Skip to main content

Advertisement

Log in

Rational design of heterostructured core–shell Co-Zn bimetallic selenides for improved sodium-ion storage

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Bimetallic selenide with core–shell structure (CoSe2/ZnSe/NC@ZnSe/NC) has been successfully prepared through facile carbonization and selenization processes of its core–shell metal–organic framework precursors, in which the precursor is synthesized by epitaxial growth of zinc-based zeolite imidazolate framework (ZIF-8) on the surface of cobalt-based and zinc-based zeolite imidazolate framework (ZIF-67@ZIF-8). The core–shell structure has the advantage of alleviating the volume expansion during repeated insertion and extraction of sodium ions which can effectively avoid structural collapse. Additionally, bimetallic selenides and heterostructure are effective strategies to greatly improve the rate capability of the material. Therefore, the core–shell structural CoSe2/ZnSe/NC@ZnSe/NC material can maintain the original dodecahedron structure and delivers a specific capacity of 308.6 mAh·g−1 at 1.0 A·g−1 after 300 cycles with the desirable capacity retention of 90%. With the synergistic effects of heterostructure and core–shell structure, CoSe2/ZnSe/NC@ZnSe/NC exhibits better electrochemical performance than CoSe2/ZnSe/NC and CoSe2/NC. These prove that both core–shell structure and heterostructure have positive effects on improving the electrochemical properties of materials.

Graphical abstract

摘要

以外延生长法制备了核壳结构ZIF8-ZIF67@ZIF8金属有机骨架前驱体, 然后通过简单的碳化和硒化过程成功制备了具有核壳结构的双金属硒化物(CoSe2/ZnSe/NC@ZnSe/NC)。该核壳结构可以有效减轻电极充放电过程中的体积膨胀, 因此可有效避免电极结构的坍塌。同时, 构筑双金属硒化物和异质结构可以有效提高电池材料的倍率性能。因此, 核壳结构的CoSe2/ZnSe/NC@ZnSe/NC电极材料不仅能够保持原有的十二面体结构, 在1.0A·g−1电流密度下循环300次后仍能保持308.6 mAh·g−1的单位容量, 容量保持率达到90%。在异质结构和核壳结构的协同作用下, CoSe2/ZnSe/NC@ZnSe/NC表现出比CoSe2/ZnSe/NC和CoSe2/NC更加优异的电化学性能。进一步证明了核壳结构和异质结构对材料的电池性能有着更加显著的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu BY, Li X, Yang C, Li Y, Grundish N, Chien P, Dong K, Manke I, Fang R, Wu N, Xu H, Dolocan A, Goodenough J. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J Am Chem Soc. 2021;143:6542.

    Article  CAS  Google Scholar 

  2. Cai ZL, Peng ZL, Wang MQ, Wu JY, Fan HS, Zhang YF. High-pseudocapacitance of porous and square NiO@NC nanosheets for high-performance lithium-ion batteries. Rare Met. 2021;40(6):1451.

    Article  CAS  Google Scholar 

  3. Gou WW, Zhou S, Cao XX, Luo YL, Kong XZ, Chen J, Xie XF, Pan AQ. Agitation drying synthesis of porous carbon supported Li3VO4 as advanced anode material for lithium-ion batteries. Rare Met. 2021;40(12):3466.

    Article  CAS  Google Scholar 

  4. Li ZY, Peng ZL, Sun R, Qin ZX, Liu XL, Wang CH, Fan HS, Lu SJ. Super Na+ half/full batteries and ultrafast Na+ diffusion kinetics of cobalt-nickel selenide from assembling Co0.5Ni0.5Se2@NC nanosheets into cross-stacked architecture. Chin J Chem. 2021;39:2599.

    Article  CAS  Google Scholar 

  5. Ding Y, Guo X, Qian Y, Yu G. Low-Temperature multielement fusible alloy-based molten sodium batteries for grid-scale energy storage. ACS Cent Sci. 2020;6:2287.

