Skip to main content
Log in

High-performance sodium storage for cobalt phosphide composite array electrodes

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Transition metal phosphides hold great potential as sodium-ion batteries anode materials owing to their high theoretical capacity and modest plateau. However, volume changes and low intrinsic conductivity seriously largely hinder the further development of metal phosphide anodes. The design of phosphide anode materials with reasonable structure is conducive to solving the problems of volume expansion and slow reaction kinetics during the reaction. In this work, a composite material integrating zeolite imidazolate backbone (ZIF) and carbon materials was synthesized by the original growth method. Furthermore, by the oxidation-phosphating process, CoP nanoarray composites riveted to carbon fiber (CoP@CF) were obtained. In the CoP@CF, CoP nanoparticles are uniformly distributed on ZIF-derived carbon, reducing agglomeration and volume change during cycling. CF also provides a highly conductive network for the active material, improving the electrode kinetics. Therefore, when evaluated as an anode for sodium-ion batteries, CoP@CF electrode displays enhanced reversible capacity (262 mAh·g−1 at 0.1 A·g−1 after 100 cycles), which is much better than that of pure CF electrode (57 mAh·g−1 at 0.1 A·g−1 after 100 cycles) prepared without the addition of CoP. The rate performance of CoP@CF electrode is also superior to that of pure CF electrode at various current densities from 0.05 to 1 A·g−1. The sodium storage behavior of CoP@CF was revealed by ex-situ X-ray photoelectron spectroscopy, X-ray diffraction, and synchrotron radiation absorption spectroscopy. This method provides a reference for the design and synthesis of anode materials in sodium-ion batteries.

Graphical abstract

摘要

因为过渡金属磷化物具有较高的理论比容量和合适的电压平台, 所以在用作钠离子电池负极材料时具有较大的潜力。然而, 体积变化大、本征电导率低的问题严重阻碍了金属磷化物阳极的进一步发展。设计结构合理的磷化物负极材料, 有利于解决反应过程中体积膨胀和反应动力学缓慢等问题。本工作原位合成了一种ZIF与碳材料结合的复合材料。进一步通过氧化-磷化工艺, 获得了铆接在碳纤维上的CoP纳米阵列复合材料 (CoP@CF) 。在CoP@CF中, CoP纳米颗粒均匀分布在ZIF衍生碳上, 有利于减循环过程中的团聚和体积变化。此外, CF为活性材料提供了高导电性网络, 改善了电极动力学。因此, 当作为钠离子电池的负极时, CoP@CF显示出增强的可逆容量 (100次循环后0.1 A g−1时为262 mAh g−1), 远优于未添加CoP的纯CF电极 (100次循环后0.1 A g−1时为57 mAh·g−1) 。在0.05 A g−1至1 A g−1的各种电流密度下, CoP@CF电极的倍率性能也优于纯CF电极。通过准原位X射线光电子能谱、X射线衍射和同步辐射吸收光谱揭示了CoP@CF的储钠行为。本文为钠离子电池负极材料的设计与合成提供了参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu XX, Wang T, Ji TY, Wang H, Liu H, Li JQ, Chao DL. Using machine learning to screen non-graphite carbon materials based on Na-ion storage properties. J Mater Chem A. 2022;10(14):8031. https://doi.org/10.1039/d1ta10588d.

    Article  CAS  Google Scholar 

  2. Zhang ZW, Zhong XB, Zhang YH, Tang MY, Li SX, Zhang HH, Hu PF, Liang JF. Scalable synthesis of mesoporous FeS2 nanorods as high-performance anode materials for sodium-ion batteries. Rare Met. 2022;41(1):21. https://doi.org/10.1007/s12598-021-01835-9.

    Article  CAS  Google Scholar 

  3. Liu XX, Wang T, Zhang TS, Sun ZH, Ji TY, Tian J, Wang H, Hao XD, Liu H, Chao DL. Solvated sodium storage via a coadsorptive mechanism in microcrystalline graphite fiber. Adv Energy Mater. 2022;12(45):2202388. https://doi.org/10.1002/aenm.202202388.

    Article  CAS  Google Scholar 

  4. Liu XX, Ji TY, Guo H, Wang H, Li JQ, Liu H, Shen ZX. Effects of crystallinity and defects of layered carbon materials on potassium storage: a review and prediction. Electrochem Energy Rev. 2022. https://doi.org/10.1007/s41918-021-00114-6.

