Skip to main content

Advertisement

Log in

Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Aqueous rechargeable zinc-ion battery (ZIB) is considered to be a potential energy storage system for large-scale applications due to its environmental friendliness, high safety, and low cost. However, it remains challenging to develop suitable cathode materials with high specific capacity and long-term cyclic stability. Herein, we have fabricated freestanding Sr0.19V2O5·1.3H2O/carbon nanotubes (SrVO/CNTs) composite films with different mass ratios by incorporating SrVO into CNTs network. The synthesized SrVO possesses a large interlayer spacing of 1.31 nm, which facilitates Zn2+ diffusion. Furthermore, the SrVO/CNTs composite film with conductive network structure promotes electron transfer and ensures good contact between SrVO and CNTs during the long-term cycling process. As a result, the battery based on the SrVO/CNTs composite cathode with a mass ratio of 7:3 delivers a specific capacity of 326 mAh·g−1 at 0.1 A·g−1 and 145 mAh·g−1 at 5 A·g−1, demonstrating a high capacity and excellent rate capability. Remarkably, the assembled ZIB shows good capacity retention of 91% even after ultra-long cycling for 7500 cycles at a high current rate of 5 A·g−1. More importantly, the battery also delivers a high energy density and power density, as 290 Wh·kg−1 at 125 W·kg−1 (0.1 A·g−1), or 115 Wh·kg−1 at 6078 W·kg−1 (5 A·g−1). The results demonstrate that the SrVO/CNTs composite is a promising cathode toward large-scale energy storage applications.

Graphic abstract

摘要

水系锌离子电池 (ZIB) 因其环保、安全、成本低等优点, 是一种极具前途的大规模储能设备。 然而, 开发高比容量和高循环稳定性的正极材料仍然具有挑战。 通过抽滤方法将 Sr0.19V2O5·1.3H2O (SrVO) 和碳纳米管 (CNTs) 复合, 制备了不同质量比的自支撑 SrVO/CNTs 复合膜。 制备的 SrVO 层间距为 1.31 nm, 有利于 Zn2+ 的扩散。 此外, 具有导电网络结构的 SrVO/CNTs 复合膜促进电子转移, 并确保 SrVO 与 CNTs 在长期循环过程中的良好接触。 结果表明, 质量比7:3的 SrVO/CNTs 复合膜表现出高存储容量 326 mAh·g−1 (0.1 A·g−1) 和优良的倍率性能145 mAh·g−1 (5 A·g−1)。 同时也实现 5 A·g−1 下的长期循环稳定性 (7500圈后保留91%的容量) 。 更重要的是, 组装的ZIB显示出高的能量和功率密度, 290 Wh·kg−1/ 125 W·kg−1 (0.1 A·g−1)和115 Wh·kg−1/ 6078 W·kg−1 (5 A·g−1)。 结果表明, SrVO/CNTs 复合材料具有可观的大规模应用潜力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhang N, Chen XY, Yu M, Niu ZQ, Cheng FY, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020;49(13):4203.

    Article  CAS  Google Scholar 

  2. Zhu QN, Wang ZY, Wang JW, Liu XY, Yang D, Cheng LW, Tang MY, Qin Y, Wang H. Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 2020;40(2):309.

    Article  CAS  Google Scholar 

  3. Zhou ZM, Zhou XY, Zhang M, Mu SN, Liu QR, Tang YB. In situ two-step activation strategy boosting hierarchical porous carbon cathode for an aqueous Zn-based hybrid energy storage device with high capacity and ultra-long cycling life. Small. 2020;16(35):2003174.

    Article  CAS  Google Scholar 

  4. Wang Y, Zhang LJ, Zhang F, Ding X, Shin K, Tang YB. High-performance Zn-graphite battery based on LiPF6 single-salt electrolyte with high working voltage and long cycling life. J Energy Chem. 2021;58:602.

    Article  Google Scholar 

  5. Ji BF, Yao WJ, Tang YB. High-performance rechargeable zinc-based dual-ion batteries. Sustain Energ Fuels. 2020;4(1):101.

    Article  CAS  Google Scholar 

  6. Xu WW, Wang Y. Recent progress on zinc-ion rechargeable batteries. Nano-Micro Lett. 2019;11(1):90.

    Article  CAS  Google Scholar 

  7. Liu SD, Kang L, Kim JM, Chun YT, Zhang J, Jun SC. Recent advances in vanadium-based aqueous rechargeable zinc-ion batteries. Adv Energy Mater. 2020;10(25):2000477.

    Article  CAS  Google Scholar 

  8. Xu XM, Xiong FY, Meng JS, Wang XP, Niu CJ, An QY, Mai LQ. Vanadium-based nanomaterials: a promising family for emerging metal-ion batteries. Adv Funct Mater. 2020;30(10):1904398.

    Article  CAS  Google Scholar 

  9. Liu Y, Wu X. Review of vanadium-based electrode materials for rechargeable aqueous zinc ion batteries. J Energy Chem. 2021;56:223.

