Skip to main content

Advertisement

Log in

Porous carbon nanofibers derived from low-softening-point coal pitch towards all-carbon potassium ion hybrid capacitors

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Potassium ion hybrid capacitors (PIHC) have promising applications in medium and large-scale energy storage systems due to their high energy/power density, abundant potassium resource and low cost. However, the slow kinetics of battery-type anodes originating from the large-size K+ results in a mismatch between the two electrodes, rendering the modest energy density of PIHC. Herein, we first develop an electrospinning strategy to successfully synthesize fibrous precursor by using the HNO3 pre-oxidized low-softening-point coal pitch as the low-cost raw material. With further carbonization or KOH activation, the two types of carbon nanofibers (CNF) are fabricated as anode and cathode materials, respectively, towards the dual-carbon PIHC devices. Thanks to its three-dimensional interconnected porous conducting network and large layer spacing, the resulted CNF anode material is endowed with high reversible capacities, excellent rate and long cycle stability. Meanwhile, the activated CNF cathode with a large surface area of 2169 m2·g−1 exhibits excellent capacitive performance. A PIHC constructed with the two fibrous electrodes delivers an energy density of 110.0 Wh·kg−1 at 200.0 W kg−1, along with a capacitance retention of 83.5% after 10,000 cycles at 1.0 A·g−1. The contribution here provides a cost-efficiency avenue and platform for advanced dual-carbon PIHC.

Graphical abstract

摘要

钾离子混合电容器 (PIHC) 具有高能量/功率密度、钾资源丰富、成本低廉等优点, 在大中型储能系统中具有广阔的应用前景。然而, 由大尺寸K+产生的电池型负极的缓慢动力学导致两个电极之间动力学不匹配, 使得PIHC的能量密度较低。本文首次采用静电纺丝技术, 以HNO3预氧化低软化点煤沥青为低成本原料成功合成纤维状前驱体。通过进一步碳化或KOH活化, 制备了两种类型的碳纳米纤维(CNF), 分别作为正极和负极材料, 用于双碳PIHC器件。由于其三维互联的多孔导电网络和较大的层间距, 所制备的CNF负极材料具有较高的可逆容量、优良的倍率和长循环稳定性。活化后的CNF正极具有2169 m2·g−1的大比表面积, 表现出优异的电容性能。由两种纤维电极构建的PIHC在200.0 W·kg−1时的能量密度为110.0 Wh·g−1, 在1.0 A·g−1下循环10,000次后的电容保持率为83.5%。这为先进的双碳PIHC提供了一个具有成本效益的途径和平台。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li GC, Yang ZW, Yin ZL, Guo HJ, Wang ZX, Yan GC, Liu Y, Li LJ, Wang JX. Non-aqueous dual-carbon lithium-ion capacitors: a review. J Mater Chem A. 2019;7(26):15541. https://doi.org/10.1039/C9TA01246J.

    Article  CAS  Google Scholar 

  2. Chang XQ, Zhou XL, Ou XW, Lee CS, Zhou JW, Tang YB. Ultrahigh nitrogen doping of carbon nanosheets for high capacity and long cycling potassium ion storage. Adv Energy Mater. 2019;9(47):1902672. https://doi.org/10.1002/aenm.201902672.

    Article  CAS  Google Scholar 

  3. Nagamuthu S, Zhang YM, Xu Y, Sun JF, Zaman FU, Denis DK, Hou LR, Yuan CZ. Non-lithium-based metal ion capacitors: recent advances and perspectives. J Mater Chem A. 2022;10(2):357. https://doi.org/10.1039/D1TA09119K.

    Article  CAS  Google Scholar 

  4. Xu J, Dou SM, Cui XY, Liu WD, Zhang ZC, Deng YD, Hu WB, Chen YN. Potassium-based electrochemical energy storage devices: development status and future prospect. Energy Storage Mater. 2021;34:85. https://doi.org/10.1016/j.ensm.2020.09.001.

