Skip to main content
Log in

Polyoxometalates-derived nanostructures for electrocatalysis application

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The conversion of intermittent renewable electrical energy to chemical energy is of great importance, which can not only mitigate current energy and environmental crisis but also contribute to the ongoing carbon neutrality national strategy. Electrocatalysis is serving as a low-carbon conversion technology that enables green and efficient energy conversion mainly through hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), and nitrogen reduction reaction (NRR). The core of electrocatalysis is the design and construction of low-cost, high-activity and high-stability electrocatalyst to drive reaction thermodynamics and kinetics. The employment of polyoxometalates (POMs) as platforms or precursors to construct different types of electrocatalysts has been widely reported. Herein, we systematically summarized the recent advances in POM-derived nanostructures for electrocatalysis application. The strategies for precursor design and electrocatalyst synthesis were briefly introduced. The morphology control, phase control, composite modulation, and heterostructure engineering in POM-derived nanostructures were presented in detail. The structure–activity relationship of POM-derived nanostructures is fully discussed for HER, CO2RR, and NRR applications. Finally, the current challenges and future outlooks of POM-derived nanostructures are summarized to provide insights toward high-efficiency electrocatalysts for energy conversion technologies.

Graphical abstract

摘要

将间歇性可再生电能转化为化学能具有重要意义,不仅可以缓解当前的能源和环境危机,而且有助于我国碳中和国家战略的实现。电催化是一种低碳转化技术,主要通过析氢反应(HER)、二氧化碳还原反应(CO2RR)和氮还原反应(NRR)实现绿色高效的能源转化。电催化的核心是设计和构建低成本、高活性、高稳定性的电催化剂来驱动反应。多金属氧酸盐(POMs)是一类具有精确原子结构的金属氧化物(V、Mo、Nb、Ta、Mo和W)聚阴离子簇。利用POMs作为平台或前体构建不同类型的电催化剂已被广泛报道。在此,我们系统地总结了近年来POMs衍生的纳米结构在电催化方面的应用进展;简要介绍了前驱体设计和电催化剂合成的策略;详细介绍了POMs纳米结构的形貌控制、晶相控制、组成调控和异质结构设计;充分讨论了POMs衍生纳米结构在HER、CO2RR和NRR应用中的构效关系;最后对POMs衍生纳米结构的当前挑战和未来展望进行总结,期望启发高效电催化剂的设计和制备。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1

Reproduced with permission from Ref. [41]. Copyright 2019, Springer Nature. f Preparation route and g XRD pattern of super-Co3S4/P-WS2/Co9S8; polarization curves in h alkaline, i acid and j neutral HER; k, l calculated free energy; m electron density at WS2/Co3S4 interfaces. Reproduced with permission from Ref. [42]. Copyright 2022, Wiley-VCH

Fig. 2

Reproduced with permission from Ref. [46]. Copyright 2015, Wiley-VCH. d Illustration for synthesis of AlO@Mo2N–NrGO; e calculated reaction pathways for AlO@Mo2N–NrGO in alkaline and acid HER; f SEM and g TEM images of sample; polarization curves h with and i without IR compensation; j long-term durability test. Reproduced with permission from Ref. [47]. Copyright 2023, Wiley-VCH

Fig. 3

Reproduced with permission from Ref. [55]. Copyright 2016, The Royal Society of Chemistry. f Schematic illustration and g, h TEM images of N@Mo2C preparation; polarization curves of i in 0.5 mol·L−1 H2SO4 and j in 1 mol·L−1 KOH; k free energy diagram; l relationship of Ed-band and ΔGH* with number of N atoms doping. Reproduced with permission from Ref. [51]. Copyright 2018, Wiley-VCH

Fig. 4

Reproduced with permission from Ref. [59]. Copyright 2018, The Royal Society of Chemistry. g Synthesis procedure, h XRD pattern and i TEM images of MoP@PC; j polarization curves; k Tafel plot; l stability test. Reproduced with permission from Ref. [60]. Copyright 2018, American Chemical Society

Fig. 5

Reproduced with permission from Ref. [62]. Copyright 2018, Wiley-VCH. h Illustration of Mo2N–Mo2C synthesis; i, l high-resolution HAADF-STEM images; j, k SEM images of Mo2N–Mo2C; m polarization curves in 1 mol·L−1 KOH solution; n polarization curves and o overpotentials at different current densities in artificial seawater. Reproduced with permission from Ref. [68]. Copyright 2022, Wiley-VCH

Fig. 6

Reproduced with permission from Ref. [70]. Copyright 2021, Elsevier B.V. g Three-dimensional supramolecular network of PMo12/BPE; h XRD patterns and i polarization curves of Mo2C@NC for HER; j polarization curve of MoO2@NC for OER; k, l polarization curve of overall water splitting with Mo2C@NC as cathode and MoO2@NC as anode. Reproduced with permission from Ref. [71]. Copyright 2018, The Royal Society of Chemistry

