Skip to main content

Advertisement

Log in

Rational construction of CoP@C hollow structure for ultrafast and stable sodium energy storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The development of transition metal phosphides as potential anode materials of sodium-ion batteries has been substantially hindered by their sluggish kinetics and significant volume change during the sodiation/desodiation process. In this work, we put forward a rational design strategy to construct a hollow-structured CoP@C composite to achieve ultrafast and durable sodium energy storage. The CoP@C composite with a well-defined hollow dodecahedron architecture has been synthesized via a stepwise treatment of carbonization and pohsphorization on ZIF-67. The unique hollow carbon framework not only provides high-speed electron/ion transportation pathways for CoP to enable fast sodiation kinetics, but also accommodates large volume change to stabilize the electrode structure. As a consequence, the CoP@C composite could exhibit an ultra-high rate capability of 105 mAh·g−1 at a current density of 30 A·g−1, and a long-term cycling lifetime. The present study will pave a fresh strategy for exploring advanced high-power anode materials for sodium ion batteries.

Graphical abstract

摘要

过渡金属磷化物作为钠离子电池潜在负极材料的发展受到了很大阻碍, 原因在于其缓慢的动力学和在钠化/脱钠过程中显著的体积变化。本文提出了一种合理的设计策略来构建具有空心结构的CoP@C复合材料, 实现了超快速和持久的钠能量存储。通过对ZIF-67前驱体进行碳化和磷化处理, 合成了具有良好空心十二面体结构的CoP@C复合材料。其独特的空心碳骨架不仅为CoP提供了快速电子/离子传输通道, 实现了快速的储钠动力学, 而且还缓解了充放电过程中的体积变化, 从而保持了电极的完整性。因此, CoP@C复合材料在 30 A·g-1 的电流密度下表现出了105 mAh·g-1的超高倍率性能和长期稳定的循环寿命, 本研究为探索用于钠离子电池的先进高功率负极材料铺平了道路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451(7179):652.

    Article  CAS  Google Scholar 

  2. Yoshino A. The birth of the lithium-ion battery. Angew Chem Int Ed. 2012;51(24):5798.

    Article  CAS  Google Scholar 

  3. Sun H, Wang JG, Zhang Y, Hua W, Li Y, Liu H. Ultrafast lithium energy storage enabled by interfacial construction of interlayer-expanded MoS2/N-doped carbon nanowires. J Mater Chem A. 2018;6(27):13419.

    Article  CAS  Google Scholar 

  4. Nayak PK, Yang L, Brehm W, Adelhelm P. From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed. 2018;57(1):102.

    Article  CAS  Google Scholar 

  5. Liu T, Zhang Y, Jiang Z, Zeng X, Ji J, Li Z, Gao X, Sun M, Ling M, Zheng J, Liang C. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ Sci. 2019;12(5):1512.

    Article  CAS  Google Scholar 

  6. Ma JM, Li YT. Editorial for advanced energy storage and conversion materials and technologies. Rare Met. 2020;39(9):967.

    Article  CAS  Google Scholar 

  7. Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019.

    Article  CAS  Google Scholar 

  8. Jin A, Kim MJ, Lee KS, Yu SH, Sung YE. Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Res. 2019;12(3):695.

    Article  CAS  Google Scholar 

  9. Gu H, Yang L, Zhang Y, Wang C, Zhang X, Xie Z, Wei J, Zhou Z. Highly reversible alloying/dealloying behavior of SnSb nanoparticles incorporated into N-rich porous carbon nanowires for ultra-stable Na storage. Energy Storage Mater. 2019;21:203.

    Article  Google Scholar 

  10. Chang G, Zhao Y, Dong L, Wilkinson DP, Zhang L, Shao Q, Yan W, Sun X, Zhang J. A review of phosphorus and phosphides as anode materials for advanced sodium-ion batteries. J Mater Chem A. 2020;8(10):4996.

    Article  CAS  Google Scholar 

  11. Wang Y, Niu P, Li J, Wang S, Li L. Recent progress of phosphorus composite anodes for sodium/potassium ion batteries. Energy Stor Mater. 2021;34:436.

    Article  Google Scholar 

  12. Li WJ, Yang QR, Chou SL, Wang JZ, Liu HK. Cobalt phosphide as a new anode material for sodium storage. J Power Sour. 2015;294:627.

    Article  CAS  Google Scholar 

  13. Li WJ, Chou SL, Wang JZ, Liu HK, Dou SX. A new, cheap, and productive FeP anode material for sodium-ion batteries. Chem Commun. 2015;51(17):3682.

    Article  CAS  Google Scholar 

  14. Miao X, Yin R, Ge X, Li Z, Yin L. Ni2P@carbon core-shell nanoparticle-arched 3D interconnected graphene aerogel architectures as anodes for high-performance sodium-ion batteries. Small. 2017;13(44):1702138.

    Article  CAS  Google Scholar 

  15. Chen S, Wu F, Shen L, Huang Y, Sinha SK, Srot V, van Aken PA, Maier J, Yu Y. Cross-linking hollow carbon sheet encapsulated CuP2 nanocomposites for high energy density sodium-ion batteries. ACS Nano. 2018;12(7):7018.