    Article  CAS  Google Scholar 

  5. Wang F, Liu Y, Wei HJ, Wei HJ, Li TF, Xiong XH, Wei SZ, Ren FZ, Alex AV. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021;40(2):448. https://doi.org/10.1007/s12598-020-01649-1.

    Article  CAS  Google Scholar 

  6. Yang BJ, Chen JT, Liu LY, Ma PJ, Liu B, Lang JW, Tang Y, Yan XB. 3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Mater. 2019;23:522. https://doi.org/10.1016/j.ensm.2019.04.008.

    Article  Google Scholar 

  7. Wang D, Tian KH, Wang J, Wang ZY, Luo SH, Liu YG, Wang Q, Zhang YH, Hao AM, Yi TF. Sulfur-doped 3D hierarchical porous carbon network toward excellent potassium-ion storage performance. Rare Met. 2021;40:2464. https://doi.org/10.1007/s12598-021-01715-2.

    Article  CAS  Google Scholar 

  8. Sun YW, Wang HL, Wei WR, Zheng YL, Tao L, Wang YX, Huang MH, Shi J, Shi ZC, Mitlin D. Sulfur-rich graphene nanoboxes with ultra-high potassiation capacity at fast charge: storage mechanisms and device performance. ACS Nano. 2021;15(1):1652. https://doi.org/10.1021/acsnano.0c09290.

    Article  CAS  Google Scholar 

  9. Sun ZH, Liu Y, Ye W, Zhang J, Wang Y, Lin Y, Hou LR, Wang MS, Yuan CZ. Unveiling intrinsic potassium storage behaviors of hierarchical nano Bi@N-doped carbon nanocages framework via in situ characterizations. Angew Chem Int Ed. 2021;60(13):7180. https://doi.org/10.1002/anie.202016082.

    Article  CAS  Google Scholar 

  10. Han PY, Liu FS, Zhang YM, Wang YY, Qin GH, Hou LR, Yuan CZ. Organic-inorganic hybridization engineering of polyperylenediimide cathodes for efficient potassium storage. Angew Chem Int Ed. 2021;60(44):23596. https://doi.org/10.1002/anie.202110261.

    Article  CAS  Google Scholar 

  11. Tian HL, Jiang MJ, Hai YL, Wang K, Yang CL, Zhong GH. Nitrogen containing organics: a promising high capacity anode for potassium ion batteries. J Phys Chem Solids. 2022;161:110415. https://doi.org/10.1016/j.jpcs.2021.110415.

    Article  CAS  Google Scholar 

  12. Ming FW, Liang HF, Zhang WL, Ming J, Lei YJ, Emwas AH, Alshareef HN. Porous MXenes enable high performance potassium ion capacitors. Nano Energy. 2019;62:853. https://doi.org/10.1016/j.nanoen.2019.06.013.

    Article  CAS  Google Scholar 

  13. Lin CR, Wang YJ, Zhong FL, Yu HL, Yan YR, Wu SP. Carbon materials for high-performance potassium-ion energy-storage devices. Chem Eng J. 2021;407:126991. https://doi.org/10.1016/j.cej.2020.126991.

    Article  CAS  Google Scholar 

  14. Ma XQ, Xiao N, Xiao J, Song XD, Guo HD, Wang YP, Zhao SJ, Zhong YD, Qiu JS. Nitrogen and phosphorus dual-doped porous carbons for high-rate potassium ion batteries. Carbon. 2021;179:33. https://doi.org/10.1016/j.carbon.2021.03.067.

    Article  CAS  Google Scholar 

  15. Wang MY, Zhu YY, Zhang Y, Duan JY, Wang KK, Wang R, Sun GY, Wang CY. Isotropic high softening point petroleum pitch-based carbon as anode for high-performance potassium-ion batteries. J Power Sources. 2021;481: 228902. https://doi.org/10.1016/j.jpowsour.2020.228902.

    Article  CAS  Google Scholar 

  16. Yan RY, Josef E, Huang HJ, Leus K, Niederberger M, Hofmann JP, Walczak R, Antonietti M, Oschatz M. Understanding the charge storage mechanism to achieve high capacity and fast ion storage in sodium-ion capacitor anodes by using electrospun nitrogen-doped carbon fibers. Adv Funct Mater. 2019;29(26):1902858. https://doi.org/10.1002/adfm.201902858.

