Skip to main content
Log in

Quasi-two-dimensional bismuth oxychalcogenide nanoflakes as novel anode for potassium-ion batteries

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Graphic abstract

摘要

钾离子电池因其资源丰富、成本效益高, 工作原理相似而被认为是锂离子电池的理想替代品。 随着钾离子电池的发展, 由于钾离子具有更大的离子半径, 因此寻找具有结构稳定、载流子 扩散快等特点的负极材料成为当下最迫切的需求。本文通过简单的化学沉淀法, 在室温下合 理设计并精细制备了一种石墨烯包覆的新型超薄Bi2O2S@C 纳米。由于Bi2O2S 的层状结构 和独特的晶体框架结构, Bi2O2S@C 作为钾离子电池负极, 具有良好的储钾性能, 在100 mA·g-1 的条件下循环100 次后的容量为223. mAh·-11。此外, 结合原位X 射线衍射、拉曼 光谱和X 射线光电子能谱表征, Bi2O2S 的钾离子存储过程被揭示为多步转化和合金化反应。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Wang CH, Qin HZ, Cao L, Wang D, Zhang JF, Zhang B, Ou X. Engineered single-crystal metal-selenide for rapid K-ion diffusion and polyselenide convention. Chem Eng J. 2022;427:131963.

    Article  CAS  Google Scholar 

  2. Qi SH, Deng JW, Zhang WC, Feng YZ, Ma JM. Recent advances in alloy-based anode materials for potassium ion batteries. Rare Met. 2020;39(9):970.

    Article  CAS  Google Scholar 

  3. Fang LZ, Xu J, Sun S, Lin BW, Guo QB, Luo D, Xia H. Few-layered tin sulfide nanosheets supported on reduced graphene oxide as a high-performance anode for potassium-ion batteries. Small. 2019;15(10):1804806.

    Article  Google Scholar 

  4. Tian Y, An YL, Xiong SL, Feng JK, Qian YT. A general method for constructing robust, flexible and freestanding MXene@metal anodes for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(16):9716.

    Article  CAS  Google Scholar 

  5. Sultana I, Rahman MM, Chen Y, Glushenkov AM. Potassium-ion battery anode materials operating through the alloying–dealloying reaction mechanism. Adv Funct Mater. 2018;28(5):1703857.

    Article  Google Scholar 

  6. Zhao X, Gong FY, Zhao YD, Huang B, Qian D, Wang HE, Zhang WH, Yang ZJ. Encapsulating NiS nanocrystal into nitrogen-doped carbon framework for high performance sodium/potassium-ion storage. Chem Eng J. 2020;392:123675.

    Article  CAS  Google Scholar 

  7. Xu E, Zhang Y, Wang H, Zhu Z, Quan J, Chang Y, Li P, Yu D, Jiang Y. Ultrafast kinetics net electrode assembled via MoSe2/MXene heterojunction for high-performance sodium-ion batteries. Chem Eng J. 2020;385:123839.

    Article  CAS  Google Scholar 

  8. Ma M, Zhang S, Yao Y, Wang H, Huang H, Xu R, Wang J, Zhou X, Yang W, Peng Z, Wu X, Hou Y, Yu Y. Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: superior potassium-ion storage and insight into potassium storage mechanism. Adv Mater. 2020;32(22):2000958.

    Article  CAS  Google Scholar 

  9. Feng YT, Xu MZ, He T, Chen BJ, Gu F, Zu LH, Meng RJ, Yang JH. CoPSe: a new ternary anode material for stable and high-rate sodium/potassium-ion batteries. Adv Mater. 2021;33(16):2007262.

    Article  CAS  Google Scholar 

  10. Yang C, Feng JR, Zhang YL, Yang QF, Li PH, Arlt T, Lai FL, Wang JJ, Yin CC, Wang W, Qian GY, Cui LF, Yang WJ, Chen Y, Manke I. Multidimensional integrated chalcogenides nanoarchitecture achieves highly stable and ultrafast potassium-ion storage. Small. 2019;15(44):1903720.

