Skip to main content
Log in

Application of in-situ characterization techniques in modern aqueous batteries

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The development of high-performance aqueous batteries calls for an in-depth knowledge of their charge–discharge redox and failure mechanism, as well as a systematic understanding of the dynamic evolution of microstructure, phase composition, chemical composition, and local chemical environment of the materials for battery. In-situ characterization technology is expected to understand and reveal the problems faced by aqueous rechargeable batteries, such as the dissolution of electrode materials, the growth of metal negative electrode dendrites, passivation, corrosion, side reactions and a series of problems. Based on this, typical in-situ characterization techniques and their basic mechanisms are summarized, including in-situ optical visualization, in-situ microscopy techniques (in-situ scanning electron microscopy (SEM), in-situ transmission electron microscopy (TEM)), in-situ X-ray techniques (in-situ X-ray diffraction (XRD), in-situ X-ray photoelectron spectroscopy (XPS), in-situ near-edge structural X-ray absorption spectroscopy (XANES)), and in-situ spectroscopy techniques (in-situ Raman spectroscopy, in-situ Fourier transform infrared (FTIR)).Moreover, some emerging techniques concerning aqueous battery research, especially gas evolution and materials dissolution issues, such as in-situ electrochemical quartz crystal microbalance (EQCM), in-situ fiber-optic sensing, in-situ gas chromatography (GC) are introduced. At last, the applications of advanced in-situ characterizations in future research of aqueous batteries are emphasized and discussed, along with some of the remaining challenges and possible solutions.

Graphical Abstract

摘要

开发高性能水系电池需要深入了解其充放电氧化还原和失效机理,并系统了解电池材料的微观结构、相组成、化学成分和局部化学环境的动态演变。原位表征技术有望了解和揭示水系电池面临的电极材料溶解、金属负极枝晶生长、钝化、腐蚀、副反应等一系列问题。在此基础上,本文总结了典型的原位表征技术及其基本机理,包括原位光学、原位显微镜技术(原位扫描电子显微镜(SEM)、原位透射电子显微镜(TEM))、 原位 X 射线技术(原位 X 射线衍射 (XRD)、原位 X 射线光电子能谱 (XPS)、原位 X射线近边吸收 (XANES)),以及原位谱学技术(原位拉曼光谱、原位傅立叶变换红外 (FTIR))。 此外,本文还介绍了与水系电池研究有关的一些新兴技术,特别是对于研究气体演化、材料溶解等问题,如原位电化学石英晶体微分天平(EQCM)、原位光纤传感、原位气相色谱法(GC)等。最后,本文强调并讨论了先进的原位表征技术在未来水系电池研究中的应用,以及仍然存在的一些挑战和可能的解决方案

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [46]. Copyright 2022, Wiley. In-situ investigations of Zn deposition by optical microscopy in Zn/Zn cells: images of Zn-electrolyte interface region in b 1 mol·L−1 Zn(TFSI)2 and c Zn(TFSI)2-based eutectic solvent; d images of SEI-coated Zn-electrolyte interface region using 1 mol·L−1 Zn(TFSI)2. Reproduced with permission from Ref. [47]. Copyright 2019, Springer.; e schematic illustration of a designed electrochemical cell. Reproduced with permission from Ref. [53]. Copyright 2021, Springer. f An optical reflectometry setup for in-situ optical imaging from top-view. Reproduced with permission from Ref. [54]. Copyright 2022, Wiley

Fig. 2

Reproduced with permission from Ref. [64]. Copyright 2022, Elsevier

Fig. 3

Reproduced with permission from Ref. [71]. Copyright 2019, Wiley. b Transmission mode [72]. In-situ synchrotron XRD pattern collected during electrochemical discharge/charge of layered MnO2: c electrochemical discharge/charge profile and d in-situ XRD patterns. Reproduced with permission from Ref. [80]. Copyright 2018, Elsevier

Fig. 4

Reproduced with permission from Ref. [84]. Copyright 2021, Wiley. c Operando SXRD of Zn anode during charge process. Reproduced with permission from Ref. [93]. Copyright 2020, Wiley. Structural evolution of a negative electrode (bipyridinium–diamide triad) during the first cycle (scans 1 to 33) in d 2.5 mol·L−1 NaClO4 and e 1.25 mol·L−1 Mg(ClO4)2. Reproduced with permission from Ref. [94]. Copyright 2017, Wiley

Fig. 5

Reproduced with permission from Ref. [101]. Copyright 2022, Elsevier

Fig. 6

Reproduced with permission from Ref. [103]. Copyright 2020, American Association for the Advancement of Science

Fig. 7

Reproduced with permission from Ref. [108]. Copyright 2021, Wiley

Fig. 8

Reproduced with permission from Ref. [111]. Copyright 2022, Royal Society of Chemistry. d Schematic diagram of in-situ ATR-FTIR analysis; e in-situ ATR-FTIR spectra of an organic cathode in one discharge/charge cycle. (The change of the line color from blue to red indicates the change of the organic cathode from a discharged state to a charged state). Reproduced with permission from Ref. [114]. Copyright 2018, American Association for the Advancement of Science

Fig. 9

Reproduced with permission from Ref. [118]. Copyright 2022, Elsevier. d Operando UV–Vis spectroscopy results of electrolyte during charge process of ZIABs. Reproduced with permission from Ref. [93]. Copyright 2020, Wiley

Fig. 10

Reproduced with permission from Ref. [120]. Copyright 2021, Wiley

Fig. 11

Reproduced with permission from Ref. [126]. Copyright 2022, Springer. Cathodic stability and H2 evolution behavior for b H2O electrolyte; and for c RME determined by LSV and operando gas pressure measurement. Reproduced with permission from Ref. [127]. Copyright 2023, Springer

Similar content being viewed by others

References

  1. Liang YL, Yao Y. Designing modern aqueous batteries. Nat Rev Mater. 2023;8(2):109. https://doi.org/10.1038/s41578-022-00511-3.

    Article  Google Scholar 

  2. Chao DL, Zhou WH, Xie FX, Ye C, Li H, Jaroniec M, Qiao SZ. Roadmap for advanced aqueous batteries: from design of materials to applications. Sci Adv. 2020;6(21):19. https://doi.org/10.1126/sciadv.aba4098.