Fig. 7

Reproduced with permission from Ref. [75]. Copyright 2018, The Royal Society of Chemistry. f Schematic illustration, g SEM image and h XRD pattern of FeS2/MoS2@RGO composite; i corresponding NRR activity and j mechanism. Reproduced with permission from Ref. [76]. Copyright 2022, Elsevier B.V. k Illustration and l NRR activity of CoS2/MoS2 synthesis. Reproduced with permission from Ref. [77]. Copyright 2022, Elsevier B.V

Fig. 8

Copyright 2018, Springer Nature. f Schematic diagram of Mo8@Cu/TNA for CO2RR; g SEM image, h, i electrochemical activity (cyan: hydrogen, red: ethanol, green: acetate, yellow: methane, blue: ethylene, purple: ethane) and j reaction mechanism of Mo8@Cu/TNA in CO2RR. Reproduced with permission from Ref. [95]. Copyright 2021, Elsevier B.V

Similar content being viewed by others

References

  1. Xie H, Zhao Z, Liu T, Wu Y, Lan C, Jiang W, Zhu L, Wang Y, Yang D, Shao Z. A membrane-based seawater electrolyser for hydrogen generation. Nature. 2022;612:673. https://doi.org/10.1038/s41586-022-05379-5.

    Article  CAS  PubMed  Google Scholar 

  2. Li X, Zhao LL, Yu JY, Liu XY, Zhang XL, Liu H, Zhou WJ. Water splitting: from electrode to green energy system. Nanomicro Lett. 2020;12:131. https://doi.org/10.1007/s40820-020-00469-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ma MJ, Wang HQ, Liu H. Steering spatially separated dual sites on nano-TiO2 through smsi and lattice matching for robust photocatalytic hydrogen evolution. Chin Chem Lett. 2021;32(11):3613. https://doi.org/10.1016/j.cclet.2021.04.012.

    Article  CAS  Google Scholar 

  4. Nishiyama H, Yamada T, Nakabayashi M, Maehara Y, Yamaguchi M, Kuromiya Y, Nagatsuma Y, Tokudome H, Akiyama S, Watanabe T, Narushima R, Okunaka S, Shibata N, Takata T, Hisatomi T, Domen K. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature. 2021;598:304. https://doi.org/10.1038/s41586-021-03907-3.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang K, Liang X, Wang L, Sun K, Wang Y, Xie Z, Wu Q, Bai X, Hamdy MS, Chen H, Zou X. Status and perspectives of key materials for pem electrolyzer. Nano Res Energy. 2022;1(3):9120032. https://doi.org/10.26599/NRE.2022.9120032.

    Article  Google Scholar 

  6. Yang ZX, Li XG, Yao QL, Lu ZH, Zhang N, Xia J, Yang K, Wang YQ, Zhang K, Liu HZ, Zhang LT, Lin HJ, Zhou QJ, Wang F, Yu ZM, Ma JM. 2022 roadmap on hydrogen energy from production to utilizations. Rare Met. 2022;41(10):3251. https://doi.org/10.1007/s12598-022-02029-7.

    Article  CAS  Google Scholar 

  7. Zhou J, Wang F, Wang H, Hu S, Zhou W, Liu H. Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic her in alkaline and acid media. Nano Res. 2023;16:2085. https://doi.org/10.1007/s12274-022-4901-6.

    Article  CAS  Google Scholar 

  8. Yang CH, Zhu YT, Liu JQ, Qin YC, Wang HQ, Liu HL, Chen YN, Zhang ZC, Hu WP. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy. 2020;77:105126. https://doi.org/10.1016/j.nanoen.2020.105126.

    Article  CAS  Google Scholar 

  9. Huang W, Peng LY, Zhang J, Liu C, Song G, Su JH, Fang WH, Cui G, Hu S. Vanadium-catalyzed dinitrogen reduction to ammonia via a [V]=NNH2 intermediate. J Am Chem Soc. 2023;145:811. https://doi.org/10.1021/jacs.2c08000.

    Article  CAS  PubMed  Google Scholar 

  10. Ohki Y, Munakata K, Matsuoka Y, Hara R, Kachi M, Uchida K, Tada M, Cramer RE, Sameera WMC, Takayama T, Sakai Y, Kuriyama S, Nishibayashi Y, Tanifuji K. Nitrogen reduction by the Fe sites of synthetic [Mo3S4Fe] cubes. Nature. 2022;607:86. https://doi.org/10.1038/s41586-022-04848-1.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou J, Liu H, Wang HQ. Photothermal catalysis for CO2 conversion. Chin Chem Lett. 2023;34(2):107420. https://doi.org/10.1016/j.cclet.2022.04.018.

    Article  CAS  Google Scholar 

  12. Li J, Abbas SU, Wang H, Zhang Z, Hu W. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano Micro Lett. 2021;13:216. https://doi.org/10.1007/s40820-021-00738-9.