    Article  CAS  Google Scholar 

  6. Li Z, Sun R, Qin Z, Liu X, Wang C, Lu S, Zhang Y, Fan H. Coupling of ReS2 nanosheet arrays with hollow NiCoS4 nanocubes enables ultrafast Na+ diffusionkinetics and super Na+ storage of a NiCoS4@ReS2 heterostructure. Mater Chem Front. 2021;5:7540.

    Article  CAS  Google Scholar 

  7. Zhu HY, Li ZY, Xu F, Qin ZX, Sun R, Wang CH, Lu SJ, Zhang YF, Fan HS. Ni3Se4@CoSe2 hetero-nanocrystals encapsulated into CNT-porous carbon interpenetrating frameworks for high-performance sodium ion battery. J Colloid Interface Sci. 2022;611:718.

    Article  CAS  Google Scholar 

  8. Yu P, Tang W, Wu FF, Zhang C, Luo HY, Liu H, Wang ZG. Recent progress in plant-derived hard carbon anode materials for sodium-ion batteries: a review. Rare Met. 2020;39(9):1019.

    Article  CAS  Google Scholar 

  9. Fan H, Yu H, Zhang Y, Guo J, Wang Z, Wang H, Zhao N, Zheng Y, Du C, Dai Z, Yan Q, Xu J. 1D to 3D hierarchical iron selenide hollow nanocubes assembled from FeSe2@C core–shell nanorods for advanced sodium ion batteries. Energy Storage Mater. 2018;10:48.

    Article  Google Scholar 

  10. Park SK, Kim JK, Kang YC. Excellent sodium-ion storage performances of CoSe2 nanoparticles embedded within N-doped porous graphitic carbon nanocube/carbon nanotube composite. Chem Eng J. 2017;328:546.

    Article  CAS  Google Scholar 

  11. Liu X, Xu F, Li Z, Liu Z, Yang W, Zhang Y, Fan H, Yang H. Design strategy for MXene and metal chalcogenides/oxides hybrids for supercapacitors, secondary batteries and electro/photocatalysis. Coord Chem Rev. 2022;464:214544.

    Article  CAS  Google Scholar 

  12. Jia M, Jin Y, Zhao C, Zhao P, Jia M. High electrochemical sodium storage performance of ZnSe/CoSe@N-doped porous carbon synthesized by the in-situ selenization of ZIF-8/67 polyhedron. Appl Surf Sci. 2020;518: 146259.

    Article  CAS  Google Scholar 

  13. Sun R, Qin ZX, Li ZY, Fan HS, Lu SJ. Binary zinc-cobalt metal-organic framework derived mesoporous ZnCo2O4@NC polyhedron as a high-performance lithium-ion battery anode. Dalton Trans. 2020;49:14237.

    Article  CAS  Google Scholar 

  14. Fan HS, Yu H, Zhang Y, Zheng Y, Luo YB, Dai ZF, Li B, Zong Y, Yan Q. Fe-doped Ni3C nanodots in N-doped carbon nanosheets for efficient hydrogen-evolution and oxygen-evolution electrocatalysis. Angew Chem Int Ed Engl. 2017;56:12566.

    Article  CAS  Google Scholar 

  15. Zhou Y, Tian R, Duan H, Wang K, Guo Y, Li H, Liu H. CoSe/Co nanoparticles wrapped by in situ grown N-doped graphitic carbon nanosheets as anode material for advanced lithium ion batteries. J Power Sources. 2018;399:223.

    Article  CAS  Google Scholar 

  16. Li ZY, Sun R, Qin ZX, Liu XL, Wang CH, Fan HS, Zhang YF, Lu SJ. Recent progress of nanostructured metal chalcogenides and their carbon-based hybrids for advanced potassium battery anodes. Mater Chem Front. 2021;5:4401.

    Article  CAS  Google Scholar 

  17. Zhang Z, Huang Y, Liu XD, Wang X, Liu PB. Core–shell Co, Zn bimetallic selenide embedded nitrogen-doped carbon polyhedral frameworks assist in sodium-ion battery ultralong cycle. ACS Sustain Chem Eng. 2020;8:8381.