    Article  CAS  Google Scholar 

  3. Jiang LW, Lu YX, Zhao CL, Liu LL, Zhang JN, Zhang QQ, Shen X, Zhao JM, Yu XQ, Li H, Huang XJ, Chen LQ, Hu YS. Building aqueous K-ion batteries for energy storage. Nat Energy. 2019;4(6):495. https://doi.org/10.1038/s41560-019-0388-0.

    Article  CAS  Google Scholar 

  4. Xu CX, Jiang JJ. Electrolytes speed up development of zinc batteries. Rare Met. 2021;40(4):749. https://doi.org/10.1007/s12598-020-01628-6.

    Article  CAS  Google Scholar 

  5. Jiang QC, Li J, Yang YJ, Ren YJ, Dai L, Gao JY, Wang L, Ye JY, He ZX. Ultrafine SnO2 in situ modified graphite felt derived from metal-organic framework as a superior electrode for vanadium redox flow battery. Rare Met. 2023;42(4):1214. https://doi.org/10.1007/s12598-022-02228-2.

    Article  CAS  Google Scholar 

  6. Posada JOG, Rennie AJR, Villar SP, Martins VL, Marinaccio J, Barnes A, Glover CF, Worsley DA, Hall PJ. Aqueous batteries as grid scale energy storage solutions. Renew Sust Energy Rev. 2017;68:1174. https://doi.org/10.1016/j.rser.2016.02.024.

    Article  CAS  Google Scholar 

  7. Binder L. Handbook of Battery Materials. In: Daniel C, Besenhard JO Editors. Weinheim: Wiley-VCH Verlag; 2012. 219 https://doi.org/10.1149/1.2131791.

  8. Brodd RJ, Kozawa A, Kordesch KV. Primary batteries 1951–1976. J Electrochem Soc. 1978;125(7):271C.

    Article  CAS  Google Scholar 

  9. Fu J, Cano ZP, Park MG, Yu AP, Fowler M, Chen ZW. Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv Mater. 2017;29(7):34. https://doi.org/10.1002/adma.201604685.

    Article  CAS  Google Scholar 

  10. Eustace DJ. Bromine complexation in zinc-bromine circulating batteries. J Electrochem Soc. 1980;127(3):528. https://doi.org/10.1149/1.2129706.

    Article  CAS  Google Scholar 

  11. Gu H. Mathematical-analysis of a Zn/NiOOH cell. J Electrochem Soc. 1983;130(7):1459. https://doi.org/10.1149/1.2120009.

    Article  CAS  Google Scholar 

  12. Yan CY, Wang X, Cui MQ, Wang JX, Kang WB, Foo CY, Lee PS. Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Adv Energy Mater. 2014;4(5):6. https://doi.org/10.1002/aenm.201301396.

    Article  CAS  Google Scholar 

  13. Gabano JP, Morignat B, Laurent JF. Variation of physico-chemical parameters in an alkaline MnO2-Zn cell during discharge. Edited by D H Collins. 1967. https://doi.org/10.1016/B978-0-08-012176-5.50010-4.

    Article  Google Scholar 

  14. Gond R, van Ekeren W, Mogensen R, Naylor AJ, Younesi R. Non-flammable liquid electrolytes for safe batteries. Mater Horizons. 2021;8(11):2913. https://doi.org/10.1039/d1mh00748c.

    Article  CAS  Google Scholar 

  15. Kurzweil P. Gaston Plante and his invention of the lead-acid battery-the genesis of the first practical rechargeable battery. J Power Sources. 2010;195(14):4424. https://doi.org/10.1016/j.jpowsour.2009.12.126.

    Article  CAS  Google Scholar 

  16. Shukla AK, Venugopalan S, Hariprakash B. Nickel-based rechargeable batteries. J Power Sources. 2001;100(1–2):125. https://doi.org/10.1016/s0378-7753(01)00890-4.

    Article  CAS  Google Scholar 

  17. Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA. New all-vanadium redox flow cell. J Electrochem Soc. 1986;133(5):1057. https://doi.org/10.1149/1.2108706.

    Article  CAS  Google Scholar 

  18. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1:8. https://doi.org/10.1038/nenergy.2016.119.

    Article  CAS  Google Scholar 

  19. Li RT, Du YX, Li YH, He ZX, Dai L, Wang L, Wu XW, Zhang JJ, Yi J. Alloying strategy for high-performance zinc metal anodes. ACS Energy Lett. 2022;8(1):457. https://doi.org/10.1021/acsenergylett.2c01960.

    Article  CAS  Google Scholar 

  20. Du YH, Liu XY, Wang XY, Sun JC, Lu QQ, Wang JZ, Omar A, Mikhailova D. Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Met. 2022;41(2):415. https://doi.org/10.1007/s12598-021-01777-2.

    Article  CAS  Google Scholar 

  21. Ao HS, Zhao YY, Zhou J, Cai WL, Zhang XT, Zhu YC, Qian YT. Rechargeable aqueous hybrid ion batteries: developments and prospects. J Mater Chem A. 2019;7(32):18708. https://doi.org/10.1039/c9ta06433h.

    Article  CAS  Google Scholar 

  22. Xu YK, Wu XY, Ji XL. The renaissance of proton batteries. Small Struct. 2021;2(5):16. https://doi.org/10.1002/sstr.202000113.

    Article  CAS  Google Scholar 

  23. Zhang KQ, Jin Z. Halogen-enabled rechargeable batteries: current advances and future perspectives. Energy Storage Mater. 2022;45:332. https://doi.org/10.1016/j.ensm.2021.11.048.

    Article  Google Scholar 

  24. Han J, Varzi A, Passerini S. The emergence of aqueous ammonium-ion batteries. Angew Chem Int Ed. 2022. https://doi.org/10.1002/anie.202115046.

    Article  Google Scholar 

  25. Ma XY, Luo W, Yan MY, He L, Mai LQ. In situ characterization of electrochemical processes in one dimensional nanomaterials for energy storages devices. Nano Energy. 2016;24:165. https://doi.org/10.1016/j.nanoen.2016.03.023.

    Article  CAS  Google Scholar 

  26. Wu Y, Luo W, Gao P, Zhu CY, Hu XB, Qu K, Chen J, Wang YQ, Sun LT, Mai LQ, Xu F. Unveiling the microscopic origin of asymmetric phase transformations in (de)sodiated Sb2Se3 with in situ transmission electron microscopy. Nano Energy. 2020;77:10. https://doi.org/10.1016/j.nanoen.2020.105299.