    Article  CAS  Google Scholar 

  13. Zhu Y, Cui X, Liu H, Guo Z, Dang Y, Fan Z, Zhang Z, Hu W. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021;14:4471. https://doi.org/10.1007/s12274-021-3448-2.

    Article  CAS  Google Scholar 

  14. Du YD, Meng XT, Wang Z, Zhao X, Qiu JS. Graphene-based catalysts for CO2 electroreduction. Acta Phys Chim Sin. 2022;38(2):2101009. https://doi.org/10.3866/PKU.WHXB202101009.

    Article  CAS  Google Scholar 

  15. Jia Y, Li F, Fan K, Sun L. Cu-based bimetallic electrocatalysts for CO2 reduction. Adv Powder Mater. 2022;1(1):100012. https://doi.org/10.1016/j.apmate.2021.10.003.

    Article  Google Scholar 

  16. Yin C, Li Q, Zheng J, Ni Y, Wu H, Kjøniksen AL, Liu C, Lei Y, Zhang Y. Progress in regulating electronic structure strategies on Cu-based bimetallic catalysts for CO2 reduction reaction. Adv Powder Mater. 2022;1(4):100055. https://doi.org/10.1016/j.apmate.2022.100055.

    Article  Google Scholar 

  17. Han B. Phase engineering of metal nanomaterials for high-performance electrochemical CO2 reduction. Acta Phys Chim Sin. 2022;38(8):2012011. https://doi.org/10.3866/PKU.WHXB202012011.

    Article  CAS  Google Scholar 

  18. Song YK, Xie WF, Shao MF. Recent advances in integrated electrode for electrocatalytic carbon dioxide reduction. Acta Phys Chim Sin. 2022;38(6):2101028. https://doi.org/10.3866/PKU.WHXB202101028.

    Article  CAS  Google Scholar 

  19. Yang CH, Li SY, Zhang ZC, Wang HQ, Liu HL, Jiao F, Guo ZG, Zhang XT, Hu WP. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small. 2020;16(29):32. https://doi.org/10.1002/smll.202001847.

    Article  CAS  Google Scholar 

  20. Zhang Y, Liu J, Li SL, Su ZM, Lan YQ. Polyoxometalate-based materials for sustainable and clean energy conversion and storage. EnergyChem. 2019;1(3):100021. https://doi.org/10.1016/j.enchem.2019.100021.

    Article  Google Scholar 

  21. Zang D, Wang H. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates. 2022;1(1):9140006. https://doi.org/10.26599/POM.2022.9140006.

    Article  Google Scholar 

  22. Ueda T. Electrochemistry of polyoxometalates: from fundamental aspects to applications. ChemElectroChem. 2018;5(6):823. https://doi.org/10.1002/celc.201701170.

    Article  CAS  Google Scholar 

  23. Kondinski A. Metal–metal bonds in polyoxometalate chemistry. Nanoscale. 2021;13:13574. https://doi.org/10.1039/D1NR02357H.

    Article  CAS  PubMed  Google Scholar 

  24. Liu Q, Wang X. Precise assembly of polyoxometalates at single-cluster levels. Angew Chem Int Ed. 2023;62(11):e202217764. https://doi.org/10.1002/anie.202217764.

    Article  CAS  Google Scholar 

  25. Zhang S, Shi W, Wang X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science. 2022;377(6601):100. https://doi.org/10.1126/science.abm7574.

    Article  CAS  PubMed  Google Scholar 

  26. Dolbecq A, Dumas E, Mayer CR, Mialane P. Hybrid organic−inorganic polyoxometalate compounds: from structural diversity to applications. Chem Rev. 2010;110(10):6009. https://doi.org/10.1021/cr1000578.

    Article  CAS  PubMed  Google Scholar 

  27. Yu B, Zhao X, Ni J, Yang F. Multiscale assembly of polyoxometalates: from clusters to materials. ChemPhysMater. 2023;2(1):20. https://doi.org/10.1016/j.chphma.2022.03.006.

    Article  Google Scholar 

  28. Wang YJ, Zhuang GL, Zhang JW, Luo F, Cheng X, Sun FL, Fu SS, Lu TB, Zhang ZM. Co-dissolved isostructural polyoxovanadates to construct single-atom-site catalysts for efficient CO2 photoreduction. Angew Chem Int Ed. 2023;62(6):e202216592. https://doi.org/10.1002/anie.202216592.

    Article  CAS  Google Scholar 

  29. Liang J, Wu M, Wei P, Zhao J, Huang H, Li C, Lu Y, Liu Y, Liu C. Efficient hydrodesulfurization catalysts derived from strandberg P–Mo–Ni polyoxometalates. J Catal. 2018;358:155. https://doi.org/10.1016/j.jcat.2017.11.026.

