Skip to main content
Log in

Electrolytes speed up development of zinc batteries

  • Highlight
  • Published:
Rare Metals Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Reproduced with permission from Ref. [1]. Copyright 2020, Wiley–VCH Verlag GmbH & Co. KGaA, Weinheim

Fig. 2

Reproduced with permission from Ref. [4]. Copyright 2020, Royal Society of Chemistry

References

  1. Wang N, Dong XL, Wang BL, Guo ZW, Wang Z, Wang RH, Qiu X, Wang YG. Zinc–organic battery with a wide operation-temperature window from −70 to 150 °C. Angew Chem Int Ed. 2020;132(34):14685.

    Article  Google Scholar 

  2. Chen Y, Ji S, Zhao S, Chen W, Dong J, Cheong WC, Shen R, Wen X, Zheng L, Rykov A, Cai S, Tang H, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc–air battery and hydrogen–air fuel cell. Nat. Commun. 2018;9:5422.

    CAS  Google Scholar 

  3. Xu CX, Zhang Y, Zhang NQ, Liu XY, Yi J, Liu XQ, Lu XH, Ru Q, Lu H, Peng XW, Zhao XS, Ma JM. Roadmap on zinc metal batteries. Chem Asian J. 2020. https://doi.org/10.1002/asia.202000946.

    Article  Google Scholar 

  4. Chang N, Li T, Li R, Wang S, Yin Y, Zhang H, Li X. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ Sci. 2020. https://doi.org/10.1039/d0ee01538e.

    Article  Google Scholar 

  5. Zhang Q, Luan JY, Fu L, Wu SG, Tang YG, Ji XB, Wang HY. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew Chem Int Ed. 2019;131(14):15988.

    Article  Google Scholar 

  6. Zhang J, Wang X, Su Q, Zhi L, Thomas A, Feng X, Su DS, Schlogl R, Mullen K. Metal-free phenanthrenequinone cyclotrimer as an effective heterogeneous catalyst. J Am Chem Soc. 2009;131(32):11296.

    Article  CAS  Google Scholar 

  7. Chen J, Vatamanu J, Xing L, Borodin O, Chen H, Guan X, Liu X, Xu K, Li W. Improving electrochemical stability and low-temperature performance with water/acetonitrile hybrid electrolytes. Adv. Energy Mater. 2019;10(3):1902654.

    Article  Google Scholar 

  8. Dong X, Lin Y, Li P, Ma Y, Huang J, Bin D, Wang Y, Qi Y, Xia Y. High-energy rechargeable metallic lithium battery at −70 °C enabled by a cosolvent electrolyte. Angew Chem Int Ed. 2019;58(17):5623.

    Article  CAS  Google Scholar 

  9. Naveed A, Yang H, Shao Y, Yang J, Yanan N, Liu J, Shi S, Zhang L, Ye A, He B, Wang J. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries. Adv Mater. 2019;31(36):1900668.

    Article  Google Scholar 

  10. Naveed A, Yang H, Yang J, Nuli Y, Wang J. Highly reversible and rechargeable safe Zn batteries based on a triethyl phosphate electrolyte. Angew Chem Int Ed. 2019;58(9):2760.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jun Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, CX., Jiang, JJ. Electrolytes speed up development of zinc batteries. Rare Met. 40, 749–751 (2021). https://doi.org/10.1007/s12598-020-01628-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01628-6

Navigation