    Article  CAS  Google Scholar 

  27. Blanc F, Leskes M, Gray CP. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Accounts Chem Res. 2013;46(9):1952. https://doi.org/10.1021/ar400022u.

    Article  CAS  Google Scholar 

  28. Li J, Le K, Wei W. Enabling a stable and dendrite-suppressed Zn anode via facile surface roughness engineering. J Mater Sci Technol. 2022;102:272. https://doi.org/10.1016/j.jmst.2021.06.024.

    Article  CAS  Google Scholar 

  29. Li Y, Peng XY, Li X, Duan H, Xie SY, Dong LB, Kang FY. Functional ultrathin separators proactively stabilizing zinc anodes for zinc-based energy storage. Adv Mater. 2023;35(18):10. https://doi.org/10.1002/adma.202300019.

    Article  CAS  Google Scholar 

  30. Xie SY, Li Y, Li X, Zhou YJ, Dang ZQ, Rong JH, Dong LB. Stable zinc anodes enabled by zincophilic Cu nanowire networks. Nano-Micro Lett. 2022;14(1):13. https://doi.org/10.1007/s40820-021-00783-4.

    Article  CAS  Google Scholar 

  31. Hao JN, Li B, Li XL, Zeng XH, Zhang SL, Yang FH, Liu SL, Li D, Wu C, Guo ZP. An in-depth study of zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv Mater. 2020;32(34):9. https://doi.org/10.1002/adma.202003021.

    Article  CAS  Google Scholar 

  32. Zhou XZ, Lu Y, Zhang Q, Miao LC, Zhang K, Yan ZH, Li FJ, Chen J. Exploring the interfacial chemistry between zinc anodes and aqueous electrolytes via an in situ visualized characterization system. ACS Appl Mater Interfaces. 2020;12(49):55476. https://doi.org/10.1021/acsami.0c17023.

    Article  CAS  PubMed  Google Scholar 

  33. Zeng XH, Mao JF, Hao JN, Liu JT, Liu SL, Wang ZJ, Wang YY, Zhang SL, Zheng T, Liu JW, Rao PH, Guo ZP. Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions. Adv Mater. 2021;33(11):11. https://doi.org/10.1002/adma.202007416.

    Article  CAS  Google Scholar 

  34. Hao JN, Yuan LB, Ye C, Chao DL, Davey K, Guo ZP, Qiao SZ. Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew Chem Int Ed. 2021;60(13):7366. https://doi.org/10.1002/anie.202016531.

    Article  CAS  Google Scholar 

  35. Li HP, Guo C, Zhang TS, Xue P, Zhao RZ, Zhou WH, Li W, Elzatahry A, Zhao DY, Chao DL. Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery. Nano Lett. 2022;22(10):4223. https://doi.org/10.1021/acs.nanolett.2c01235.

    Article  CAS  PubMed  Google Scholar 

  36. Xu Y, Zheng XH, Sun JF, Wang WP, Wang MM, Yuan Y, Chuai MY, Chen N, Hu HL, Chen W. Nucleophilic interfacial layer enables stable Zn anodes for aqueous Zn batteries. Nano Lett. 2022;22(8):3298. https://doi.org/10.1021/acs.nanolett.2c00398.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang NN, Huang S, Yuan ZS, Zhu JC, Zhao ZF, Niu ZQ. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew Chem Int Ed. 2021;60(6):2861. https://doi.org/10.1002/anie.202012322.

    Article  CAS  Google Scholar 

  38. Zhou JH, Xie M, Wu F, Mei Y, Hao YT, Huang RL, Wei GL, Liu AN, Li L, Chen RJ. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries. Adv Mater. 2021;33(33):11. https://doi.org/10.1002/adma.202101649.

    Article  CAS  Google Scholar 

  39. Hong L, Wang LY, Wang YL, Wu XM, Huang W, Zhou YF, Wang KX, Chen JS. Toward hydrogen-free and dendrite-free aqueous zinc batteries: formation of zincophilic protective layer on Zn anodes. Adv Sci. 2022;9(6):10. https://doi.org/10.1002/advs.202104866.

    Article  CAS  Google Scholar 

  40. Yuan LB, Hao JN, Kao CC, Wu C, Liu HK, Dou SX, Qiao SZ. Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous Zn-ion batteries. Energy Environ Sci. 2021;14(11):5669. https://doi.org/10.1039/d1ee02021h.

    Article  CAS  Google Scholar 

  41. Li L, Jia SF, Cao MH, Ji YQ, Qiu HW, Zhang D. Progress in research on metal-based materials in stabilized Zn anodes. Rare Met. 2023;43(1):20. https://doi.org/10.1007/s12598-023-02441-7.

    Article  CAS  Google Scholar 

  42. Ma GQ, Miao LC, Dong Y, Yuan WT, Nie XY, Di SL, Wang YY, Wang LB, Zhang N. Reshaping the electrolyte structure and interface chemistry for stable aqueous zinc batteries. Energy Storage Mater. 2022;47:203. https://doi.org/10.1016/j.ensm.2022.02.019.

    Article  Google Scholar 

  43. Zhang GH, Zhang XN, Liu HZ, Li JH, Chen YQ, Duan HG. 3D-printed multi-channel metal lattices enabling localized electric-field redistribution for dendrite-free aqueous Zn ion batteries. Adv Energy Mater. 2021;11(19):11. https://doi.org/10.1002/aenm.202003927.

    Article  CAS  Google Scholar 

  44. Ma LT, Li Q, Ying YR, Ma FX, Chen SM, Li YY, Huang HT, Zhi CY. Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater. 2021;33(12):9. https://doi.org/10.1002/adma.202007406.

    Article  CAS  Google Scholar 

  45. Wang WX, Huang G, Wang YZ, Cao Z, Cavallo L, Hedhili MN, Alshareef HN. Organic Acid etching strategy for dendrite suppression in aqueous zinc-ion batteries. Adv Energy Mater. 2022;12(6):8. https://doi.org/10.1002/aenm.202102797.