    Article  CAS  Google Scholar 

  30. Wang H, Ma M, Li J, Zhang Z, Zhou W, Liu H. Manipulating all-pH hydrogen evolution kinetics on metal sulfides through one-pot simultaneously derived multi-interface engineering and phosphorus doping. J Mater Chem A. 2021;9(45):25539. https://doi.org/10.1039/D1TA07670A.

    Article  CAS  Google Scholar 

  31. Huang B, Yang DH, Han BH. Application of polyoxometalate derivatives in rechargeable batteries. J Mater Chem A. 2020;8(9):4593. https://doi.org/10.1039/C9TA12679A.

    Article  CAS  Google Scholar 

  32. Yuan HF, Liu F, Xue GB, Liu H, Wang YJ, Zhao YW, Liu XY, Zhang XL, Zhao LL, Liu Z, Liu H, Zhou WJ. Laser patterned and bifunctional Ni@N-doped carbon nanotubes as electrocatalyst and photothermal conversion layer for water splitting driven by thermoelectric device. Appl Catal B Environ. 2021;283:119647. https://doi.org/10.1016/j.apcatb.2020.119647.

    Article  CAS  Google Scholar 

  33. Li Z, Wu X, Jiang X, Shen B, Teng Z, Sun D, Fu G, Tang Y. Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction. Adv Powder Mater. 2022;1(2):100020. https://doi.org/10.1016/j.apmate.2021.11.007.

    Article  Google Scholar 

  34. Guo YN, Park T, Yi JW, Henzie J, Kim J, Wang ZL, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater. 2019;31(17):1807134. https://doi.org/10.1002/adma.201807134.

    Article  CAS  Google Scholar 

  35. Zou XX, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148. https://doi.org/10.1039/C4CS00448E.

    Article  CAS  PubMed  Google Scholar 

  36. Yin H, Du A. Activating the hydrogen evolution reaction in low-dimensional carbon by partial hydrogenation: role of the hybrid sp2–sp3 orbital interface. ChemPhysMater. 2023;2(2):180. https://doi.org/10.1016/j.chphma.2022.12.001.

    Article  Google Scholar 

  37. Ma M, Feng Z, Zhang X, Sun C, Wang H, Zhou W, Liu H. Progress in the preparation and application of electrocatalysts based on microorganisms as intelligent templates. Acta Phys Chim Sin. 2022;38(6):2106003. https://doi.org/10.3866/PKU.WHXB202106003.

    Article  CAS  Google Scholar 

  38. Wu T, Sun MZ, Huang BL. Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Met. 2022;41(7):2169. https://doi.org/10.1007/s12598-021-01914-x.

    Article  CAS  Google Scholar 

  39. Xie L, Hai L, Meng Y, Zheng W, Hu H, Shang D, Shao K, Zhang C, Li Y. Metal-atom-doped W18O49 nanowires for electrocatalytic oxygen evolution reaction in alkaline medium. ChemPhysMater. 2023;2(2):141. https://doi.org/10.1016/j.chphma.2022.07.003.

    Article  Google Scholar 

  40. Wang H, Zhang W, Zhang X, Hu S, Zhang Z, Zhou W, Liu H. Multi-interface collaboration of graphene cross-linked NiS–NiS2–Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 2021;14(12):4857. https://doi.org/10.1007/s12274-021-3445-5.

    Article  CAS  Google Scholar 

  41. Huang Y, Sun Y, Zheng X, Aoki T, Pattengale B, Huang J, He X, Bian W, Younan S, Williams N, Hu J, Ge J, Pu N, Yan X, Pan X, Zhang L, Wei Y, Gu J. Atomically engineering activation sites onto metallic 1T-MoS2 catalysts for enhanced electrochemical hydrogen evolution. Nat Commun. 2019;10:982. https://doi.org/10.1038/s41467-019-08877-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang H, Xu J, Zhang Q, Hu S, Zhou W, Liu H, Wang X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/P-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv Funct Mater. 2022;32(17):2112362. https://doi.org/10.1002/adfm.202112362.

    Article  CAS  Google Scholar 

  43. Ma M, Xu J, Wang H, Zhang X, Hu S, Zhou W, Liu H. Multi-interfacial engineering of hierarchical CoNi2S4/WS2/Co9S8 hybrid frameworks for robust all-pH electrocatalytic hydrogen evolution. Appl Catal B Environ. 2021;297:120455. https://doi.org/10.1016/j.apcatb.2021.120455.

    Article  CAS  Google Scholar 

  44. Huang Z, Yang Z, Hussain MZ, Jia Q, Zhu Y, Xia Y. Bimetallic Fe–Mo sulfide/carbon nanocomposites derived from phosphomolybdic acid encapsulated MOF for efficient hydrogen generation. J Mater Sci Technol. 2021;84(10):76. https://doi.org/10.1016/j.jmst.2020.12.057.