    Article  CAS  Google Scholar 

  18. Li J, Yan D, Lu T, Yao Y, Pan L. An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem Eng J. 2017;325:14.

    Article  CAS  Google Scholar 

  19. He Y, Wang L, Dong C, Li C, Ding X, Qian Y, Xu L. In-situ rooting ZnSe/N-doped hollow carbon architectures as high-rate and long-life anode materials for half/full sodium-ion and potassium-ion batteries. Energy Storage Mater. 2019;23:35.

    Article  Google Scholar 

  20. Dong S, Li C, Ge X, Li Z, Miao X, Yin L. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries. ACS Nano. 2017;11:6474.

    Article  CAS  Google Scholar 

  21. Huang YZ, Hu X, Li JW, Zhang JS, Cai DP, Sa BS, Zhan HB, Wen ZH. Rational construction of heterostructured core–shell Bi2S3@Co9S8 complex hollow particles toward high-performance Li- and Na-ion storage. Energy Storage Mater. 2020;29:121.

    Article  Google Scholar 

  22. Yang SH, Park SK, Kang YC. Mesoporous CoSe2 nanoclusters threaded with nitrogen-doped carbon nanotubes for high-performance sodium-ion battery anodes. Chem Eng J. 2019;370:1008.

    Article  CAS  Google Scholar 

  23. Wu X, Han S, He D, Yu C, Lei C, Liu W, Zheng G, Zhang X, Lei L. Metal organic framework derived Fe-doped CoSe2 incorporated in nitrogen-doped carbon hybrid for efficient hydrogen evolution. ACS Sustain Chem Eng. 2018;6:8672.

    Article  CAS  Google Scholar 

  24. Hu X, Liu X, Chen K, Wang G, Wang H. Core–shell MOF-derived N-doped yolk-shell carbon nanocages homogenously filled with ZnSe and CoSe2 nanodots as excellent anode materials for lithium- and sodium-ion batteries. J Mater Chem A. 2019;7:11016.

    Article  CAS  Google Scholar 

  25. Li J, Kang Y, Liu D, Lei Z, Liu P. Nitrogen-doped graphitic carbon-supported ultrafine Co nanoparticles as an efficient multifunctional electrocatalyst for HER and rechargeable Zn-air batteries. ACS Appl Mater Inter. 2020;12:5717.

    Article  CAS  Google Scholar 

  26. Shangguan H, Huang W, Engelbrekt C, Zheng X, Shen F, Xiao X, Ci L, Si P, Zhang J. Well-defined cobalt sulfide nanoparticles locked in 3D hollow nitrogen-doped carbon shells for superior lithium and sodium storage. Energy Storage Mater. 2019;18:114.

    Article  Google Scholar 

  27. Yang J, Gao H, Men S, Shi Z, Lin Z, Kang X, Chen S. CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv Sci (Weinh). 2018;5:1800763.

    Article  Google Scholar 

  28. Li Y, Wu F, Xiong S. Embedding ZnSe nanoparticles in a porous nitrogen-doped carbon framework for efficient sodium storage. Electrochim Acta. 2019;296:582.

    Article  CAS  Google Scholar 

  29. Dong C, Wu L, He Y, Zhou Y, Sun X, Du W, Sun X, Xu L, Jiang F. Willow-leaf-like ZnSe@N-doped carbon nanoarchitecture as a stable and high-performance anode material for sodium-ion and potassium-ion batteries. Small. 2020;47:2004580.

    Article  Google Scholar 

  30. Zhou Y, Sun X, Fan A, Shang Y, Xiong K, Guo J, Jin S, Cai S, Zheng C. ZnSe nanoparticles combined with uniform 3D interconnected MWCNTs conductive network as high-rate and freeze-resistant anode materials for sodium-ion batteries. Appl Surf Sci. 2021;538: 148194.