    Article  Google Scholar 

  5. Fang SJ, Du P, Zhang JF, Wang CH, Xiao ZM, Zhang B, Cao L, Fan XM, Ou X. Quasi-two-dimensional bismuth oxychalcogenide nanoflakes as novel anode for potassium-ion batteries. Rare Met. 2022;41(8):2567. https://doi.org/10.1007/s12598-022-01970-x.

    Article  CAS  Google Scholar 

  6. Zhang N, Li X, Hou TY, Guo JZ, Fan A, Jin SB, Sun XH, Cai S, Zheng CM. MnS hollow microspheres combined with carbon nanotubes for enhanced performance sodium-ion battery anode. Chin Chem Lett. 2020;31(5):1221. https://doi.org/10.1016/j.cclet.2019.09.050.

    Article  CAS  Google Scholar 

  7. Sun CB, Zhong YW, Fu WJ, Zhao ZQ, Liu J, Ding J, Han XP, Deng YD, Hu WB, Zhong C. Tungsten disulfide-based nanomaterials for energy conversion and storage. Tungsten. 2020;2:109. https://doi.org/10.1007/s42864-020-00038-6.

    Article  Google Scholar 

  8. Zhou YZ, Chen Y, Yang CJ, Jiang Y, Wang ZH, Xie M. Prussian blue analogue derived bimetallic phosphide for high areal capacity and binder-free sodium-ion battery anode. J Power Sources. 2022;546:231940. https://doi.org/10.1016/j.jpowsour.2022.231940.

    Article  CAS  Google Scholar 

  9. Ren LB, Hua W, Hou ZD, Wang JG. Rational construction of CoP@C hollow structure for ultrafast and stable sodium energy storage. Rare Met. 2022;41(6):1859. https://doi.org/10.1007/s12598-021-01930-x.

    Article  CAS  Google Scholar 

  10. Zhang HM, Huang YX, Ming H, Cao GP, Zhang WF, Ming J, Chen RJ. Recent advances in nanostructured carbon for sodium-ion batterie. J Mater Chem A. 2020;8(4):1604. https://doi.org/10.1039/C9TA09984K.

    Article  CAS  Google Scholar 

  11. Sang JW, Zhang XD, Liu KL, Cao GQ, Zhang SJ, Wu ZH, Zhang YS, Hou RH, Shen YL, Shao GS. Effective coupling of amorphous selenium phosphide with high-conductivity graphene as resilient high-capacity anode for sodium-ion batteries. Adv Funct Mater. 2023. https://doi.org/10.1002/adfm.202211640.

    Article  Google Scholar 

  12. Sun BX, Ni JF. NiP nanoparticles encapsulated in lamellar carbon as high-performance anode materials for sodium-ion batteries. Electrochem Commun. 2022;141:107344. https://doi.org/10.1016/j.elecom.2022.107344.

    Article  CAS  Google Scholar 

  13. Huang M, Liu JX, Huang P, Hu H, Lai C. Self-assembly synthesis of SnNb2O6/amino-functionalized graphene nanocomposite as high-rate anode materials for sodium-ion batteries. Rare Met. 2021;40(2):425. https://doi.org/10.1007/s12598-020-01527-w.

    Article  CAS  Google Scholar 

  14. Shi SS, Li Z, Shen LY, Yin XP, Liu YM, Chang GL, Wang J, Xu SM, Zhang JJ, Zhao YF. Electrospun free-standing FeP@NPC film for flexible sodium ion batteries with remarkable cycling stability. Energy Storage Mater. 2020;29:78. https://doi.org/10.1016/j.ensm.2020.03.029.

    Article  Google Scholar 

  15. Zhang J, Zhang K, Yang JH, Lee GH, Shin J, Lau V, Kang YM. Bifunctional conducting polymer coated CoP core-shell nanowires on carbon paper as a free-standing anode for sodium ion batteries. Adv Energy Mater. 2018;8(20):1800283. https://doi.org/10.1002/aenm.201800283.