    Article  CAS  Google Scholar 

  46. Cai Z, Wang JD, Lu ZH, Zhan RM, Ou YT, Wang L, Dahbi M, Alami J, Lu J, Amine K, Sun YM. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling toward fast-charging Zn battery chemistry. Angew Chem Int Ed. 2022;61(14):8. https://doi.org/10.1002/anie.202116560.

    Article  CAS  Google Scholar 

  47. Qiu HY, Du XF, Zhao JW, Wang YT, Ju JW, Chen Z, Hu ZL, Yan DP, Zhou XH, Cui GL. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat Commun. 2019;10:12. https://doi.org/10.1038/s41467-019-13436-3.

    Article  CAS  Google Scholar 

  48. Peng X, Li Y, Kang F, Li X, Zheng Z, Dong L. Negatively charged hydrophobic carbon nano-onion interfacial layer enabling high-rate and ultralong-life Zn-based energy storage. Small. 2023. https://doi.org/10.1002/smll.202305547.

    Article  PubMed  Google Scholar 

  49. Wang XY, Li XM, Fan HQ, Ma LT. Solid electrolyte interface in Zn-based battery systems. Nano-Micro Lett. 2022;14(1):24. https://doi.org/10.1007/s40820-022-00939-w.

    Article  CAS  Google Scholar 

  50. Wang XY, Ying YR, Li XM, Chen SM, Gao GW, Huang HT, Ma LT. Preferred planar crystal growth and uniform solid electrolyte interfaces enabled by anion receptors for stable aqueous Zn batteries. Energy Environ Sci. 2023;16(10):4572. https://doi.org/10.1039/d3ee01580g.

    Article  CAS  Google Scholar 

  51. Yang XY, Fan HQ, Hu FL, Chen SM, Yan K, Ma LT. Aqueous zinc batteries with ultra-fast redox kinetics and high iodine utilization enabled by iron single atom catalysts. Nano-Micro Lett. 2023;15(1):13. https://doi.org/10.1007/s40820-023-01093-7.

    Article  CAS  Google Scholar 

  52. Ma L, Li Q, Ying Y, Ma F, Chen S, Li Y, Huang H, Zhi C. Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater. 2021;33(12):2007406. https://doi.org/10.1002/adma.202007406.

    Article  CAS  Google Scholar 

  53. Tian HJ, Li Z, Feng GX, Yang ZZ, Fox D, Wang MY, Zhou H, Zhai L, Kushima A, Du YG, Feng ZX, Shan XN, Yang Y. Stable, high-performance, dendrite-free, seawater-based aqueous batteries. Nat Commun. 2021;12(1):12. https://doi.org/10.1038/s41467-020-20334-6.

    Article  CAS  Google Scholar 

  54. Godeffroy L, Aguilar I, Médard JM, Larcher D, Tarascon JM, Kanoufi F. Decoupling the dynamics of zinc hydroxide sulfate precipitation/dissolution in aqueous Zn-MnO2 batteries by operando optical microscopy: a missing piece of the mechanistic puzzle. Adv Energy Mater. 2022;12(30):14. https://doi.org/10.1002/aenm.202200722.

    Article  CAS  Google Scholar 

  55. Guo RT, Liu X, Xia FJ, Jiang YL, Zhang HZ, Huang M, Niu CJ, Wu JS, Zhao Y, Wang XP, Han CH, Mai LQ. Large-scale integration of a zinc metasilicate interface layer guiding well-regulated Zn deposition. Adv Mater. 2022;34(27):11. https://doi.org/10.1002/adma.202202188.

    Article  CAS  Google Scholar 

  56. Wu YT, Liu NA. Visualizing battery reactions and processes by using in situ and in operando microscopies. Chem. 2018;4(3):438. https://doi.org/10.1016/j.chempr.2017.12.022.

    Article  CAS  Google Scholar 

  57. Orsini F, Du Pasquier A, Beaudoin B, Tarascon JM, Trentin M, Langenhuizen N, De Beer E, Notten P. In situ scanning electron microscopy (SEM) observation of interfaces within plastic lithium batteries. J Power Sources. 1998;76(1):19. https://doi.org/10.1016/s0378-7753(98)00128-1.

    Article  CAS  Google Scholar 

  58. Rong GL, Zhang XY, Zhao W, Qiu YC, Liu MN, Ye FM, Xu Y, Chen JF, Hou Y, Li WF, Duan WH, Zhang YG. Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution. Adv Mater. 2017;29(13):6. https://doi.org/10.1002/adma.201606187.

    Article  CAS  Google Scholar 

  59. Liao HG, Cui LK, Whitelam S, Zheng HM. Real-time Imaging of Pt3Fe nanorod growth in solution. Science. 2012;336(6084):1011. https://doi.org/10.1126/science.1219185.

    Article  CAS  PubMed  Google Scholar 

  60. Evans JE, Jungjohann KL, Browning ND, Arslan I. Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 2011;11(7):2809. https://doi.org/10.1021/nl201166k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Narayanan S, Shahbazian-Yassar R, Shokuhfar T. In situ visualization of ferritin biomineralization via graphene liquid cell-transmission electron microscopy. ACS Biomater Sci Eng. 2020;6(5):3208. https://doi.org/10.1021/acsbiomaterials.9b01889.

    Article  CAS  PubMed  Google Scholar 

  62. Wang XY, Yang J, Andrei CM, Soleymani L, Grandfield K. Biomineralization of calcium phosphate revealed by in situ liquid-phase electron microscopy. Comm Chem. 2018;1:7. https://doi.org/10.1038/s42004-018-0081-4.

    Article  CAS  Google Scholar 

  63. Dukes MJ, Varano AC, Kelly DF. In situ liquid cell electron microscopy: an evolving tool for biomedical and life science applications. Microsc Microanal. 2017;23(S1):1254. https://doi.org/10.1017/s1431927617006936.

    Article  Google Scholar 

  64. Huang YF, Gu QQ, Guo ZL, Liu WB, Chang ZW, Liu YF, Kang FY, Dong LB, Xu CJ. Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study. Energy Storage Mater. 2022;46:243. https://doi.org/10.1016/j.ensm.2022.01.012.

    Article  Google Scholar 

  65. Tao SW, Li M, Lyu M, Ran LB, Wepf R, Gentle I, Knibbe R. In operando closed-cell transmission electron microscopy for rechargeable battery characterization: scientific breakthroughs and practical limitations. Nano Energy. 2022;96:27. https://doi.org/10.1016/j.nanoen.2022.107083.