    Article  CAS  Google Scholar 

  17. Han J, Chae JS, Kim JC, Roh KC. Facile preparation of composite electrodes for supercapacitors by CNT entrapment into carbon matrix derived from pitch at a softening point. Carbon. 2020;163:402. https://doi.org/10.1016/j.carbon.2020.03.033.

    Article  CAS  Google Scholar 

  18. Li X, Tian XD, Yang T, He YT, Liu WH, Song Y, Liu ZJ. Coal liquefaction residues based carbon nanofibers film prepared by electrospinning: an effective approach to coal waste management. ACS Sustainable Chem Eng. 2019;7(6):5742. https://doi.org/10.1021/acssuschemeng.8b05210.

    Article  CAS  Google Scholar 

  19. Qin L, Liu Y, Zhu SH, Wu DX, Wang GY, Zhang JY, Wang YY, Hou LR, Yuan CZ. Formation and operating mechanisms of single-crystalline perovskite NaNbO3 nanocubes/few-layered Nb2CTx MXene hybrids towards Li-ion capacitors. J Mater Chem A. 2021;9(36):20405. https://doi.org/10.1039/D1TA03684J.

    Article  CAS  Google Scholar 

  20. Tian XD, He YT, Song Y, Yang T, Li X, Liu ZJ. Flexible cross-linked electrospun carbon nanofiber mats derived from pitch as dual-functional materials for supercapacitors. Energy Fuels. 2020;34(11):14975. https://doi.org/10.1021/acs.energyfuels.0c02847.

    Article  CAS  Google Scholar 

  21. Vilaplana-Ortego E, Alcañiz-Monge J, Cazorla-Amorós D, Linares-Solano A. Stabilisation of low softening point petroleum pitch fibres by HNO3. Carbon. 2003;41(5):1001. https://doi.org/10.1016/S0008-6223(02)00428-1.

    Article  CAS  Google Scholar 

  22. Yuan GM, Li XK, Xiong XQ, Dong ZJ, Westwood A, Li BL, Ye C, Ma GZ, Cui ZW, Cong Y, Zhang J, Li YJ. A comprehensive study on the oxidative stabilization of mesophase pitch-based tape-shaped thick fibers with oxygen. Carbon. 2017;115:59. https://doi.org/10.1016/j.carbon.2016.12.040.

    Article  CAS  Google Scholar 

  23. Liu JY, Xiong ZB, Wang SP, Cai WH, Yang JM, Zhang HX. Structure and electrochemistry comparison of electrospun porous carbon nanofibers for capacitive deionization. Electrochim Acta. 2016;210:171. https://doi.org/10.1016/j.electacta.2016.05.133.

    Article  CAS  Google Scholar 

  24. Zhang C, Liu X, Li Z, Zhang CY, Chen ZW, Pan DY, Wu MH. Nitrogen-doped accordion-like soft carbon anodes with exposed hierarchical pores for advanced potassium-ion hybrid capacitors. Adv Funct Mater. 2021;31(23):2101470. https://doi.org/10.1002/adfm.202101470.

    Article  CAS  Google Scholar 

  25. Li XW, Sun JY, Zhao WX, Lai YJ, Yu X, Liu Y. Intergrowth of graphite-like crystals in hard carbon for highly reversible Na-ion storage. Adv Funct Mater. 2022;32(2):2106980. https://doi.org/10.1002/adfm.202106980.

    Article  CAS  Google Scholar 

  26. Hu XD, Sun XH, Yoo SJ, Evanko B, Fan FR, Cai S, Zheng CM, Hu WB, Stucky GD. Nitrogen-rich hierarchically porous carbon as a high-rate anode material with ultra-stable cyclability and high capacity for capacitive sodium-ion batteries. Nano Energy. 2019;56:828. https://doi.org/10.1016/j.nanoen.2018.11.081.

