Skip to main content
Log in

Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The catalytic conversion of carbon dioxide (CO2) into high value-added chemicals is of great significance to address the pressing carbon cycle issues. Reticular chemistry of metal-organic frameworks (MOFs)-based materials exhibits great potential and effectiveness to face CO2 challenge from capture to conversion. To date, the integrated nanocomposites of nanostructure and MOF have emerged as a powerful heterogeneous catalysts featured with multifold advantages including synergistic effects between the two interfaces, confinement effect of meso- and micropores, tandem reaction triggered by multiple active sites, high stability and dispersion, and so on. Given burgeoning carbon cycle and nanostructure@MOFs, this review highlights some of important advancements to provide a full understanding on the synthesis and design of nanostructure@MOFs composites to facilitate carbon cycle through CO2 photocatalytic, electrocatalytic, and thermal conversion. Afterward, the catalytic applications of some representative nanostructure@MOFs composites are categorized, in which the origin of activity or structure-activity relationship is summarized. Finally, the opportunities and challenges are proposed for inspiring the future development of nanostructure@MOFs composites for carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ding, M. L.; Flaig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon capture and conversion using metal-organic frameworks and MOF-based materials. Chem. Soc. Rev. 2019, 48, 2783–2828.

    Article  CAS  Google Scholar 

  2. Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045.

    Article  CAS  Google Scholar 

  3. Göttle, A. J.; Koper, M. T. M. Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: Prediction of sequential vs. concerted pathways using DFT. Chem. Sci. 2017, 8, 458–465.

    Article  Google Scholar 

  4. Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.

    Article  CAS  Google Scholar 

  5. Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.

    Article  CAS  Google Scholar 

  6. Ni, B.; Shi, Y.; Wang, X. The sub-nanometer scale as a new focus in nanoscience. Adv. Mater. 2018, 30, 1802031.

    Article  Google Scholar 

  7. Kortlever, R.; Peters, I.; Balemans, C.; Kas, R.; Kwon, Y.; Mul, G.; Koper, M. T. M. Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons. Chem. Commun. 2016, 52, 10229–10232.

    Article  CAS  Google Scholar 

  8. Heuer-Jungemann, A.; Feliu, N.; Bakaimi, I.; Hamaly, M.; Alkilany, A.; Chakraborty, I.; Masood, A.; Casula, M. F.; Kostopoulou, A.; Oh, E. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 2019, 119, 4819–4880.

    Article  CAS  Google Scholar 

  9. Zhu, Y. T.; Cui, X. Y.; Liu, H. L.; Guo, Z. G.; Dang, Y. F.; Fan, Z. X.; Zhang, Z. C.; Hu, W. P. Tandem catalysis in electrochemical CO2 reduction reaction. Nano Res. 2021, 14, 4471–4486.

    Article  CAS  Google Scholar 

  10. Yang, C. H.; Li, S. Y.; Zhang, Z. C.; Wang, H. Q.; Liu, H. L.; Jiao, F.; Guo, Z. G.; Zhang, X. T.; Hu, W. P. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small 2020, 16, 2001847.

    Article  CAS  Google Scholar 

  11. Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

    Article  CAS  Google Scholar 

  12. Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F. W.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266–276.

    Article  CAS  Google Scholar 

  13. Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.

    Article  CAS  Google Scholar 

  14. Liang, Z. B.; Qu, C.; Guo, W. H.; Zou, R. Q.; Xu, Q. Pristine metal-organic frameworks and their composites for energy storage and conversion. Adv. Mater. 2018, 30, 1702891.

    Article  Google Scholar 

  15. Li, D. D.; Kassymova, M.; Cai, X. C.; Zang, S. Q.; Jiang, H. L. Photocatalytic CO2 reduction over metal-organic framework-based materials. Coordin. Chem. Rev. 2020, 412, 213262.

    Article  CAS  Google Scholar 

  16. Yang, H. Z.; Yang, D. R.; Zhou, Y.; Wang, X. Polyoxometalate interlayered zinc-metallophthalocyanine molecular layer sandwich as photocoupled electrocatalytic CO2 reduction catalyst. J. Am. Chem. Soc. 2021, 143, 13721–13730.