    Article  CAS  Google Scholar 

  11. Wang LQ, Han ZL, Zhao QQ, Yao XQ, Zhu YQ, Ma XL, Wu SD, Cao CB. Engineering yolk–shell P-doped NiS2/C spheres via a MOF-template for high-performance sodium-ion batteries. J Mater Chem A. 2020;8(17):8612.

    Article  CAS  Google Scholar 

  12. Wei CH, Guo SG, Ma W, Mei SX, Xiang B, Gao B. Recent progress of bismuth-based electrode materials for advanced sodium ion batteries anode. Chin J Rare Metals. 2021;45(5):611.

    Google Scholar 

  13. Yang WX, Zhou JH, Wang S, Zhang WY, Wang ZC, Lv F, Wang K, Sun Q, Guo SJ. Freestanding film made by necklace-like N-doped hollow carbon with hierarchical pores for high-performance potassium-ion storage. Energy Environ Sci. 2019;12(5):1605.

    Article  CAS  Google Scholar 

  14. Wu J, Liu S, Rehman Y, Huang T, Zhao J, Gu Q, Mao J, Guo Z. Phase engineering of nickel sulfides to boost sodium- and potassium-ion storage performance. Adv Funct Mater. 2021;31(27):2010832.

    Article  CAS  Google Scholar 

  15. Li DP, Dai LN, Ren XH, Ji FJ, Sun Q, Zhang YM, Ci LJ. Foldable potassium-ion batteries enabled by free-standing and flexible SnS2@C nanofibers. Energy Environ Sci. 2021;14(1):424.

    Article  CAS  Google Scholar 

  16. Zhang W, Ming J, Zhao W, Dong X, Hedhili MN, Costa PMFJ, Alshareef HN. Graphitic nanocarbon with engineered defects for high-performance potassium-ion battery anodes. Adv Funct Mater. 2019;29(35):1903641.

    Article  Google Scholar 

  17. Wang J, Wang B, Lu BG. Nature of novel 2D van der Waals heterostructures for superior potassium ion batteries. Adv Energy Mater. 2020;10(24):2000884.

    Article  CAS  Google Scholar 

  18. Tian HJ, Yu XC, Shao HZ, Dong LB, Chen Y, Fang XQ, Wang CY, Han WQ, Wang GX. Unlocking few-layered ternary chalcogenides for high-performance potassium-ion storage. Adv Energy Mater. 2019;9(29):1901560.

    Article  Google Scholar 

  19. He HN, Huang D, Gan QM, Hao JN, Liu SL, Wu ZB, Pang WK, Johannessen B, Tang Y, Luo JL, Wang H, Guo Z. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano. 2019;13(10):11843.

    Article  CAS  Google Scholar 

  20. Chen Z, Yin DG, Zhang M. Sandwich-like MoS2@SnO2@C with high capacity and stability for sodium/potassium ion batteries. Small. 2018;14(17):1703818.

    Article  Google Scholar 

  21. Wei LYX, Dong YL, Wu YH, Zhang CL, Zhou M, Qun FMW. Bismuth oxychloride nanoflake assemblies as a new anode for potassium ion batteries. Chem Commun. 2019;55:6507.

    Article  Google Scholar 

  22. Yang L, Hong WW, Tian Y, Zou GQ, Hou HS, Sun W, Ji XB. Heteroatom-doped carbon inlaid with Sb2X3 (X = S, Se) nanodots for high-performance potassium-ion batteries. Chem Eng J. 2020;385:123838.

    Article  CAS  Google Scholar 

  23. Zhu JH, Fan J, Cheng TL, Cao MY, Sun ZH, Zhou R, Huang L, Wang D, Li YG, Wu YP. Bilayer nanosheets of unusual stoichiometric bismuth oxychloride for potassium ion storage and CO2 reduction. Nano Energy. 2020;75:104939.

    Article  CAS  Google Scholar 

  24. Quhe R, Liu JC, Wu JX, Yang J, Wang YY, Li QH, Li TR, Guo Y, Yang JB, Peng HL, Lei M, Lu J. High-performance sub-10 nm monolayer Bi2O2Se transistors. Nanoscale. 2019;11(2):532.