    Article  CAS  Google Scholar 

  27. Li KX, Li P, Sun ZN, Shi J, Huang MH, Chen JW, Liu S, Shi ZC, Wang HL. All-cellulose-based quasi-solid-state supercapacitor with nitrogen and boron dual-doped carbon electrodes exhibiting high energy density and excellent cyclic stability. Green Energy Environ. 2022. https://doi.org/10.1016/j.gee.2022.01.002.

    Article  Google Scholar 

  28. Wang CS, Yan B, Zheng JJ, Feng L, Chen ZZ, Zhang Q, Liao T, Chen JY, Jiang SH, Du C, He SJ. Recent progress in template-assisted synthesis of porous carbons for supercapacitors. Adv Powder Mater. 2021. https://doi.org/10.1016/j.apmate.2021.11.005.

    Article  Google Scholar 

  29. Wang JC, Kaskel S. KOH activation of carbon-based materials for energy storage. J Mater Chem. 2012;22(45):23710. https://doi.org/10.1039/C2JM34066F.

    Article  CAS  Google Scholar 

  30. Yang JL, Ju ZC, Jiang Y, Xing Z, Xi BJ, Feng JK, Xiong SL. Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater. 2018;30(4):1700104. https://doi.org/10.1002/adma.201700104.

    Article  CAS  Google Scholar 

  31. Li X, Sun N, Tian XD, Yang T, Song Y, Xu B, Liu ZJ. Electrospun coal liquefaction residues/polyacrylonitrile composite carbon nanofiber nonwoven fabrics as high-performance electrodes for lithium/potassium batteries. Energy Fuels. 2020;34(2):2445. https://doi.org/10.1021/acs.energyfuels.9b03637.

    Article  CAS  Google Scholar 

  32. Cao B, Zhang Q, Liu H, Xu B, Zhang SL, Zhou TF, Mao JF, Pang WK, Guo ZP, Li A, Zhou JS, Chen XH, Song HH. Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv Energy Mater. 2018;8(25):1801149. https://doi.org/10.1002/aenm.201801149.

    Article  CAS  Google Scholar 

  33. Xu Y, Zhang CL, Zhou M, Fu Q, Zhao CX, Wu MH, Lei Y. Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat Commun. 2018;9:1720. https://doi.org/10.1038/s41467-018-04190-z.

    Article  CAS  Google Scholar 

  34. Shen C, Yuan K, Tian T, Bai M, Wang JG, Li X, Xie K, Fu QG, Wei B. Flexible sub-micro carbon fiber@CNTs as anodes for potassium-ion batteries. ACS Appl Mater Interfaces. 2019;11(5):5015. https://doi.org/10.1021/acsami.8b18834.

    Article  CAS  Google Scholar 

  35. Jian ZL, Hwang S, Li ZF, Hernandez AS, Wang XF, Xing ZY, Su D, Ji XL. Hard-soft composite carbon as a long-cycling and high-rate anode for potassium-ion batteries. Adv Funct Mater. 2017;27(26):1700324. https://doi.org/10.1002/adfm.201700324.

    Article  CAS  Google Scholar 

  36. Shao MJ, Li CX, Li T, Zhao H, Yu WQ, Wang RT, Zhang J, Yin LW. Pushing the energy output and cycling lifespan of potassium-ion capacitor to high level through metal-organic framework derived porous carbon microsheets anode. Adv Funct Mater. 2020;30(51):2006561. https://doi.org/10.1002/adfm.202006561.

    Article  CAS  Google Scholar 

  37. Tao L, Yang YP, Wang HL, Zheng YL, Hao HC, Song WP, Shi J, Huang MH, Mitlin D. Sulfur-nitrogen rich carbon as stable high capacity potassium ion battery anode: performance and storage mechanisms. Energy Storage Mater. 2020;27:212. https://doi.org/10.1016/j.ensm.2020.02.004.