    Article  CAS  Google Scholar 

  17. Li, R.; Zhang, W.; Zhou, K. Metal-organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 2018, 30, 1705512.

    Article  Google Scholar 

  18. Sun, L. B.; Reddu, V.; Fisher, A. C.; Wang, X. Electrocatalytic reduction of carbon dioxide: Opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 2020, 13, 374–403.

    Article  CAS  Google Scholar 

  19. Wang, N.; Miao, R. K.; Lee, G.; Vomiero, A.; Sinton, D.; Ip, A. H.; Liang, H. Y.; Sargent, E. H. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat 2021, 2, 12–16.

    Article  Google Scholar 

  20. Kumar, N.; Mukherjee, S.; Bezrukov, A. A.; Vandichel, M.; Shivanna, M.; Sensharma, D.; Bajpai, A.; Gascón, V.; Otake, K. I.; Kitagawa, S. et al. A square lattice topology coordination network that exhibits highly selective C2H2/CO2 separation performance. SmartMat 2020, 1, e1008.

    Article  Google Scholar 

  21. Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y. F.; Liu, J.; Shen, F. C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466.

    Article  Google Scholar 

  22. Chen, X. H.; Wei, Q.; Hong, J. D.; Xu, R.; Zhou, T. H. Bifunctional metal-organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange. Rare Met. 2019, 38, 413–419.

    Article  CAS  Google Scholar 

  23. Yang, C. H.; Nosheen, F.; Zhang, Z. C. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met. 2021, 40, 1412–1430.

    Article  CAS  Google Scholar 

  24. Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.

    Article  Google Scholar 

  25. An, B.; Zhang, J. Z.; Cheng, K.; Ji, P. F.; Wang, C.; Lin, W. B. Confinement of ultrasmall Cu/ZnOx nanoparticles in metal-organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J. Am. Chem. Soc. 2017, 139, 3834–3840.

    Article  CAS  Google Scholar 

  26. Gutterød, E. S.; Lazzarini, A.; Fjermestad, T.; Kaur, G.; Manzoli, M.; Bordiga, S.; Svelle, S.; Lillerud, K. P.; Skúlason, E.; Øien-Ødegaard, S. et al. Hydrogenation of CO2 to methanol by Pt nanoparticles encapsulated in UiO-67: Deciphering the role of the metal-organic framework. J. Am. Chem. Soc. 2020, 142, 999–1009.

    Article  Google Scholar 

  27. Yuan, S.; Feng, L.; Wang, K. C.; Pang, J. D.; Bosch, M.; Lollar, C.; Sun, Y. J.; Qin, J. S.; Yang, X. Y.; Zhang, P. et al. Stable metal-organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303.

    Article  Google Scholar 

  28. Dissegna, S.; Epp, K.; Heinz, W. R.; Kieslich, G.; Fischer, R. A. Defective metal-organic frameworks. Adv. Mater. 2018, 30, 1704501.

    Article  Google Scholar 

  29. Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J. D.; Doonan, C. J. Application of metal and metal oxide nanoparticles@MOFs. Coordin. Chem. Rev. 2016, 307, 237–254.

    Article  CAS  Google Scholar 

  30. Hermes, S.; Schröter, M. K.; Schmid, R.; Khodeir, L.; Muhler, M.; Tissler, A.; Fischer, R. W.; Fischer, R. A. Metal@MOF: Loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem., Int. Ed. 2005, 44, 6237–6241.

    Article  CAS  Google Scholar 

  31. Müller, M.; Hermes, S.; Kähler, K.; van den Berg, M. W. E.; Muhler, M.; Fischer, R. A. Loading of MOF-5 with Cu and ZnO nanoparticles by gas-phase infiltration with organometallic precursors: Properties of Cu/ZnO@MOF-5 as catalyst for methanol synthesis. Chem. Mater. 2008, 20, 4576–4587.

    Article  Google Scholar 

  32. An, B.; Li, Z.; Song, Y.; Zhang, J. Z.; Zeng, L. Z.; Wang, C.; Lin, W. B. Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2019, 2, 709–717.

    Article  CAS  Google Scholar 

  33. Zhao, M. T.; Deng, K.; He, L. C.; Liu, Y.; Li, G. D.; Zhao, H. J.; Tang, Z. Y. Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. J. Am. Chem. Soc. 2014, 136, 1738–1741.