    Article  CAS  Google Scholar 

  66. Huang JY, Zhong L, Wang CM, Sullivan JP, Xu W, Zhang LQ, Mao SX, Hudak NS, Liu XH, Subramanian A, Fan HY, Qi LA, Kushima A, Li J. In situ observation of the electrochemical lithiation of a Single SnO2 nanowire electrode. Science. 2010;330(6010):1515. https://doi.org/10.1126/science.1195628.

    Article  CAS  PubMed  Google Scholar 

  67. Feng WC, Wang H, Jiang YL, Zhang HZ, Luo W, Chen W, Shen CL, Wang CX, Wu JS, Mai LQ. A strain-relaxation red phosphorus freestanding anode for non-aqueous potassium ion batteries. Adv Energy Mater. 2022;12(7):11. https://doi.org/10.1002/aenm.202103343.

    Article  CAS  Google Scholar 

  68. Zhu JP, Zhao J, Xiang YX, Lin M, Wang HC, Zheng BZ, He HJ, Wu QH, Huang JY, Yang Y. Chemomechanical failure mechanism study in nasicon-type Li1.3Al0.3Ti1.7(PO4)3(PO4)3 solid-state lithium batteries. Chem Mat. 2020;32(12):4998. https://doi.org/10.1021/acs.chemmater.9b05295.

    Article  CAS  Google Scholar 

  69. Holtz ME, Yu YC, Gunceler D, Gao J, Sundararaman R, Schwarz KA, Arias TA, Abruña HD, Muller DA. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 2014;14(3):1453. https://doi.org/10.1021/nl404577c.

    Article  CAS  PubMed  Google Scholar 

  70. Morcrette M, Chabre Y, Vaughan G, Amatucci G, Leriche JB, Patoux S, Masquelier C, Tarascon JM. In situ X-ray diffraction techniques as a powerful tool to study battery electrode materials. Electrochim Acta. 2002;47(19):3137. https://doi.org/10.1016/s0013-4686(02)00233-5.

    Article  CAS  Google Scholar 

  71. Xia MT, Liu TT, Peng N, Zheng RT, Cheng X, Zhu HJ, Yu HX, Shui M, Shu J. Lab-scale in situ X-ray diffraction technique for different battery systems: designs, applications, and perspectives. Small Methods. 2019;3(7):23. https://doi.org/10.1002/smtd.201900119.

    Article  CAS  Google Scholar 

  72. Xu C, Märker K, Lee J, Mahadevegowda A, Reeves PJ, Day SJ, Groh MF, Emge SP, Ducati C, Mehdi BL, Tang CC, Gray CP. Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries. Nat Mater. 2021;20(1):84. https://doi.org/10.1038/s41563-020-0767-8.

    Article  CAS  PubMed  Google Scholar 

  73. Liu Y, Li C, Xu J, Ou MY, Fang C, Sun SX, Qiu YG, Peng J, Lu GC, Li Q, Han JT, Huang YH. Electroactivation-induced spinel ZnV2O4 as a high-performance cathode material for aqueous zinc-ion battery. Nano Energy. 2020;67:7. https://doi.org/10.1016/j.nanoen.2019.104211.

    Article  CAS  Google Scholar 

  74. Jing P, Wei W, Luo W, Li X, Xu FF, Li HW, Wei M, Yu DR, Zhu QY, Liu GQ. In-situ XRD study of the structure and electrochemical performance of V2O5 nanosheets in aqueous zinc ion batteries. Inorg Chem Commun. 2020;117:7. https://doi.org/10.1016/j.inoche.2020.107953.

    Article  CAS  Google Scholar 

  75. Sevinc S, Tekin B, Ata A, Morcrette M, Perrot H, Sel O, Demir-Cakan R. In-situ tracking of NaFePO4 formation in aqueous electrolytes and its electrochemical performances in Na-ion/polysulfide batteries. J Power Sources. 2019;412:55. https://doi.org/10.1016/j.jpowsour.2018.11.035.

    Article  CAS  Google Scholar 

  76. Wang MT, Wang HQ, Zhang HM, Li XF. Aqueous K-ion battery incorporating environment -friendly organic compound and berlin green. J Energy Chem. 2020;48:14. https://doi.org/10.1016/j.jechem.2019.12.019.

    Article  CAS  Google Scholar 

  77. He P, Yan MY, Zhang GB, Sun RM, Chen LN, An QY, Mai LQ. Layered VS2 nanosheet-based aqueous zn ion battery cathode. Adv Energy Mater. 2017;7(11):5. https://doi.org/10.1002/aenm.201601920.

    Article  CAS  Google Scholar 

  78. Wu BK, Zhang GB, Yan MY, Xiong TF, He P, He L, Xu X, Mai LQ. Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery. Small. 2018;14(13):8. https://doi.org/10.1002/smll.201703850.

    Article  CAS  Google Scholar 

  79. Yang ZZ, Pan XL, Shen YH, Chen RP, Li TZ, Xu L, Mai LQ. New insights into phase-mechanism relationship of MgxMnO2 nanowires in aqueous zinc-ion batteries. Small. 2022;18(13):8. https://doi.org/10.1002/smll.202107743.

    Article  CAS  Google Scholar 

  80. Alfaruqi MH, Islam S, Putro DY, Mathew V, Kim S, Jo J, Kim S, Sun YK, Kim K, Kim J. Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim Acta. 2018;276:1. https://doi.org/10.1016/j.electacta.2018.04.139.

    Article  CAS  Google Scholar 

  81. Gull S, Huang SC, Ni CS, Liu SF, Lin WH, Chen HY. Operando synchrotron X-ray studies of MnVOH@SWCNT nanocomposites as cathodes for high-performance aqueous zinc-ion batteries. J Mater Chem A. 2022;10(27):14540. https://doi.org/10.1039/d2ta02734h.

    Article  CAS  Google Scholar 

  82. Soundharrajan V, Sambandam B, Kim S, Alfaruqi MH, Putro DY, Jo J, Kim S, Mathew V, Sun YK, Kim J. Na2V6O16•3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 2018;18(4):2402. https://doi.org/10.1021/acs.nanolett.7b05403.