    Article  CAS  Google Scholar 

  16. Liang HJ, Li XT, Zheng WZ, Liu ZT, Yang W, Liu ZL, Zhang YF, Fan HS, Lu SJ. Rational design of heterostructured core-shell Co-Zn bimetallic selenides for improved sodium-ion storage. Rare Met. 2022;41(10):3381. https://doi.org/10.1007/s12598-022-02035-9.

    Article  CAS  Google Scholar 

  17. Wang XL, Zhang GX, Yin W, Zheng SS, Kong QQ, Tian JQ, Pang H. Metal-organic framework-derived phosphide nanomaterials for electrochemical applications. Carbon Energy. 2022;4(2):246. https://doi.org/10.1002/cey2.182.

    Article  CAS  Google Scholar 

  18. Zong H, Hu L, Wang ZG, Qi R, Yu K, Zhu Z. Metal-organic frameworks-derived CoP anchored on MXene toward an efficient bifunctional electrode with enhanced lithium storage. Chem Eng J. 2021;416:129102. https://doi.org/10.1016/j.cej.2021.129102.

    Article  CAS  Google Scholar 

  19. Guo QD, Shao HJ, Zhang KF, Chen GT, Kong WJ, Feng XM, Gao Y, Liu YP, Wang N, Dong CF. CoP nanoparticles intertwined with graphene nanosheets as a superior anode for half/full sodium-ion batteries. ChemElectroChem. 2021;8(11):2022. https://doi.org/10.1002/celc.202100085.

    Article  CAS  Google Scholar 

  20. Zhong SY, Liu HZ, Wei DH, Hu J, Zhang H, Hou HS, Peng MX, Zhang GH, Duan HG. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem Eng J. 2020;395:125054. https://doi.org/10.1016/j.cej.2020.125054.

    Article  CAS  Google Scholar 

  21. Cong JW, Zheng ZJ, Hao JW, You HR, Liu XM, Yang H. Hierarchical cathode from hollow CoP embedded in graphene nanosheets to synergistically confine SeS2 for advanced Li/SeS2 batteries. J Alloys Compd. 2021;867:159089. https://doi.org/10.1016/j.jallcom.2021.159089.

    Article  CAS  Google Scholar 

  22. Lin ZY, Tan XQ, Lin YP, Lin JP, Yang WY, Huang ZQ, Ying SM, Huang XH. Rational construction of yolk-shell CoP/N, P co-doped mesoporous carbon nanowires as anodes for ultralong cycle life sodium-ion batteries. RSC Adv. 2022;12(44):28341. https://doi.org/10.1039/D2RA04153G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jiang YT, Wang Y, Min HH, Liang P, Han JC, Jin SY, Shen XD, Yang H, Wang J. Implanting heterogeneous Ni2P/CoP catalysts in MOF-derived carbon arrays with multifunctional catalytic sites for Li-SeS2 batteries. J Alloys Compd. 2022;913:165253. https://doi.org/10.1016/j.jallcom.2022.165253.

    Article  CAS  Google Scholar 

  24. Hao SY, Li HJ, Zhao ZX, Wang XM. Pseudocapacitance-enhanced anode of CoP@C particles embedded in graphene aerogel toward ultralong cycling stability sodium-ion batteries. ChemElectroChem. 2019;6(22):571. https://doi.org/10.1002/celc.201901549.

    Article  CAS  Google Scholar 

  25. Chen WM, Wan M, Liu Q, Xiong XQ, Yu FQ, Huang YH. Heteroatom-doped carbon materials: synthesis, mechanism, and application for sodium-ion batteries. Small Methods. 2019;3(4):1800323. https://doi.org/10.1002/smtd.201800323.

    Article  CAS  Google Scholar 

  26. He HN, Huang D, Tang YG, Wang Q, Ji XB, Wang HY, Guo ZP. Tuning nitrogen species in three-dimensional porous carbon via phosphorus doping for ultra-fast potassium storage. Nano Energy. 2019;57:728. https://doi.org/10.1016/j.nanoen.2019.01.009.

    Article  CAS  Google Scholar 

  27. Tao S, Xu JQ, Xie TH, Chu SQ, Wu DJ, Qian B, Chen SM, Song L. Regulating the electronic structure of CoP nanoflowers by molybdenum incorporation for enhanced lithium and sodium storage. J Power Sources. 2021;500:229975. https://doi.org/10.1016/j.jpowsour.2021.229975.