    Article  CAS  Google Scholar 

  34. He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

    Article  CAS  Google Scholar 

  35. Reboul, J.; Furukawa, S.; Horike, N.; Tsotsalas, M.; Hirai, K.; Uehara, H.; Kondo, M.; Louvain, N.; Sakata, O.; Kitagawa, S. Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nat. Mater. 2012, 11, 717–723.

    Article  CAS  Google Scholar 

  36. Li, Y.; Lo, W. S.; Zhang, F. R.; Si, X. M.; Chou, L. Y.; Liu, X. Y.; Williams, B. P.; Li, Y. H.; Jung, S. H.; Hsu, Y. S. et al. Creating an aligned interface between nanoparticles and MOFs by concurrent replacement of capping agents. J. Am. Chem. Soc. 2021, 143, 5182–5190.

    Article  CAS  Google Scholar 

  37. Lo, W. S.; Chou, L. Y.; Young, A. P.; Ren, C. H.; Goh, T. W.; Williams, B. P.; Li, Y.; Chen, S. Y.; Ismail, M. N.; Huang, W. Y. et al. Probing the interface between encapsulated nanoparticles and metal-organic frameworks for catalytic selectivity control. Chem. Mater. 2021, 33, 1946–1953.

    Article  CAS  Google Scholar 

  38. Tian, Z.; Chen, D. L.; He, T.; Yang, P. Y.; Wang, F. F.; Zhong, Y. J.; Zhu, W. D. Theoretical evidence on the confinement effect of Pt@UiO-66-NH2 for cinnamaldehyde hydrogenation. J. Phys. Chem. C 2019, 123, 22114–22122.

    Article  CAS  Google Scholar 

  39. Cai, M. J.; Li, C. R.; He, L. Enhancing photothermal CO2 catalysis by thermal insulating substrates. Rare Met. 2020, 39, 881–886.

    Article  CAS  Google Scholar 

  40. Zheng, G. C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Plasmonic metal-organic frameworks. SmartMat, in press, DOI: https://doi.org/10.1002/smm2.1047.

  41. Yang, D. R.; Wang, G. X.; Wang, X. Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion. Sci. China Mater. 2019, 62, 1369–1373.

    Article  Google Scholar 

  42. Jiang, Z.; Xu, X. H.; Ma, Y. H.; Cho, H. S.; Ding, D.; Wang, C.; Wu, J.; Oleynikov, P.; Jia, M.; Cheng, J. et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 2020, 586, 549–554.

    Article  CAS  Google Scholar 

  43. Wu, H.; Kong, X. Y.; Wen, X. M.; Chai, S. P.; Lovell, E. C.; Tang, J. W.; Ng, Y. H. Metal-organic framework decorated cuprous oxide nanowires for long-lived charges applied in selective photocatalytic CO2 reduction to CH4. Angew. Chem., Int. Ed. 2021, 60, 8455–8459.

    Article  CAS  Google Scholar 

  44. Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

    Article  CAS  Google Scholar 

  45. Wang, S. B.; Lin, J. L.; Wang, X. C. Semiconductor-redox catalysis promoted by metal-organic frameworks for CO2 reduction. Phys. Chem. Chem. Phys. 2014, 16, 14656–14660.

    Article  CAS  Google Scholar 

  46. Liu, S. W.; Chen, F.; Li, S. T.; Peng, X. X.; Xiong, Y. Enhanced photocatalytic conversion of greenhouse gas CO2 into solar fuels over g-C3N4 nanotubes with decorated transparent ZiF-8 nanoclusters. Appl. Catal. B:Environ. 2017, 211, 1–10.

    Article  CAS  Google Scholar 

  47. Wang, S. B.; Wang, X. C. Photocatalytic CO2 reduction by CdS promoted with a zeolitic imidazolate framework. Appl. Catal. B:Environ. 2015, 162, 494–500.

    Article  CAS  Google Scholar 

  48. Yan, S. S.; Ouyang, S. X.; Xu, H.; Zhao, M.; Zhang, X. L.; Ye, J. H. Co-ZIF-9/TiO2 nanostructure for superior CO2 photoreduction activity. J. Mater. Chem. A 2016, 4, 15126–15133.