    Article  CAS  PubMed  Google Scholar 

  83. Zhao HN, Fu Q, Yang D, Sarapulova A, Pang Q, Meng Y, Wei LY, Ehrenberg HM, Wei YJ, Wang CZ, Chen G. In operando synchrotron studies of NH4+ preintercalated V2O5nH2O nanobelts as the cathode material for aqueous rechargeable zinc batteries. ACS Nano. 2020;14(9):11809. https://doi.org/10.1021/acsnano.0c04669.

    Article  CAS  PubMed  Google Scholar 

  84. Hao JN, Yuan LB, Johannessen B, Zhu YL, Jiao Y, Ye C, Xie FX, Qiao SZ. Studying the conversion mechanism to broaden cathode options in aqueous zinc-ion batteries. Angew Chem Int Ed. 2021;60(47):25114. https://doi.org/10.1002/anie.202111398.

    Article  CAS  Google Scholar 

  85. Zhu ZX, Lin ZW, Sun ZW, Zhang PX, Li CP, Dong R, Mi HW. Deciphering H+/Zn2+ co-intercalation mechanism of MOF-derived 2D MnO/C cathode for long cycle life aqueous zinc-ion batteries. Rare Met. 2022;41(11):3729. https://doi.org/10.1007/s12598-022-02088-w.

    Article  CAS  Google Scholar 

  86. Qiu S, Wu XY, Wang MY, Lucero M, Wang Y, Wang J, Yang ZZ, Xu WQ, Wang Q, Gu M, Wen JG, Huang YQ, Xu ZCJ, Feng ZX. Nasicon-type Na3Fe2(PO4)3 as a low-cost and high-rate anode material for aqueous sodium-ion batteries. Nano Energy. 2019;64:9. https://doi.org/10.1016/j.nanoen.2019.103941.

    Article  CAS  Google Scholar 

  87. Jung YH, Lim CH, Kim JH, Kim DK. Na2FeP2O7 as a positive electrode material for rechargeable aqueous sodium-ion batteries. RSC Adv. 2014;4(19):9799. https://doi.org/10.1039/c3ra47560c.

    Article  CAS  Google Scholar 

  88. Abdollahifar M, Huang SS, Lin YH, Sheu HS, Lee JF, Lu ML, Liao YF, Wu NL. Tetragonal LiMn2O4 as dual-functional pseudocapacitor-battery electrode in aqueous Li-ion electrolytes. J Power Sources. 2019;412:545. https://doi.org/10.1016/j.jpowsour.2018.11.074.

    Article  CAS  Google Scholar 

  89. Wang YS, Mu LQ, Liu J, Yang ZZ, Yu XQ, Gu L, Hu YS, Li H, Yang XQ, Chen LQ, Huang XJ. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv Energy Mater. 2015;5(22):8. https://doi.org/10.1002/aenm.201501005.

    Article  CAS  Google Scholar 

  90. Wang GY, Wang XH, Sun JF, Zhang YM, Hou LR, Yuan CZ. Porous carbon nanofibers derived from low-softening-point coal pitch toward all-carbon potassium ion hybrid capacitors. Rare Met. 2022;41(11):3706. https://doi.org/10.1007/s12598-022-02067-1.

    Article  CAS  Google Scholar 

  91. Hao JN, Long J, Li B, Li XL, Zhang SL, Yang FH, Zeng XH, Yang ZH, Pang WK, Guo ZP. Toward high-performance hybrid Zn-Based batteries via deeply understanding their mechanism and using electrolyte additive. Adv Funct Mater. 2019;29(34):9. https://doi.org/10.1002/adfm.201903605.

    Article  CAS  Google Scholar 

  92. Islam S, Alfaruqi MH, Putro DY, Mathew V, Kim S, Jo J, Kim S, Sun YK, Kim K, Kim J. Pyrosynthesis of Na3V2(PO4)3@C cathodes for safe and low-cost aqueous hybrid batteries. Chemsuschem. 2018;11(13):2239. https://doi.org/10.1002/cssc.201800724.

    Article  CAS  PubMed  Google Scholar 

  93. Wang FX, Tseng JC, Liu ZC, Zhang PP, Wang G, Chen GB, Wu WX, Yu MH, Wu YP, Feng XL. A stimulus-responsive zinc-iodine battery with smart overcharge self-protection function. Adv Mater. 2020;32(16):7. https://doi.org/10.1002/adma.202000287.

    Article  CAS  Google Scholar 

  94. Perticarari S, Sayed-Ahmad-Baraza Y, Ewels C, Moreau P, Guyomard D, Poizot P, Odobel F, Gaubicher J. Dual anion-cation reversible insertion in a bipyridinium-diamide triad as the negative electrode for aqueous batteries. Adv Energy Mater. 2018;8(8):12. https://doi.org/10.1002/aenm.201701988.

    Article  CAS  Google Scholar 

  95. Sun YH, Lian ZF, Ren ZG, Yao ZY, Yin YR, Huai P, Zhu FY, Huang YB, Wen W, Li XL, Tai RZ, Zhu DM. Proton-dominated reversible aqueous zinc batteries with an ultraflat long discharge plateau. ACS Nano. 2021;15(9):14766. https://doi.org/10.1021/acsnano.1c04636.

    Article  CAS  PubMed  Google Scholar 

  96. Jiang H, Shin W, Ma L, Hong JJ, Wei Z, Liu Y, Zhang S, Wu X, Xu Y, Guo Q, Subramanian MA, Stickle WF, Wu T, Lu J, Ji X. A high-rate aqueous proton battery delivering power below-78 °C via an unfrozen phosphoric acid. Adv Energy Mater. 2020;10(28):2000968. https://doi.org/10.1002/aenm.202000968.

    Article  CAS  Google Scholar 

  97. Shan XQ, Kim SW, Abeykoon AMM, Kwon G, Olds D, Teng XW. Potentiodynamics of the zinc and proton storage in disordered sodium vanadate for aqueous Zn-Ion Batteries. ACS Appl Mater Interfaces. 2020;12(49):54627. https://doi.org/10.1021/acsami.0c15621.

    Article  CAS  PubMed  Google Scholar 

  98. Wu XF, Li ZJ, Liu JX, Luo W, Gaumet JJ, Mai LQ. Defect engineering of hierarchical porous carbon microspheres for potassium-ion storage. Rare Met. 2022;41(10):3446. https://doi.org/10.1007/s12598-022-02100-3.