    Article  Google Scholar 

  38. Sun CK, Zhang X, Li C, Wang K, Sun XZ, Ma YW. A presodiation strategy with high efficiency by utilizing low-price and eco-friendly Na2CO3 as the sacrificial salt towards high-performance pouch sodium-ion capacitors. J Power Sources. 2021;515:230628. https://doi.org/10.1016/j.jpowsour.2021.230628.

    Article  CAS  Google Scholar 

  39. Sun CK, Zhang X, Li C, Wang K, Sun XZ, Liu FY, Wu ZS, Ma YW. A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density. J Energy Chem. 2022;64:442. https://doi.org/10.1016/j.jechem.2021.05.010.

    Article  Google Scholar 

  40. Pham HD, Fernando JFS, Horn M, MacLeod J, Motta N, Doherty WOS, Payne A, Nanjundan AK, Golberg D, Dubal D. Multi-heteroatom doped nanocarbons for high performance double carbon potassium ion capacitor. Electrochim Acta. 2021;389:138717. https://doi.org/10.1016/j.electacta.2021.138717.

    Article  CAS  Google Scholar 

  41. Qin L, Liu Y, Xu SY, Wang SC, Sun X, Zhu SH, Hou LR, Yuan CZ. In-plane assembled single-crystalline T-Nb2O5 nanorods derived from few-layered Nb2CTx MXene nanosheets for advanced Li-ion capacitors. Small Methods. 2020;4(12):2000630. https://doi.org/10.1002/smtd.202000630.

    Article  CAS  Google Scholar 

  42. El-Khodary SA, Subburam G, Zou BB, Wang J, Qiu JX, Liu XH, Ng DHL, Wang S, Lian JB. Mesoporous silica anchored on reduced graphene oxide nanocomposite as anode for superior lithium-ion capacitor. Rare Met. 2022;41(2):368. https://doi.org/10.1007/s12598-021-01788-z.

    Article  CAS  Google Scholar 

  43. Liu MQ, Chang LM, Wang J, Li JH, Jiang JM, Pang G, Wang HR, Nie P, Zhao CM, Xu TH, Wang LM. Hierarchical N-doped carbon nanosheets submicrospheres enable superior electrochemical properties for potassium ion capacitors. J Power Sources. 2020;469:228415. https://doi.org/10.1016/j.jpowsour.2020.228415.

    Article  CAS  Google Scholar 

  44. Li XQ, Chen MX, Wang L, Xu HJ, Zhong J, Zhang M, Wang YY, Zhang QS, Mei L, Wang T, Zhu J, Lu BA, Duan XD. Nitrogen-doped carbon nanotubes as an anode for a highly robust potassium-ion hybrid capacitor. Nanoscale Horiz. 2020;5(12):1586. https://doi.org/10.1039/D0NH00451K.

    Article  CAS  Google Scholar 

  45. Gao JY, Wang GR, Liu Y, Li J, Peng B, Jiao SH, Zeng SY, Zhang GQ. Ternary molybdenum sulfoselenide based hybrid nanotubes boost potassium-ion diffusion kinetics for high energy/power hybrid capacitors. J Mater Chem A. 2020;8(28):13946. https://doi.org/10.1039/D0TA01786H.

    Article  CAS  Google Scholar 

  46. Fan L, Lin KR, Wang J, Ma RF, Lu BA. A nonaqueous potassium-based battery-supercapacitor hybrid device. Adv Mater. 2018;30(20):1800804. https://doi.org/10.1002/adma.201800804.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 52072151 and 52171211), Taishan Scholars (No. ts201712050), Jinan Independent Innovative Team (No. 2020GXRC015), the Natural Science Doctoral Foundation of Shandong Province (No. ZR2019BB057) and the Major Program of Shandong Province Natural Science Foundation (No. ZR2021ZD05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Feng Sun, Lin-Rui Hou or Chang-Zhou Yuan.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2771 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, GY., Wang, XH., Sun, JF. et al. Porous carbon nanofibers derived from low-softening-point coal pitch towards all-carbon potassium ion hybrid capacitors. Rare Met. 41, 3706–3716 (2022). https://doi.org/10.1007/s12598-022-02067-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-022-02067-1

Keywords

Navigation