    Article  CAS  Google Scholar 

  49. Shi, L.; Wang, T.; Zhang, H. B.; Chang, K.; Ye, J. H. Electrostatic self-assembly of nanosized carbon nitride nanosheet onto a zirconium metal-organic framework for enhanced photocatalytic CO2 reduction. Adv. Funct. Mater. 2015, 25, 5360–5367.

    Article  CAS  Google Scholar 

  50. Wang, L.; Jin, P. X.; Duan, S. H.; She, H. D.; Huang, J. W.; Wang, Q. Z. In-situ incorporation of copper(II) porphyrin functionalized zirconium MOF and TiO2 for efficient photocatalytic CO2 reduction. Sci. Bull. 2019, 64, 926–933.

    Article  CAS  Google Scholar 

  51. Su, Y.; Zhang, Z.; Liu, H.; Wang, Y. Cd0.2Zn0.8S@UiO-66-NH2 nanocomposites as efficient and stable visible-light-driven photocatalyst for H2 evolution and CO2 reduction. Appl. Catal. B:Environ. 2017, 200, 448–457.

    Article  CAS  Google Scholar 

  52. Zhao, H.; Wang, X. S.; Feng, J. F.; Chen, Y. N.; Yang, X.; Gao, S. Y.; Cao, R. Synthesis and characterization of Zn2GeO4/Mg-MOF-74 composites with enhanced photocatalytic activity for CO2 reduction. Catal. Sci. Technol. 2018, 8, 1288–1295.

    Article  CAS  Google Scholar 

  53. Li, R.; Hu, J. H.; Deng, M. S.; Wang, H. L.; Wang, X. J.; Hu, Y. L.; Jiang, H. L.; Jiang, J.; Zhang, Q.; Xie, Y. et al. Integration of an inorganic semiconductor with a metal-organic framework: A platform for enhanced gaseous photocatalytic reactions. Adv. Mater. 2014, 26, 4783–4788.

    Article  CAS  Google Scholar 

  54. Mu, Q. Q.; Su, Y. H.; Wei, Z. H.; Sun, H.; Lian, Y. B.; Dong, Y. Y.; Qi, P. W.; Deng, Z.; Peng, Y. Dissecting the interfaces of MOF-coated CdS on synergized charge transfer for enhanced photocatalytic CO2 reduction. J. Catal. 2021, 397, 128–136.

    Article  CAS  Google Scholar 

  55. Chen, X.; Li, Q.; Li, J. J.; Chen, J.; Jia, H. P. Modulating charge separation via in situ hydrothermal assembly of low content Bi2S3 into UiO-66 for efficient photothermocatalytic CO2 reduction. Appl. Catal. B:Environ. 2020, 270, 118915.

    Article  CAS  Google Scholar 

  56. Chen, L. Y.; Wang, Y. X.; Yu, F. Y.; Shen, X. S.; Duan, C. Y. A simple strategy for engineering heterostructures of Au nanoparticle-loaded metal-organic framework nanosheets to achieve plasmon-enhanced photocatalytic CO2 conversion under visible light. J. Mater. Chem. A 2019, 7, 11355–11361.

    Article  CAS  Google Scholar 

  57. Choi, K. M.; Kim, D.; Rungtaweevoranit, B.; Trickett, C. A.; Barmanbek, J. T. D.; Alshammari, A. S.; Yang, P. D.; Yaghi, O. M. Plasmon-enhanced photocatalytic CO2 conversion within metal-organic frameworks under visible light. J. Am. Chem. Soc. 2017, 139, 356–362.

    Article  CAS  Google Scholar 

  58. Sun, D. R.; Liu, W. J.; Fu, Y. H.; Fang, Z. X.; Sun, F. X.; Fu, X. Z.; Zhang, Y. F.; Li, Z. H. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): A case study on M/NH2-MIL-125(Ti) (M=Pt and Au). Chem. — Eur. J. 2014, 20, 4780–4788.

    Article  CAS  Google Scholar 

  59. Feng, X. Y.; Pi, Y. H.; Song, Y.; Brzezinski, C.; Xu, Z. W.; Li, Z.; Lin, W. B. Metal-organic frameworks significantly enhance photocatalytic hydrogen evolution and CO2 reduction with earth-abundant copper photosensitizers. J. Am. Chem. Soc. 2020, 142, 690–695.