    Article  CAS  Google Scholar 

  99. Qin TT, Chu XF, Deng T, Wang BR, Zhang XY, Dong TW, Li ZM, Fan XF, Ge X, Wang ZZ, Wang P, Zhang W, Zheng WT. Reinventing the mechanism of high-performance Bi anode in aqueous K plus rechargeable batteries. J Energy Chem. 2020;48:21. https://doi.org/10.1016/j.jechem.2019.12.012.

    Article  Google Scholar 

  100. Abdollahifar M, Lannelongue P, Liu HW, Chen H, Liao CH, Sheu HS, Lee JF, Liao YF, Wu NL. Room-temperature synthesis of LiMn2O4 by electrochemical ion exchange in an aqueous medium. ACS Sustain Chem Eng. 2021;9(41):13717. https://doi.org/10.1021/acssuschemeng.1c03747.

    Article  CAS  Google Scholar 

  101. Pan TY, Wu CY, Ruqia, Ni CS, Gull S, Haider A, Chen HY. Improvement in cycling stability of prussian blue analog-based aqueous sodium-ion batteries by ligand substitution and electrolyte optimization. Electrochim Acta. 2022;427:9. https://doi.org/10.1016/j.electacta.2022.140778.

    Article  CAS  Google Scholar 

  102. Wu XY, Hong JJ, Shin W, Ma L, Liu TC, Bi XX, Yuan YF, Qi YT, Surta TW, Huang WX, Neuefeind J, Wu TP, Greaney PA, Lu J, Ji XL. Diffusion-free grotthuss topochemistry for high-rate and long-life proton batteries. Nat Energy. 2019;4(2):123. https://doi.org/10.1038/s41560-018-0309-7.

    Article  CAS  Google Scholar 

  103. Lin CH, Sun K, Ge MY, Housel LM, McCarthy AH, Vila MN, Zhao CH, Xiao XH, Lee WK, Takeuchi KJ, Takeuchi ES, Marschilok AC, Chen-Wiegart YCK. Systems-level investigation of aqueous batteries for understanding the benefit of water-in-salt electrolyte by synchrotron nanoimaging. Sci Adv. 2020;6(10):11. https://doi.org/10.1126/sciadv.aay7129.

    Article  CAS  Google Scholar 

  104. Madsen KE, Bassett KL, Ta K, Sforzo BA, Matusik KE, Kastengren AL, Gewirth AA. Direct observation of interfacial mechanical failure in thiophosphate solid electrolytes with operando x-ray tomography. Adv Mater Interfaces. 2020;7(19):12. https://doi.org/10.1002/admi.202000751.

    Article  CAS  Google Scholar 

  105. Franke-Lang R, Arlt T, Manke I, Kowal J. X-ray tomography as a powerful method for zinc-air battery research. J Power Sources. 2017;370:45. https://doi.org/10.1016/j.jpowsour.2017.10.010.

    Article  CAS  Google Scholar 

  106. Arlt T, Schröder D, Krewer U, Manke I. In operando monitoring of the state of charge and species distribution in zinc air batteries using X-ray tomography and model-based simulations. Phys Chem Chem Phys. 2014;16(40):22273. https://doi.org/10.1039/c4cp02878c.

    Article  CAS  PubMed  Google Scholar 

  107. Ko JS, Geltmacher AB, Hopkins BJ, Rolison DR, Long JW, Parker JF. Robust 3D Zn sponges enable high-power, energy-dense alkaline batteries. ACS Appl Energy Mater. 2019;2(1):212. https://doi.org/10.1021/acsaem.8b01946.

    Article  CAS  Google Scholar 

  108. Scharf J, Yin L, Redquest C, Liu RX, Quinn XL, Ortega J, Wei X, Wang J, Doux JM, Meng YS. Investigating degradation modes in Zn-AgO aqueous batteries with in situ X-ray micro computed tomography. Adv Energy Mater. 2021;11(33):10. https://doi.org/10.1002/aenm.202101327.

    Article  CAS  Google Scholar 

  109. Wang RY, Shi MJ, Li LY, Zhao Y, Zhao LP, Yan C. In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem Eng J. 2023;451(2):10. https://doi.org/10.1016/j.cej.2022.138652.

    Article  CAS  Google Scholar 

  110. Tie ZW, Liu LJ, Deng SZ, Zhao DB, Niu ZQ. Proton insertion chemistry of a zinc-organic Battery. Angew Chem Int Ed. 2020;59(12):4920. https://doi.org/10.1002/anie.201916529.

    Article  CAS  Google Scholar 

  111. Han CH, Zhu J, Fu K, Deng D, Luo W, Mai LQ. A high-capacity polyaniline-intercalated layered vanadium oxide for aqueous ammonium-ion batteries. Chem Commun. 2022;58(6):791. https://doi.org/10.1039/d1cc05677h.

    Article  CAS  Google Scholar 

  112. Wang N, Dong XL, Wang BL, Guo ZW, Wang Z, Wang RH, Qiu X, Wang YG. Zinc-organic battery with a wide operation-temperature window from -70 to 150 °C. Angew Chem Int Ed. 2020;59(34):14577. https://doi.org/10.1002/anie.202005603.

    Article  CAS  Google Scholar 

  113. Wang N, Guo ZW, Ni ZG, Xu J, Qiu X, Ma J, Wei P, Wang YG. Molecular tailoring of an n/p-type phenothiazine organic scaffold for zinc batteries. Angew Chem Int Ed. 2021;60(38):20826. https://doi.org/10.1002/anie.202106238.

    Article  CAS  Google Scholar 

  114. Zhao Q, Huang WW, Luo ZQ, Liu LJ, Lu Y, Li YX, Li L, Hu JY, Ma H, Chen J. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci Adv. 2018;4(3):10. https://doi.org/10.1126/sciadv.aao1761.

    Article  CAS  Google Scholar 

  115. Luo W, Xiong WW, Han YN, Yan X, Mai LQ. Application of two-dimensional layered materials in surface-enhanced Raman spectroscopy (SERS). Phys Chem Chem Phys. 2022;24(43):26398. https://doi.org/10.1039/d2cp03650a.

