiol. Biotechnol. 46, 1061–1069 (2019)

    Article  Google Scholar 

  87. Shah, S.S.M., Luthfi, A.A.I., Low, K.O., Harun, S., Manaf, S.F.A., Illias, R.M., Jahim, J.M.: Preparation of kenaf stem hemicellulosic hydrolysate and its fermentability in microbial production of xylitol by Escherichia coli BL21. Sci. Rep. 9, 1–13 (2019)

    Article  Google Scholar 

  88. Camargo, D., Sene, L., Variz, D.I.L.S.: de Almeida Felipe MdG: Xylitol bioproduction in hemicellulosic hydrolysate obtained from sorghum forage biomass. Appl. Biochem. Biotechnol. 175, 3628–3642 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Indian Institute of Science Education and Research, (IISER) Kolkata, India, for providing us with the expression host E. coli M15.

Funding

This work was carried out with financial assistance from University Core Project (B27NV-CP016) and previous financial assistance to SU through Indo Russia joint collaboration supported by DBT, GoI, New Delhi (No.DBT/IC2/Indo-Russia/2014–16/04) and DBT-BIOCARe (Sanction No. BT/PR18134/BIC/101/795/2016).

Author information

Authors and Affiliations

Authors

Contributions

Sivakumar Uthandi: Conceptualized the research, Funding acquisition, Designed the experiments, and corrected the manuscript. Manikandan Ariyan: Performed the experiments, drafted the manuscript, editing, and software. Sugitha Thankappan: Redrafted the manuscript, Assisting with experimental data analyses, Editing, and software. Priyadarshini Ramachandran: Assisted in the experimentation.

Corresponding author

Correspondence to Sivakumar Uthandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 984 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ariyan, M., Thankappan, S., Ramachandran, P. et al. Xylitol Production from Corncob Hydrolysate by an Engineered Escherichia coli M15 as Whole-Cell Biocatalysts. Waste Biomass Valor 14, 3195–3210 (2023). https://doi.org/10.1007/s12649-022-01860-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-022-01860-4

Keywords

Navigation