    Article  Google Scholar 

  10. Shin J, Choi JW. Opportunities and reality of aqueous rechargeable batteries. Adv Energy Mater. 2020;10(28):2001386.

    Article  CAS  Google Scholar 

  11. Yang YQ, Tang Y, Fang GZ, Shan LT, Guo JS, Zhang WY, Wang C, Wang LB, Zhou J, Liang SQ. Li+ intercalated V2O5·nH2O with enlarged layer spacing and fast ion diffusion as an aqueous zinc-ion battery cathode. Energ Environ Sci. 2018;11(11):3157.

    Article  CAS  Google Scholar 

  12. Ming FW, Liang HF, Lei YJ, Kandambeth S, Eddaoudi M, Alshareef HN. Layered MgxV2O5·nH2O as cathode material for high-performance aqueous zinc ion batteries. ACS Energy Lett. 2018;3(10):2602.

    Article  CAS  Google Scholar 

  13. Yan MY, He P, Chen Y, Wang SY, Wei QL, Zhao KN, Xu X, An QY, Shuang Y, Shao YY, Mueller KT, Mai LQ, Liu J, Yang JH. Water-lubricated intercalation in V2O5·nH2O for high-capacity and high-rate aqueous rechargeable zinc batteries. Adv Mater. 2018;30(1):1703725.

    Article  CAS  Google Scholar 

  14. Javed MS, Lei H, Wang ZL, Liu BT, Cai X, Mai WJ. 2D V2O5 nanosheets as a binder-free high-energy cathode for ultrafast aqueous and flexible Zn-ion batteries. Nano Energy. 2020;70:104573.

    Article  CAS  Google Scholar 

  15. Wu MG, Liao JQ, Yu LX, Lv RT, Li P, Sun WP, Tan R, Duan XC, Zhang L, Li F, Kim J, Shin KH, Park HS, Zhang WC, Guo ZP, Wang HT, Tang YB, Gorgolis G, Galiotis C, Ma JM. 2020 Roadmap on carbon materials for energy storage and conversion. Chem-Asian J. 2020;15(7):995.

    Article  CAS  Google Scholar 

  16. Liu X, Qin BS, Zhang H, Moretti A, Passerini S. Glyme-based electrolyte for Na/bilayered-V2O5 batteries. ACS Appl Energ Mater. 2019;2(4):2786.

    Article  CAS  Google Scholar 

  17. Zhang H, Liu X, Li HH, Qin BS, Passerini S. High-voltage operation of a V2O5 cathode in a concentrated gel polymer electrolyte for high-energy aqueous zinc batteries. ACS Appl Mater Inter. 2020;12(13):15305.

    Article  CAS  Google Scholar 

  18. Liu CF, Neale Z, Zheng JQ, Jia XX, Huang JJ, Yan MY, Tian M, Wang MS, Yang JH, Cao GZ. Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energ Environ Sci. 2019;12(7):2273.

    Article  CAS  Google Scholar 

  19. Li JW, McColl K, Lu XK, Sathasivam S, Dong HB, Kang LQ, Li ZN, Zhao SY, Kafizas AG, Wang R, Brett DJL, Shearing PR, Corà F, He GJ, Carmalt CJ, Parkin IP. Multi-scale investigations of δ-Ni0.25V2O5·nH2O cathode materials in aqueous zinc-ion batteries. Adv Energy Mater. 2020;10(15):2000058.

    Article  CAS  Google Scholar 

  20. Navas J, Sanchez CA, Jesus GJ, Cruz HN, Carlos PJ, Alcantara R, Fernandez LC, De SD, Aguilar T, Martin CJ. New insights into organic-inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+. Nanoscale. 2015;7(14):6216.

    Article  CAS  Google Scholar 

  21. Crumlin EJ, Mutoro E, Liu Z, Grass ME, Biegalski MD, Lee YL, Morgan D, Christen HM, Bluhm H, Shao HY. Surface strontium enrichment on highly active perovskites for oxygen electrocatalysis in solid oxide fuel cells. Energy Environ Sci. 2012;5(3):6081.

    Article  CAS  Google Scholar 

  22. Deng WJ, Zhou ZQ, Li YB, Zhang M, Yuan XR, Hu J, Li ZG, Li C, Li R. High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano. 2020;14(11):15776.

    Article  CAS  Google Scholar 

  23. Wang N, Sun CL, Liao XB, Yuan YF, Cheng HW, Sun QC, Wang BL, Pan XL, Zhao KN, Xu Q, Lu XG, Lu J. Reversible (de)intercalation of hydrated Zn2+ in Mg2+-stabilized V2O5 nanobelts with high areal capacity. Adv Energy Mater. 2020;10(41):2002293.

    Article  CAS  Google Scholar 

  24. Wang X, Xi BJ, Ma XJ, Feng ZY, Jia YX, Feng JK, Qian YT, Xiong SL. Boosting zinc-ion storage capability by effectively suppressing vanadium dissolution based on robust layered barium vanadate. Nano Lett. 2020;20(4):2899.