    Article  CAS  Google Scholar 

  28. Zhang M, Liu XX, Gu JD, Wang H, Liu H, Shen ZX. Inspired by nature: self-fractal cobalt sulfate composite electrode for sodium ion storage. Chin Chem Lett. 2023. https://doi.org/10.1016/j.cclet.2023.108471.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Yi J, Li XP, Hu SJ, Li WS, Zhou L, Xu MQ, Lei JF, Hao LS. Preparation of hierarchical porous carbon and its rate performance as anode of lithium ion battery. J Power Sources. 2011;196(16):667. https://doi.org/10.1016/j.jpowsour.2010.12.017.

    Article  CAS  Google Scholar 

  30. Lou PL, Cui ZH, Jia ZQ, Sun JY, Tan YB, Guo XX. Monodispersed carbon-coated cubic NiP2 nanoparticles anchored on carbon nanotubes as ultra-long-life anodes for reversible lithium storage. ACS Nano. 2017;11:370. https://doi.org/10.1021/acsnano.6b08223.

    Article  CAS  Google Scholar 

  31. Li Q, Dong SH, Zhang YA, Feng S, Wang QZ, Yuan JJ. Ultrafine CoP nanoparticles anchored on reduced graphene oxide nanosheets as anodes for sodium ion batteries with enhanced electrochemical performance. Eur J Inorg Chem. 2018;2018(29):343. https://doi.org/10.1002/ejic.201800311.

    Article  CAS  Google Scholar 

  32. Li Y, Liu XX, Ji TY, Zhang M, Yan XR, Yao MJ, Sheng DW, Li SD, Ren PP, Shen ZX. Potassium ion doped manganese oxide nanoscrolls enhanced the performance of aqueous zinc-ion batteries. Chin Chem Lett. 2024. https://doi.org/10.1016/j.cclet.2024.109551.

    Article  Google Scholar 

  33. Lee H, Yang S, Kim S, Song J, Park J, Doh CH, Ha YC, Kwon TS, Lee YM. Understanding the effects of diffusion coefficient and exchange current density on the electrochemical model of lithium-ion batteries. Curr Opin Electrochem. 2022;34:100986. https://doi.org/10.1016/j.coelec.2022.100986.

    Article  CAS  Google Scholar 

  34. He Q, Sun XG, Zou JY, Li R. Three-dimensional porous carbon loading tin oxide and cooperating with lithium fluoride to prepare high performance lithium ion anode. Chin J Inorg Chem. 2021;37:473. https://doi.org/10.11862/CJIC.2021.059.

    Article  CAS  Google Scholar 

  35. Eyley S, Thielemans W. Imidazolium grafted cellulose nanocrystals for ion exchange applications. Chem Commun. 2011;47(14):417. https://doi.org/10.1039/C0CC05359G.

    Article  Google Scholar 

  36. Zhou D, Yi JG, Zhao XD, Yang JQ, Lu H, Fan LZ. Confining ultrasmall CoP nanoparticles into nitrogen-doped porous carbon via synchronous pyrolysis and phosphorization for enhanced potassium-ion-storage. Chem Eng J. 2021;413:127508. https://doi.org/10.1016/j.cej.2020.127508.

    Article  CAS  Google Scholar 

  37. Zheng SB, Miao LC, Sun TJ, Li L, Ma T, Bao JQ, Tao ZL, Chen J. An extended carbonyl-rich conjugated polymer cathode for high-capacity lithium-ion batteries. J Mater Chem A. 2021;9(5):2700. https://doi.org/10.1039/D0TA11648C.

    Article  CAS  Google Scholar 

  38. Ji TY, Liu XX, Wang H, Shi YL, Li Y, Zhang M, Li JQ, Liu H, Shen ZX. Thermopressure coupling effect mimicking natural graphite formation to enhance the storage k-ion performance of carbonaceous heterostructures. Research. 2023;6:0092. https://doi.org/10.34133/research.0092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 52250710161). This work was supported by Beijing Synchrotron Radiation 4B9A Work Station in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Xu Liu or Ze-Xiang Shen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6551 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Liu, XX., Ji, TY. et al. High-performance sodium storage for cobalt phosphide composite array electrodes. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02697-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02697-7

Keywords

Navigation