    Article  CAS  Google Scholar 

  45. Chen YK, Yu JY, Jia J, Liu F, Zhang YW, Xiong GW, Zhang RT, Yang RQ, Sun DH, Liu H, Zhou WJ. Metallic Ni3Mo3N porous microrods with abundant catalytic sites as efficient electrocatalyst for large current density and superstability of hydrogen evolution reaction and water splitting. Appl Catal B Environ. 2020;272:118956. https://doi.org/10.1016/j.apcatb.2020.118956.

    Article  CAS  Google Scholar 

  46. Yan H, Tian C, Wang L, Wu A, Meng M, Zhao L, Fu H. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed. 2015;54(21):6325. https://doi.org/10.1002/anie.201501419.

    Article  CAS  Google Scholar 

  47. Huang Y, Zhou W, Kong W, Chen L, Lu X, Cai H, Yuan Y, Zhao L, Jiang Y, Li H, Wang L, Wang L, Wang H, Zhang J, Gu J, Fan Z. Atomically interfacial engineering on molybdenum nitride quantum dots decorated N-doped graphene for high-rate and stable alkaline hydrogen production. Adv Sci. 2022;9(36):e2204949. https://doi.org/10.1002/advs.202204949.

    Article  CAS  Google Scholar 

  48. Zhao LL, Yuan HF, Sun DH, Jia J, Yu JY, Zhang XL, Liu XY, Liu H, Zhou WJ. Active facet regulation of highly aligned molybdenum carbide porous octahedrons via crystal engineering for hydrogen evolution reaction. Nano Energy. 2020;77:105056. https://doi.org/10.1016/j.nanoen.2020.105056.

    Article  CAS  Google Scholar 

  49. Wang ZH, Wang XF, Tan Z, Song XZ. Polyoxometalate/metal–organic framework hybrids and their derivatives for hydrogen and oxygen evolution electrocatalysis. Mater Today Energy. 2021;19:100618. https://doi.org/10.1016/j.mtener.2020.100618.

    Article  CAS  Google Scholar 

  50. Guo F, Zhang M, Yi S, Li X, Xin R, Yang M, Liu B, Chen H, Li H, Liu Y. Metal-coordinated porous polydopamine nanospheres derived Fe3N–FeCo encapsulated N-doped carbon as a highly efficient electrocatalyst for oxygen reduction reaction. Nano Res Energy. 2022;1(3):e9120027. https://doi.org/10.26599/NRE.2022.9120027.

    Article  Google Scholar 

  51. Huang Y, Hu J, Xu H, Bian W, Ge J, Zang D, Cheng D, Lv Y, Zhang C, Gu J, Wei Y. Fine tuning electronic structure of catalysts through atomic engineering for enhanced hydrogen evolution. Adv Energy Mater. 2018;8(24):1800789. https://doi.org/10.1002/aenm.201800789.

    Article  CAS  Google Scholar 

  52. Leng Y, Li J, Zhang C, Jiang P, Li Y, Jiang Y, Du S. N-doped carbon encapsulated molybdenum carbide as an efficient catalyst for oxidant-free dehydrogenation of alcohols. J Mater Chem A. 2017;5(33):17580. https://doi.org/10.1039/c7ta04763k.

    Article  CAS  Google Scholar 

  53. Chen C, Wu A, Yan H, Xiao Y, Tian C, Fu H. Trapping [PMo12O40]3− clusters into pre-synthesized ZiF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem Sci. 2018;9(28):4746. https://doi.org/10.1039/c8sc01454j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yang X, Feng X, Tan H, Zang H, Wang X, Wang Y, Wang E, Li Y. N-doped graphene-coated molybdenum carbide nanoparticles as highly efficient electrocatalysts for the hydrogen evolution reaction. J Mater Chem A. 2016;4(10):3947. https://doi.org/10.1039/c5ta09507g.

    Article  CAS  Google Scholar 

  55. Li JS, Tang YJ, Liu CH, Li SL, Li RH, Dong LZ, Dai ZH, Bao JC, Lan YQ. Polyoxometalate-based metal–organic framework-derived hybrid electrocatalysts for highly efficient hydrogen evolution reaction. J Mater Chem A. 2016;4(4):1202. https://doi.org/10.1039/c5ta09743f.

    Article  CAS  Google Scholar 

  56. Wang H, Zhang X, Wang J, Liu H, Hu S, Zhou W, Liu H, Wang X. Puffing quaternary FexCoyNi1-x-yP nanoarray via kinetically controlled alkaline etching for robust overall water splitting. Sci China Mater. 2020;63(6):1054. https://doi.org/10.1007/s40843-019-1268-7.

    Article  CAS  Google Scholar 

  57. Li GX, Wang JG, Yu JY, Liu H, Cao Q, Du JL, Zhao LL, Jia J, Liu H, Zhou WJ. Ni–Ni3P nanoparticles embedded into N, P-doped carbon on 3d graphene frameworks via in situ phosphatization of saccharomycetes with multifunctional electrodes for electrocatalytic hydrogen production and anodic degradation. Appl Catal B Environ. 2020;261:118147. https://doi.org/10.1016/j.apcatb.2019.118147.