    Article  CAS  Google Scholar 

  60. Wang, S. B.; Yao, W. S.; Lin, J. L.; Ding, Z. X.; Wang, X. C. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew. Chem., Int. Ed. 2014, 53, 1034–1038.

    Article  CAS  Google Scholar 

  61. Fei, H. H.; Sampson, M. D.; Lee, Y.; Kubiak, C. P.; Cohen, S. M. Photocatalytic CO2 reduction to formate using a Mn(I) molecular catalyst in a robust metal-organic framework. Inorg. Chem. 2015, 54, 6821–6828.

    Article  CAS  Google Scholar 

  62. Zhao, J.; Wang, Q.; Sun, C. Y.; Zheng, T. T.; Yan, L. K.; Li, M. T.; Shao, K. Z.; Wang, X. L.; Su, Z. M. A hexanuclear cobalt metal-organic framework for efficient CO2 reduction under visible light. J. Mater. Chem. A 2017, 5, 12498–12505.

    Article  CAS  Google Scholar 

  63. Kong, Z. C.; Liao, J. F.; Dong, Y. J.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662.

    Article  CAS  Google Scholar 

  64. Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Encapsulating perovskite quantum dots in iron-based metal-organic frameworks (MOFs) for efficient photocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2019, 58, 9491–9495.

    Article  CAS  Google Scholar 

  65. Wang, J. W.; Qiao, L. Z.; Nie, H. D.; Huang, H. H.; Li, Y.; Yao, S.; Liu, M.; Zhang, Z. M.; Kang, Z. H.; Lu, T. B. Facile electron delivery from graphene template to ultrathin metal-organic layers for boosting CO2 photoreduction. Nat. Commun. 2021, 12, 813.

    Article  CAS  Google Scholar 

  66. Mu, Q. Q.; Zhu, W.; Li, X.; Zhang, C. F.; Su, Y. H.; Lian, Y. B.; Qi, P. W.; Deng, Z.; Zhang, D.; Wang, S. A. et al. Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Appl. Catal. B:Environ. 2020, 262, 118144.

    Article  CAS  Google Scholar 

  67. Duguet, M.; Lemarchand, A.; Benseghir, Y.; Mialane, P.; Gomez-Mingot, M.; Roch-Marchal, C.; Haouas, M.; Fontecave, M.; Mellot-Draznieks, C.; Sassoye, C. et al. Structure-directing role of immobilized polyoxometalates in the synthesis of porphyrinic Zr-based metal-organic frameworks. Chem. Commun. 2020, 56, 10143–10146.

    Article  CAS  Google Scholar 

  68. Mialane, P.; Mellot-Draznieks, C.; Gairola, P.; Duguet, M.; Benseghir, Y.; Oms, O.; Dolbecq, A. Heterogenisation of polyoxometalates and other metal-based complexes in metal-organic frameworks: From synthesis to characterisation and applications in catalysis. Chem. Soc. Rev. 2021, 50, 6152–6220.

    Article  CAS  Google Scholar 

  69. Gu, J.; Chen, W.; Shan, G. G.; Li, G.; Sun, C.; Wang, X. L.; Su, Z. The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Mater. Today Energy 2021, 21, 100760.

    Article  CAS  Google Scholar 

  70. Yang, D. R.; Ni, B.; Wang, X. Heterogeneous catalysts with well-defined active metal sites toward CO2 electrocatalytic reduction. Adv. Energy Mater. 2020, 10, 2001142.

    Article  CAS  Google Scholar 

  71. Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Wang, X. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 2021, 11.

    Google Scholar 

  72. Zhang, S. M.; Liu, N.; Wang, H. W.; Lu, Q. C.; Shi, W. X.; Wang, X. Sub-nanometer nanobelts based on titanium dioxide/zirconium dioxide-polyoxometalate heterostructures. Adv. Mater. 2021, 33, 2100576.

    Article  CAS  Google Scholar 

  73. Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Zhou, Y.; Wang, X. Freestanding millimeter-scale porphyrin-based monoatomic layers with 0.28 nm thickness for CO2 electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 18954–18959.

    Article  CAS  Google Scholar 

  74. Yang, H. Z.; Yang, D. R.; Wang, X. POM-incorporated CoO nanowires for enhanced photocatalytic syngas production from CO2. Angew. Chem., Int. Ed. 2020, 59, 15527–15531.