    Article  CAS  Google Scholar 

  31. Ma X, Zou L, Zhao W. Tailoring hollow microflower-shaped CoSe2 anodes in sodium ion batteries with high cycling stability. Chem Commun. 2018;54:10507.

    Article  CAS  Google Scholar 

  32. Liu T, Li Y, Hou S, Yang C, Guo Y, Tian S, Zhao L. Building hierarchical microcubes composed of one-dimensional CoSe2@nitrogen-doped carbon for superior sodium ion batteries. Chem-Eur J. 2020;26:13716.

    Article  CAS  Google Scholar 

  33. Wang Y, Kang W, Cao D, Zhang M, Kang Z, Xiao Z, Wang R, Sun D. A yolk-shelled Co9S8/MoS2-CN nanocomposite derived from a metal-organic framework as a high performance anode for sodium ion batteries. J Mater Chem A. 2018;6:4776.

    Article  CAS  Google Scholar 

  34. Sun R, Qin Z, Liu X, Wang C, Lu S, Zhang Y, Fan H. Intercalation mechanism of the ammonium vanadate (NH4V4O10) 3D decussate superstructure as the cathode for high-performance aqueous zinc-ion batteries. ACS Sustain Chem Eng. 2021;9:11769.

    Article  CAS  Google Scholar 

  35. Sun R, Dong S, Xu F, Li Z, Wang C, Lu S, Fan H, Co-intercalation strategy of constructing partial cation substitution of ammonium vanadate {(NH4)2V6O16} for stable zinc ion storage. Dalton Trans. 2022;51:7607.

    Article  CAS  Google Scholar 

  36. Li X, Liang H, Liu X, Sun R, Qin Z, Fan H, Zhang Y. Ion-exchange strategy of CoS2/Sb2S3 hetero-structured nanocrystals encapsulated into 3D interpenetrating dual-carbon framework for high-performance Na+/K+ batteries. Chem Eng J. 2021;425: 130657.

    Article  CAS  Google Scholar 

  37. Hou BH, Wang YY, Liu DS, Gu ZY, Feng X, Fan HS, Zhang T, Lü C, Wu XL. N-doped carbon-coated Ni1.8Co1.2Se4 nanoaggregates encapsulated in N-doped carbon nanoboxes as advanced anode with outstanding high-rate and low-temperature performance for sodium-ion half/full batteries. Adv Funct Mater. 2018;28:1805444.

    Article  Google Scholar 

  38. Li P, Hwang JY, Sun YK. Nano/microstructured silicon-graphite composite anode for high-energy-density Li-ion battery. ACS Nano. 2019;13:2624.

    CAS  Google Scholar 

  39. Liu X, Wang M, Qin B, Zhang Y, Liu Z, Fan H. 2D–2D MXene/ReS2 hybrid from Ti3C2Tx MXene conductive layers supporting ultrathin ReS2 nanosheets for superior sodium storage. Chem Eng J. 2022;431: 133796.

    Article  CAS  Google Scholar 

  40. Wang M, Liu X, Qin B, Li Z, Zhang Y, Yang W, Fan H. In-situ etching and ion exchange induced 2D-2D MXene@Co9S8/CoMo2S4 heterostructure for superior Na+ storage. 2022; https://doi.org/10.1016/j.cej.2022.138508.

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52101243 and 51563002), the Natural Science Foundation of Guangdong Province (Nos. 2020A1515010886 and 2021A1515010078), the Scientific and Technological Plan of Guangdong Province, China (No. 2019B090905007), and the Science and Technology Planning Project of Guangzhou (No. 202102010373).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Fei Zhang, Hao-Sen Fan or Sheng-Jun Lu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, HJ., Li, XT., Zheng, WZ. et al. Rational design of heterostructured core–shell Co-Zn bimetallic selenides for improved sodium-ion storage. Rare Met. 41, 3381–3390 (2022). https://doi.org/10.1007/s12598-022-02035-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02035-9

Keywords

Navigation