    Article  CAS  Google Scholar 

  16. Ma L, Yan P, Wu S, Zhu G, Shen Y. Engineering tin phosphides@carbon yolk–shell nanocube structures as a highly stable anode material for sodium-ion batteries. J Mater Chem A. 2017;5(32):16994.

    Article  CAS  Google Scholar 

  17. Von Lim Y, Huang S, Zhang Y, Kong D, Wang Y, Guo L, Zhang J, Shi Y, Chen TP, Ang LK, Yang HY. Bifunctional porous iron phosphide/carbon nanostructure enabled high-performance sodium-ion battery and hydrogen evolution reaction. Energy Storage Mater. 2018;15:98.

    Article  Google Scholar 

  18. Zhou D, Fan LZ. Co2P nanoparticles encapsulated in 3D porous N-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries. J Mater Chem A. 2018;6(5):2139.

    Article  CAS  Google Scholar 

  19. Li Q, Dong S, Zhang Y, Feng S, Wang Q, Yuan J. Ultrafine CoP nanoparticles anchored on reduced graphene oxide nanosheets as anodes for sodium ion batteries with enhanced electrochemical performance. Eur J Inorg Chem. 2018;2018(29):3433.

    Article  CAS  Google Scholar 

  20. Shi S, Sun C, Yin X, Shen L, Shi Q, Zhao K, Zhao Y, Zhang J. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv Funct Mater. 2020;30(10):1909283.

    Article  CAS  Google Scholar 

  21. Wang B, Chen K, Wang G, Liu X, Wang H, Bai J. A multidimensional and hierarchical carbon-confined cobalt phosphide nanocomposite as an advanced anode for lithium and sodium storage. Nanoscale. 2019;11(3):968.

    Article  CAS  Google Scholar 

  22. Pan E, Jin Y, Zhao C, Jia M, Chang Q, Jia M, Wang L, He X. Conformal hollow carbon sphere coated on Sn4P3 microspheres as high-rate and cycle-stable anode materials with superior sodium storage capability. ACS Appl Energy Mater. 2019;2(3):1756.

    Article  CAS  Google Scholar 

  23. Su H, Zhang Y, Liu X, Fu F, Ma J, Li K, Zhang W, Zhang J, Li D. Construction of CoP@C embedded into N/S-co-doped porous carbon sheets for superior lithium and sodium storage. J Coll Interf Sci. 2021;582:969.

    Article  CAS  Google Scholar 

  24. Dong C, Guo L, He Y, Chen C, Qian Y, Chen Y, Xu L. Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. Energy Stor Mater. 2018;15:234.

    Article  Google Scholar 

  25. Choi J, Kim WS, Kim KH, Hong SH. Sn4P3-C nanospheres as high capacitive and ultra-stable anodes for sodium ion and lithium ion batteries. J Mater Chem A. 2018;6(36):17437.

    Article  CAS  Google Scholar 

  26. Wang L, Zhao X, Dai S, Shen Y, Wang M. High-rate and stable iron phosphide nanorods anode for sodium-ion battery. Electrochim Acta. 2019;314:142.

    Article  CAS  Google Scholar 

  27. Xu Y, Li X, Wang J, Yu Q, Qian X, Chen L, Dan Y. Fe-doped CoP flower-like microstructure on carbon membrane as integrated electrode with enhanced sodium ion storage. Chem Eur J. 2020;26(6):1298.

    Article  CAS  Google Scholar 

  28. Hu H, Han L, Yu M, Wang Z, Lou XWD. Metal–organic-framework-engaged formation of Co nanoparticle-embedded carbon@Co9S8 double-shelled nanocages for efficient oxygen reduction. Energy Environ Sci. 2016;9(1):107.

    Article  CAS  Google Scholar 

  29. Zhang Y, Pan A, Ding L, Zhou Z, Wang Y, Niu S, Liang S, Cao G. Nitrogen-doped yolk-shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl Mater Interf. 2017;9(4):3624.

    Article  CAS  Google Scholar 

  30. Huang Y, Fang Y, Lu XF, Luan D, Lou XW. Co3O4 hollow nanoparticles embedded in mesoporous walls of carbon nanoboxes for efficient lithium storage. Angew Chem Int Ed. 2020;132(45):20086.

    Article  Google Scholar 

  31. Xu X, Ran F, Fan Z, Lai H, Cheng Z, Lv T, Shao L, Liu Y. Cactus-inspired bimetallic metal-organic framework-derived 1D–2D hierarchical Co/N-decorated carbon architecture toward enhanced electromagnetic wave absorbing performance. ACS Appl Mater Interf. 2019;11(14):13564.

    Article  CAS  Google Scholar 

  32. Guo Q, Shao H, Zhang K, Chen G, Kong W, Feng X, Gao Y, Liu Y, Wang N, Dong C, Jiang F. CoP nanoparticles intertwined with graphene nanosheets as a superior anode for half/full sodium-ion batteries. Chem Electro Chem. 2021;8(11):2022.