    Article  CAS  Google Scholar 

  58. Liu P, Rodriguez JA. Catalysts for hydrogen evolution from the nife hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J Am Chem Soc. 2005;127(42):14871. https://doi.org/10.1021/ja0540019.

    Article  CAS  PubMed  Google Scholar 

  59. Ma YY, Wu CX, Feng XJ, Tan HQ, Yan LK, Liu Y, Kang ZH, Wang EB, Li YG. Highly efficient hydrogen evolution from seawater by a low-cost and stable CoMoP@C electrocatalyst superior to Pt/C. Energy Environ Sci. 2017;10(3):788. https://doi.org/10.1039/c6ee03768b.

    Article  CAS  Google Scholar 

  60. Li JS, Zhang S, Sha JQ, Wang H, Liu MZ, Kong LX, Liu GD. Confined molybdenum phosphide in P-doped porous carbon as efficient electrocatalysts for hydrogen evolution. ACS Appl Mater Interfaces. 2018;10(20):17140. https://doi.org/10.1021/acsami.8b01541.

    Article  CAS  PubMed  Google Scholar 

  61. Li JS, Zhang S, Sha JQ, Li JY, Wang XR, Wang H. A polyoxometalate-based metal–organic framework-derived FeP/mop hybrid encapsulated in N/P dual-doped carbon as efficient electrocatalyst for hydrogen evolution. Cryst Growth Des. 2018;18(8):4265. https://doi.org/10.1039/d0gc01149e.

    Article  CAS  Google Scholar 

  62. Yan H, Xie Y, Jiao Y, Wu A, Tian C, Zhang X, Wang L, Fu H. Holey reduced graphene oxide coupled with an Mo2N–Mo2C heterojunction for efficient hydrogen evolution. Adv Mater. 2018;30(2):1704156. https://doi.org/10.1002/adma.201704156.

    Article  CAS  Google Scholar 

  63. Huang Y, Ge J, Hu J, Zhang J, Hao J, Wei Y. Nitrogen-doped porous molybdenum carbide and phosphide hybrids on a carbon matrix as highly effective electrocatalysts for the hydrogen evolution reaction. Adv Energy Mater. 2018;8(6):1701601. https://doi.org/10.1002/aenm.201701601.

    Article  CAS  Google Scholar 

  64. Zhang LN, Li SH, Tan HQ, Khan SU, Ma YY, Zang HY, Wang YH, Li YG. MoP/Mo2C@C: a new combination of electrocatalysts for highly efficient hydrogen evolution over the entire ph range. ACS Appl Mater Interfaces. 2017;9(19):16270. https://doi.org/10.1021/acsami.7b03823.

    Article  CAS  PubMed  Google Scholar 

  65. Yan G, Wu C, Tan H, Feng X, Yan L, Zang H, Li Y. N-carbon coated P-W2C composite as efficient electrocatalyst for hydrogen evolution reactions over the whole ph range. J Mater Chem A. 2017;5(2):765. https://doi.org/10.1039/C6TA09052D.

    Article  CAS  Google Scholar 

  66. Xu X, Nosheen F, Wang X. Ni-decorated molybdenum carbide hollow structure derived from carbon-coated metal–organic framework for electrocatalytic hydrogen evolution reaction. Chem Mater. 2016;28(17):6313. https://doi.org/10.1021/acs.chemmater.6b02586.

    Article  CAS  Google Scholar 

  67. Wang H, Xu X, Ni B, Li H, Bian W, Wang X. 3D self-assembly of ultrafine molybdenum carbide confined in N-doped carbon nanosheets for efficient hydrogen production. Nanoscale. 2017;9(41):15895. https://doi.org/10.1039/C7NR05500E.

    Article  CAS  PubMed  Google Scholar 

  68. Li S, Zhao Z, Ma T, Pachfule P, Thomas A. Superstructures of organic-polyoxometalate co-crystals as precursors for hydrogen evolution electrocatalysts. Angew Chem Int Ed. 2022;61(3):e202112298. https://doi.org/10.1002/anie.202112298.

    Article  CAS  Google Scholar 

  69. Zhou J, Li L, Gao XJ, Wang H. Clusterphene: a new two-dimensional structure from cluster self-assembly. Nano Res. 2022;15(7):5790. https://doi.org/10.1007/s12274-022-4399-y.

    Article  CAS  Google Scholar 

  70. Li S, Yang Z, Liu Z, Ma Y, Gu Y, Zhao L, Zhou Q, Xu W. Bimetal zeolite imidazolate framework derived Mo0.84Ni0.16–Mo2C@NC nanosphere for overall water splitting in alkaline solution. J Colloid Interface Sci. 2021;592(19):349. https://doi.org/10.1016/j.jcis.2021.02.015.