    Article  CAS  Google Scholar 

  25. Meng M, Huang S, Tan C, Wu J, Li X, Peng H, Xu HQ. Universal conductance fluctuations and phase-coherent transport in a semiconductor Bi2O2Se nanoplate with strong spin-orbit interaction. Nanoscale. 2019;11(22):10622.

    Article  CAS  Google Scholar 

  26. Kariper IA. Synthesis and characterization Bi2O2S thin film via chemical bath deposition at low pH. Spectrochim Acta A. 2016;163:102.

    Article  CAS  Google Scholar 

  27. He C, Zhang JH, Zhang WX, Li TT. GeSe/BP van der Waals heterostructures as promising anode materials for potassium-ion batteries. J Phys Chem C. 2019;123(9):5157.

    Article  CAS  Google Scholar 

  28. Wu Z, Liang G, Wu J, Pang WK, Yang F, Chen L, Johannessen B, Guo Z. Synchrotron X-ray absorption spectroscopy and electrochemical study of Bi2O2Se electrode for lithium-/potassium-ion storage. Adv Energy Mater. 2021;11(17):2100185.

    Article  CAS  Google Scholar 

  29. Pacquette AL, Hagiwara H, Ishihara T, Gewirth AA. Fabrication of an oxysulfide of bismuth Bi2O2S and its photocatalytic activity in a Bi2O2S/In2O3 composite. J Photochem Photobiol A. 2014;277:27.

    Article  CAS  Google Scholar 

  30. Liu DS, Liu DH, Hou BH, Wang YY, Guo JZ, Ning QL, Wu XL. 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta. 2018;264:292.

    Article  CAS  Google Scholar 

  31. Xu K, Liang X, Wang LL, Wang Y, Yun JF, Sun Y, Xiang HF. Tri-functionalized polypropylene separator by rGO/MoO2 composite for high-performance lithium-sulfur batteries. Rare Metals. 2021;40(10):2810.

    Article  CAS  Google Scholar 

  32. Huang H, Luo X, Yao Y, Zhou X, Jiang Y, Guo C, Liu J, Wu X, Yu Y. Binding Se into nitrogen-doped porous carbon nanosheets for high-performance potassium storage. InfoMat. 2021;3(4):421.

    Article  CAS  Google Scholar 

  33. Qin TT, Chu XF, Deng T, Wang BR, Zhang XY, Dong TW, Li ZM, Fan XF, Ge X, Wang ZZ, Wang P, Zhang W, Zheng WT. Reinventing the mechanism of high-performance Bi anode in aqueous K+ rechargeable batteries. J Energy Chem. 2020;48:21.

    Article  Google Scholar 

  34. Huang YX, Wang ZH, Jiang Y, Li SJ, Wang M, Ye YS, Wu F, Xie M, Li L, Chen RJ. Conductivity and pseudocapacitance optimization of bimetallic antimony-indium sulfide anodes for sodium-ion batteries with favorable kinetics. Adv Sci. 2018;5(10):1800613.

    Article  Google Scholar 

  35. Gu ZY, Guo JZ, Sun ZH, Zhao XX, Li WH, Yang X, Liang HJ, Zhao CD, Wu XL. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci Bull. 2020;65(9):702.

    Article  CAS  Google Scholar 

  36. Yang M, Ning QL, Fan CY, Wu XL. Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage. Chin Chem Lett. 2021;32(2):895.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 52070194, 52073309 and 51902347) and the Natural Science Foundation of Hunan Province (No. 2020JJ5741).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Cao, Xin-Ming Fan or Xing Ou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2348 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, SJ., Du, P., Zhang, JF. et al. Quasi-two-dimensional bismuth oxychalcogenide nanoflakes as novel anode for potassium-ion batteries. Rare Met. 41, 2567–2574 (2022). https://doi.org/10.1007/s12598-022-01970-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-01970-x

Navigation