    Article  CAS  PubMed  Google Scholar 

  116. Xie FX, Li H, Wang XS, Zhi X, Chao DL, Davey K, Qiao SZ. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv Energy Mater. 2021;11(9):8. https://doi.org/10.1002/aenm.202003419.

    Article  CAS  Google Scholar 

  117. Pan XL, Zhou XB, Liao XB, Yu RH, Yu KS, Lin S, Ding Y, Luo W, Yan MY, Mai LQ. Ultrafast ion sputtering modulation of two- dimensional substrate for highly sensitive Raman detection. ACS Mater Lett. 2022;4(12):2622. https://doi.org/10.1021/acsmaterialslett.2c00908.

    Article  CAS  Google Scholar 

  118. Li X, Li Y, Zhao X, Kang F, Dong L. Elucidating the charge storage mechanism of high-performance vertical graphene cathodes for zinc-ion hybrid supercapacitors. Energy Storage Mater. 2022;53:505. https://doi.org/10.1016/j.ensm.2022.09.023.

    Article  Google Scholar 

  119. Liang GM, Didier C, Guo ZP, Pang WK, Peterson VK. Understanding rechargeable battery function using in operando neutron powder diffraction. Adv Mater. 2020;32(18):12. https://doi.org/10.1002/adma.201904528.

    Article  CAS  Google Scholar 

  120. Hou X, Wang R, He X, Pollard TP, Ju XK, Du LL, Paillard E, Frielinghaus H, Barnsley LC, Borodin O, Xu K, Winter M, Li J. Stabilizing the solid-electrolyte interphase with polyacrylamide for high-voltage aqueous lithium-ion batteries. Angew Chem Int Ed. 2021;60(42):22812. https://doi.org/10.1002/anie.202107252.

    Article  CAS  Google Scholar 

  121. Zhang HT, Wang DY, Shen C. In-situ EC-AFM and ex-situ XPS characterization to investigate the mechanism of SEI formation in highly concentrated aqueous electrolyte for Li-ion batteries. Appl Surf Sci. 2020;507:9. https://doi.org/10.1016/j.apsusc.2019.145059.

    Article  CAS  Google Scholar 

  122. Deng D, Fu K, Yu RH, Zhu J, Cai HW, Zhang XC, Wu JS, Luo W, Mai LQ. Ion tunnel matrix initiated oriented attachment for highly utilized Zn anodes. Adv Mater. 2023;35(33):12. https://doi.org/10.1002/adma.202302353.

    Article  CAS  Google Scholar 

  123. Bruckenstein S, Robert Hillman A, Bandey HL. Comprehensive chemical kinetics. In: Compton RG, Hancock G Editors. Amsterdam: Elsevier Publishing Company. 1999. 489.

  124. Levi MD, Daikhin L, Aurbach D, Presser V. Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: a mini-review. Electrochem Commun. 2016;67:16. https://doi.org/10.1016/j.elecom.2016.03.006.

    Article  CAS  Google Scholar 

  125. Ji YC, Yin ZW, Yang ZZ, Deng YP, Chen HB, Lin C, Yang LY, Yang K, Zhang MJ, Xiao QF, Li JT, Chen ZW, Sun SG, Pan F. From bulk to interface: electrochemical phenomena and mechanism studies in batteries via electrochemical quartz crystal microbalance. Chem Soc Rev. 2021;50(19):10743. https://doi.org/10.1039/d1cs00629k.

    Article  CAS  PubMed  Google Scholar 

  126. Wang RL, Zhang HZ, Liu QY, Liu F, Han XL, Liu XQ, Li KW, Xiao GZ, Albert J, Lu XH, Guo T. Operando monitoring of ion activities in aqueous batteries with plasmonic fiber-optic sensors. Nat Commun. 2022;13(1):11. https://doi.org/10.1038/s41467-022-28267-y.

    Article  CAS  Google Scholar 

  127. Wang Y, Wang TR, Bu SY, Zhu JX, Wang YB, Zhang R, Hong H, Zhang WJ, Fan J, Zhi CY. Sulfolane-containing aqueous electrolyte solutions for producing efficient ampere-hour-level zinc metal battery pouch cells. Nat Commun. 2023;14(1):13. https://doi.org/10.1038/s41467-023-37524-7.

    Article  CAS  Google Scholar 

  128. Huang JQ, Blanquer LA, Bonefacino J, Logan ER, Dalla Corte DA, Delacourt C, Gallant BM, Boles ST, Dahn JR, Tam HY, Tarascon JM. Operando decoding of chemical and thermal events in commercial Na(Li)-ion cells via optical sensors. Nat Energy. 2020;5(9):674. https://doi.org/10.1038/s41560-020-0665-y.

    Article  CAS  Google Scholar 

  129. Blanquer LA, Marchini F, Seitz JR, Daher N, Bétermier F, Huang JQ, Gervillié C, Tarascon JM. Optical sensors for operando stress monitoring in lithium-based batteries containing solid-state or liquid electrolytes. Nat Commun. 2022;13(1):14. https://doi.org/10.1038/s41467-022-28792-w.

    Article  CAS  Google Scholar 

  130. Gachot G, Ribière P, Mathiron D, Grugeon S, Armand M, Leriche JB, Pilard S, Laruelle S. Gas chromatography/mass spectrometry as a suitable tool for the Li-ion battery electrolyte degradation mechanisms study. Anal Chem. 2011;83(2):478. https://doi.org/10.1021/ac101948u.

    Article  CAS  PubMed  Google Scholar 

  131. Wang ZH, Feng X, Bai Y, Yang HY, Dong RQ, Wang XR, Xu HJ, Wang QY, Li H, Gao HC, Wu C. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv Energy Mater. 2021;11(11):9. https://doi.org/10.1002/aenm.202003854.

    Article  CAS  Google Scholar 

  132. Zhang QS, Niu JH, Zhao ZH, Wang Q. Research on the effect of thermal runaway gas components and explosion limits of lithium-ion batteries under different charge states. J Energy Storage. 2022;45:7. https://doi.org/10.1016/j.est.2021.103759.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2022YFB2404300) and the Key R&D Program of Hubei Province (No. 2022BAA028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Bao or Wen Luo.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, JH., Cai, HW., Deng, ZH. et al. Application of in-situ characterization techniques in modern aqueous batteries. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02689-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02689-7

Keywords

Navigation