    Article  CAS  PubMed  Google Scholar 

  71. Mei M, Xu X, Wang Y, Wang X, Huo Y. Three-dimensional supramolecular phosphomolybdate architecture-derived Mo-based electrocatalytic system for overall water splitting. Inorg Chem Front. 2018;5(4):819. https://doi.org/10.1039/C7QI00812K.

    Article  CAS  Google Scholar 

  72. Huang Z, Yang Z, Hussain MZ, Chen B, Jia Q, Zhu Y, Xia Y. Polyoxometallates@zeolitic-imidazolate-framework derived bimetallic tungsten-cobalt sulfide/porous carbon nanocomposites as efficient bifunctional electrocatalysts for hydrogen and oxygen evolution. Electrochim Acta. 2020;330:135335. https://doi.org/10.1016/j.electacta.2019.135335.

    Article  CAS  Google Scholar 

  73. Liang J, Liu Q, Alshehri AA, Sun X. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res Energy. 2022;1(2):9120010. https://doi.org/10.26599/NRE.2022.9120010.

    Article  Google Scholar 

  74. Xu T, Ma B, Liang J, Yue L, Liu Q, Li T, Zhao H, Luo Y, Lu S, Sun X. Recent progress in metal-free electrocatalysts toward ambient N2 reduction reaction. Acta Phys Chim Sin. 2021;37(7):2009043. https://doi.org/10.3866/PKU.WHXB202009043.

    Article  CAS  Google Scholar 

  75. Wang X, Feng Z, Xiao B, Zhao J, Ma H, Tian Y, Pang H, Tan L. Polyoxometalate-based metal–organic framework-derived bimetallic hybrid materials for upgraded electrochemical reduction of nitrogen. Gr Chem. 2020;22(18):6157. https://doi.org/10.1039/D0GC01149E.

    Article  CAS  Google Scholar 

  76. Feng Z, Li G, Wang X, Gómez-García CJ, Xin J, Ma H, Pang H, Gao K. FeS2/MoS2@rGO hybrid materials derived from polyoxomolybdate-based metal–organic frameworks as high-performance electrocatalyst for ammonia synthesis under ambient conditions. Chem Eng J. 2022;445:136797. https://doi.org/10.1016/j.cej.2022.136797.

    Article  CAS  Google Scholar 

  77. Wang C, Yang M, Wang X, Ma H, Tian Y, Pang H, Tan L, Gao K. Hierarchical CoS2/MoS2 flower-like heterostructured arrays derived from polyoxometalates for efficient electrocatalytic nitrogen reduction under ambient conditions. J Colloid Interface Sci. 2022;609:815. https://doi.org/10.1016/j.jcis.2021.11.087.

    Article  CAS  PubMed  Google Scholar 

  78. Su J, Liu Y, Song Y, Huang L, Guo W, Cao X, Dou Y, Cheng L, Li G, Hu Q, Ye R. Recent development of nanomaterials for carbon dioxide electroreduction. SmartMat. 2022;3(1):35. https://doi.org/10.1002/smm2.1106.

    Article  CAS  Google Scholar 

  79. Wu H, Utomo WP, Tian Y, Mak CH, Chung HY, Hsu HY, Shang J, Ng YH. Enhanced visible-light-driven heterogeneous photocatalytic CO2 methanation using a Cu2O@Cu-MOF-74 thin film. ChemPhysMater. 2023;2(2):126. https://doi.org/10.1016/j.chphma.2022.05.003.

    Article  Google Scholar 

  80. Wang H. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022;15(4):2834. https://doi.org/10.1007/s12274-021-3984-9.

    Article  CAS  Google Scholar 

  81. Li L, Zhang ZC. Sn–Bi bimetallic interface induced by nano-crumples for CO2 electroreduction to formate. Rare Met. 2022;41(12):3943. https://doi.org/10.1038/s41467-022-29861-w.

    Article  CAS  Google Scholar 

  82. Sun CY, Zhao ZW, Liu H, Wang HQ. Core–shell nanostructure for supra-photothermal CO2 catalysis. Rare Met. 2022;41(5):1403. https://doi.org/10.1007/s12598-021-01906-x.

    Article  CAS  Google Scholar 

  83. Dai Y, Xiong Y. Control of selectivity in organic synthesis via heterogeneous photocatalysis under visible light. Nano Res Energy. 2022;1(1):e9120006. https://doi.org/10.26599/NRE.2022.9120006.

    Article  Google Scholar 

  84. Yang D, Wang X. 2d π-conjugated metal–organic frameworks for CO2 electroreduction. SmartMat. 2022;3(1):54. https://doi.org/10.1002/smm2.1102.

    Article  CAS  Google Scholar 

  85. Zang D, Gao XJ, Li L, Wei Y, Wang H. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022;15(10):8872. https://doi.org/10.1007/s12274-022-4698-3.