    CAS  Google Scholar 

  33. Zhou Q, Shen Z, Zhu C, Li J, Ding Z, Wang P, Pan F, Zhang Z, Ma H, Wang S, Zhang H. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv Mater. 2018;30(27):1800140.

    Article  CAS  Google Scholar 

  34. Yang C, Jin H, Cui C, Li J, Wang J, Amine K, Lu J, Wang S. Nitrogen and sulfur co-doped porous carbon sheets for energy storage and pH-universal oxygen reduction reaction. Nano Energy. 2018;54:192.

    Article  CAS  Google Scholar 

  35. Wang L, Wang Z, Xie L, Zhu L, Cao X. ZIF-67-derived N-doped Co/C nanocubes as high-performance anode materials for lithium-ion batteries. ACS Appl Mater Interf. 2019;11(18):16619.

    Article  CAS  Google Scholar 

  36. Zhao X, Luo D, Wang Y, Liu ZH. Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction. Nano Res. 2019;12(11):2872.

    Article  CAS  Google Scholar 

  37. Ma C, Hou Y, Jiang K, Zhao L, Olsen T, Fan Y, Jiang J, Xu Z, Ma Z, Legut D, Xiong H, Yuan XZ. In situ cross-linking construction of 3D mesoporous bimetallic phosphide-in-carbon superstructure with atomic interface toward enhanced sodium ion storage performance. Chem Eng J. 2021;413:127449.

    Article  CAS  Google Scholar 

  38. Zou G, Hou H, Foster CW, Banks CE, Guo T, Jiang Y, Zhang Y, Ji X. Advanced hierarchical vesicular carbon co-doped with S, P, N for high-rate sodium storage. Adv Sci. 2018;5(7):1800241.

    Article  CAS  Google Scholar 

  39. Wang L, Wang J, Ng DHL, Li S, Zou B, Cui Y, Liu X, El-Khodary SA, Qiu J, Lian J. Operando mechanistic and dynamic studies of N/P co-doped hard carbon nanofibers for efficient sodium storage. Chem Commun. 2021;57(75):9610.

    Article  CAS  Google Scholar 

  40. Liu Q, Hu Z, Liang Y, Li L, Zou C, Jin H, Wang S, Lu H, Gu Q, Chou SL, Liu Y, Dou SX. Facile synthesis of hierarchical hollow CoP@C composites with superior performance for sodium and potassium storage. Angew Chem Int Ed. 2020;59(13):5159.

    Article  CAS  Google Scholar 

  41. Zhang K, Park M, Zhang J, Lee GH, Shin J, Kang YM. Cobalt phosphide nanoparticles embedded in nitrogen-doped carbon nanosheets: promising anode material with high rate capability and long cycle life for sodium-ion batteries. Nano Res. 2017;10(12):4337.

    Article  CAS  Google Scholar 

  42. Yang C, Liang X, Ou X, Zhang Q, Zheng HS, Zheng F, Wang JH, Huang K, Liu M. Heterostructured nanocube-shaped binary sulfide (SnCo)S2 interlaced with S-doped graphene as a high-performance anode for advanced Na+ batteries. Adv Funct Mater. 2019;29(9):1807971.

    Article  CAS  Google Scholar 

  43. Liu P, Han J, Zhu K, Dong Z, Jiao L. Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Adv Energy Mater. 2020;10(24):2000741.

    Article  CAS  Google Scholar 

  44. Hao S, Li H, Zhao Z, Wang X. Pseudocapacitance-enhanced anode of CoP@C particles embedded in graphene aerogel toward ultralong cycling stability sodium-ion batteries. ChemElectroChem. 2019;6(22):5712.

    Article  CAS  Google Scholar 

  45. Ge X, Li Z, Yin L. Metal-organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery. Nano Energy. 2017;32:117.

    Article  CAS  Google Scholar 

  46. Chen H, Xu BB, Ping QS, Wu BZ, Wu XK, Zhuang QQ, Wang HL, Wang BF. Co2B2O5 as an anode material with high capacity for sodium ion batteries. Rare Met. 2020;39(9):1045.

    Article  CAS  Google Scholar 

  47. Subburam G, Ramachandran K, El-Khodary SA, Zou B, Wang J, Wang L, Qiu J, Liu X, Ng DHL, Lian J. Development of porous carbon nanosheets from polyvinyl alcohol for sodium-ion capacitors. Chem Eng J. 2021;415:129012.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Innovation Foundation for National Natural Science Foundation of China (Nos. 51772249 and 51821091), the Doctor Dissertation of Northwestern Polytechnical University (No. CX202025), the Fundamental Research Funds for the Central Universities (Nos. D5000210894 and 3102019JC005). The authors also appreciated the Material Analysis Research Center of Shaanxi Province for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Gan Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3351 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, LB., Hua, W., Hou, ZD. et al. Rational construction of CoP@C hollow structure for ultrafast and stable sodium energy storage. Rare Met. 41, 1859–1869 (2022). https://doi.org/10.1007/s12598-021-01930-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01930-x

Keywords

Navigation