    Article  CAS  Google Scholar 

  25. Liu CF, Tian M, Wang MS, Zheng JQ, Wang SH, Yan MY, Wang ZJ, Yin ZM, Yang JH, Cao GZ. Catalyzing zinc-ion intercalation in hydrated vanadates for aqueous zinc-ion batteries. J Mater Chem A. 2020;8(16):7713.

    Article  CAS  Google Scholar 

  26. Zhang WW, Tang C, Lan BX, Chen LN, Tang W, Zou CL, Dong SJ, An QY, Luo P. K0.23V2O5 as a promising cathode material for rechargeable aqueous zinc ion batteries with excellent performance. J Alloys Compd. 2020;819(5):152971.

    Article  CAS  Google Scholar 

  27. He JJ, Liu XQ, Zhang HZ, Yang ZJ, Shi X, Liu QY, Lu XH. Enhancing Zn-ion storage capability of hydrated vanadium pentoxide by the strategic introduction of La3+. Chemsuschem. 2020;13(6):1568.

    Article  CAS  Google Scholar 

  28. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat Energy. 2016;1:16119.

    Article  CAS  Google Scholar 

  29. Yang YQ, Tang Y, Liang SQ, Wu ZX, Fang GZ, Cao XX, Wang C, Lin TQ, Pan AQ, Zhou J. Transition metal ion-preintercalated V2O5 as high-performance aqueous zinc-ion battery cathode with broad temperature adaptability. Nano Energy. 2019;61:617.

    Article  CAS  Google Scholar 

  30. He P, Zhang GB, Liao XB, Yan MY, Xu X, An QY, Liu J, Mai LQ. Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv Energy Mater. 2018;8(10):1702463.

    Article  CAS  Google Scholar 

  31. He SR, Zou JP, Chen LB, Chen YJ. A nanostructured Ni/T-Nb2O5@carbon nanofibers as a long-life anode material for lithium-ion batteries. Rare Met. 2021;40(2):374.

    Article  CAS  Google Scholar 

  32. Liu GY, Zhao YY, Tang YF, Liu XD, Liu M, Wu PJ. In situ sol-gel synthesis of Ti2Nb10O29/C nanoparticles with enhanced pseudocapacitive contribution for a high-rate lithium-ion battery. Rare Met. 2020;39(9):1063.

    Article  CAS  Google Scholar 

  33. Wang XK, Shi J, Mi LW, Zhai YP, Zhang JY, Feng XM, Wu ZJ, Chen WH. Hierarchical porous hard carbon enables integral solid electrolyte interphase as robust anode for sodium-ion batteries. Rare Met. 2020;39(9):1053.

    Article  CAS  Google Scholar 

  34. Zhang YF, Jiang HM, Xu L, Gao ZM, Meng CG. Ammonium vanadium oxide (NH4)2V4O9 sheets for high capacity electrodes in aqueous zinc ion batteries. ACS Appl Energ Mater. 2019;2(11):7861.

    Article  CAS  Google Scholar 

  35. Liu SC, Zhu H, Zhang BH, Li G, Zhu HK, Ren Y, Geng HB, Yang Y, Liu Q, Li CC. Tuning the kinetics of zinc-ion insertion/extraction in V2O5 by in situ polyaniline intercalation enables improved aqueous zinc-ion storage performance. Adv Mater. 2020;32(26):2001113.

    Article  CAS  Google Scholar 

  36. Yang GZ, Wei TY, Wang CX. Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl Mater Inter. 2018;10(41):35079.

    Article  CAS  Google Scholar 

  37. Xia C, Guo J, Lei YJ, Liang HF, Zhao C, Alshareef HN. Rechargeable aqueous zinc-ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv Mater. 2018;30(5):1705580.

    Article  CAS  Google Scholar 

  38. He P, Yan MY, Zhang GB, Sun RM, Chen LN, An QY, Mai LQ. Layered VS2 nanosheet-based aqueous Zn ion battery cathode. Adv Energy Mater. 2017;7(11):1601920.

    Article  CAS  Google Scholar 

  39. Li GL, Yang Z, Jiang Y, Jin CH, Huang W, Ding XL, Huang YH. Towards polyvalent ion batteries: a zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy. 2016;25:211.

    Article  CAS  Google Scholar 

  40. Zhang LY, Chen L, Zhou XF, Liu ZP. Morphology-dependent electrochemical performance of zinc hexacyanoferrate cathode for zinc-ion battery. Sci Rep. 2015;5:18263.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No 21905037), the Doctoral Research Startup Fund of Liaoning Province (No. 2020-BS-066), the Doctoral Research Fund of Lanzhou City University (No. LZCU-BS2020-03), and the Fundamental Research Funds for the Central Universities (No. 3132019328). Q.L. acknowledges the financial support from China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin-Yu Wang, Jun-Cai Sun or Qiong-Qiong Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, YH., Liu, XY., Wang, XY. et al. Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Met. 41, 415–424 (2022). https://doi.org/10.1007/s12598-021-01777-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-021-01777-2

Keywords

Navigation