    Article  CAS  Google Scholar 

  86. Qiu N, Li JJ, Wang HQ, Zhang ZC. Emerging dual-atomic-site catalysts for electrocatalytic CO2 reduction. Sci China Mater. 2022;65(12):3302. https://doi.org/10.1007/s40843-022-2189-x.

    Article  CAS  Google Scholar 

  87. Han L, Tian B, Gao X, Zhong Y, Wang S, Song S, Wang Z, Zhang Y, Kuang Y, Sun X. Copper nanowire with enriched high-index facets for highly selective CO2 reduction. SmartMat. 2022;3(1):142. https://doi.org/10.1002/smm2.1082.

    Article  CAS  Google Scholar 

  88. Leiduan Hao ZS. Metal oxide-based materials for electrochemical CO2 reduction. Acta Phys Chim Sin. 2021;37:2009033.

    Google Scholar 

  89. Chu S, Kang C, Park W, Han Y, Hong S, Hao L, Zhang H, Lo TWB, Robertson AW, Jung Y, Han B, Sun Z. Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to c2h4. SmartMat. 2022;3(1):194. https://doi.org/10.1002/smm2.1105.

    Article  CAS  Google Scholar 

  90. Zhao Q, Wang Y, Li M, Zhu S, Li T, Yang J, Lin T, Delmo EP, Wang Y, Jang J, Gu M, Shao M. Organic frameworks confined Cu single atoms and nanoclusters for tandem electrocatalytic CO2 reduction to methane. SmartMat. 2022;3(1):183. https://doi.org/10.1002/smm2.1098.

    Article  CAS  Google Scholar 

  91. Ahmad T, Liu S, Sajid M, Li K, Ali M, Liu L, Chen W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: a review. Nano Res Energy. 2022;1:9120021. https://doi.org/10.1007/s11708-023-0898-0.

    Article  Google Scholar 

  92. Guo SX, MacFarlane DR, Zhang J. Bioinspired electrocatalytic CO2 reduction by bovine serum albumin-capped silver nanoclusters mediated by [α-SiW12O40]4−. Chemsuschem. 2016;9(1):80. https://doi.org/10.1002/cssc.201501343.

    Article  CAS  PubMed  Google Scholar 

  93. Guo SX, Li F, Chen L, MacFarlane DR, Zhang J. Polyoxometalate-promoted electrocatalytic CO2 reduction at nanostructured silver in dimethylformamide. ACS Appl Mater Interfaces. 2018;10(15):12690. https://doi.org/10.1021/acsami.8b01042.

    Article  CAS  PubMed  Google Scholar 

  94. Wang YR, Huang Q, He CT, Chen Y, Liu J, Shen FC, Lan YQ. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat Commun. 2018;9:4466. https://doi.org/10.1038/s41467-018-06938-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zang D, Li Q, Dai G, Zeng M, Huang Y, Wei Y. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl Catal B Environ. 2021;281:119426. https://doi.org/10.1016/j.apcatb.2020.119426.

    Article  CAS  Google Scholar 

  96. Yang G, Jiao Y, Yan H, Xie Y, Wu A, Dong X, Guo D, Tian C, Fu H. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv Mater. 2020;32(17):e2000455. https://doi.org/10.1002/adma.202000455.

    Article  CAS  PubMed  Google Scholar 

  97. Yan H, Tian C, Sun L, Wang B, Wang L, Yin J, Wu A, Fu H. Small-sized and high-dispersed wn from [SiO4(W3O9)4]4− clusters loading on go-derived graphene as promising carriers for methanol electro-oxidation. Energy Environ Sci. 2014;7(6):1939. https://doi.org/10.1039/C4EE00324A.

    Article  CAS  Google Scholar 

  98. Yan H, Meng M, Wang L, Wu A, Tian C, Zhao L, Fu H. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2015;9(2):329. https://doi.org/10.1007/s12274-015-0912-x.

    Article  CAS  Google Scholar 

  99. Wang D, Zhu Y, Tian C, Wang L, Zhou W, Dong Y, Han Q, Liu Y, Yuan F, Fu H. Synergistic effect of Mo2N and pt for promoted selective hydrogenation of cinnamaldehyde over Pt–Mo2N/SBA-15. Catal Sci Technol. 2016;6(7):2403. https://doi.org/10.1039/C5CY01654A.

    Article  CAS  Google Scholar 

  100. Li L, Shi Y, Hou M, Zhang Z. Research progress of copper-based materials for electrocatalytic CO2 reduction reaction. Chin J Rare Met. 2022;46(6):681. https://doi.org/10.13373/j.cnki.cjrm.XY21120017.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Shandong Provincial Natural Science Foundation (No. ZR2019BB025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei-Jia Zhou or Hai-Qing Wang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, CY., Li, W., Wang, K. et al. Polyoxometalates-derived nanostructures for electrocatalysis application. Rare Met. 43, 1845–1866 (2024). https://doi.org/10.1007/s12598-023-02567-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02567-8

Keywords

Navigation