    Article  CAS  Google Scholar 

  75. Yang, D. R.; Yu, H. D.; He, T.; Zuo, S. W.; Liu, X. Z.; Yang, H. Z.; Ni, B.; Li, H. Y.; Gu, L.; Wang, D. et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 2019, 10, 3844.

    Article  Google Scholar 

  76. Benseghir, Y.; Lemarchand, A.; Duguet, M.; Mialane, P.; Gomez-Mingot, M.; Roch-Marchal, C.; Pino, T.; Ha-Thi, M. H.; Haouas, M.; Fontecave, M. et al. Co-immobilization of a Rh catalyst and a keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: In depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9428–9438.

    Article  CAS  Google Scholar 

  77. Wang, Y.; Xie, Y.; Deng, M. C.; Liu, T. F.; Yang, H. X. Incorporation of polyoxometalate in sulfonic acid-modified MIL-101-CR for enhanced CO2 photoreduction activity. Eur. J. Inorg. Chem. 2021, 2021, 681–687.

    Article  CAS  Google Scholar 

  78. Liu, S. M.; Zhang, Z.; Li, X. H.; Jia, H. J.; Ren, M. W.; Liu, S. X. Ti-substituted keggin-type polyoxotungstate as proton and electron reservoir encaged into metal-organic framework for carbon dioxide photoreduction. Adv. Mater. Interf. 2018, 5, 1801062.

    Article  Google Scholar 

  79. Liu, Y. N.; Chen, C. S.; Valdez, J.; Meira, D. M.; He, W. T.; Wang, Y.; Harnagea, C.; Lu, Q. Q.; Guner, T.; Wang, H. et al. Phase-enabled metal-organic framework homojunction for highly selective CO2 photoreduction. Nat. Commun. 2021, 12, 1231.

    Article  CAS  Google Scholar 

  80. Yang, C. H.; Zhu, Y. T.; Liu, J. Q.; Qin, Y. C.; Wang, H. Q.; Liu, H. L.; Chen, Y. N.; Zhang, Z. C.; Hu, W. P. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy 2020, 77, 105126.

    Article  CAS  Google Scholar 

  81. Wang, N.; Yao, K. L.; Vomiero, A.; Wang, Y. H.; Liang, H. Y. Inhibiting carbonate formation using CO2-CO-C2+ tandems. SmartMat., in press, DOI: https://doi.org/10.1002/smm2.1048.

  82. Zhou, Y.; Zheng, L. R.; Yang, D. R.; Yang, H. Z.; Lu, Q. C.; Zhang, Q. H.; Gu, L.; Wang, X. Enhancing CO2 electrocatalysis on 2D porphyrin-based metal-organic framework nanosheets coupled with visible-light. Small Methods 2021, 5, 2000991.

    Article  CAS  Google Scholar 

  83. Cai, Z.; Zhang, Y. S.; Zhao, Y. X.; Wu, Y. S.; Xu, W. W.; Wen, X. M.; Zhong, Y.; Zhang, Y.; Liu, W.; Wang, H. L. et al. Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Res. 2019, 12, 345–349.

    Article  CAS  Google Scholar 

  84. He, C. H.; Duan, D. L.; Low, J.; Bai, Y.; Jiang, Y. W.; Wang, X. Y.; Chen, S. M.; Long, R.; Song, L.; Xiong, Y. J. Cu2−xS derived copper nanoparticles: A platform for unraveling the role of surface reconstruction in efficient electrocatalytic CO2-to-C2H4 conversion. Nano Res., in press, DOI: https://doi.org/10.1007/s12274-021-3532-7.

  85. Guntern, Y. T.; Pankhurst, J. R.; Vávra, J.; Mensi, M.; Mantella, V.; Schouwink, P.; Buonsanti, R. Nanocrystal/metal-organic framework hybrids as electrocatalytic platforms for CO2 conversion. Angew. Chem., Int. Ed. 2019, 58, 12632–12639.

    Article  CAS  Google Scholar 

  86. Mukhopadhyay, S.; Shimoni, R.; Liberman, I.; Ifraemov, R.; Rozenberg, I.; Hod, I. Assembly of a metal-organic framework (MOF) membrane on a solid electrocatalyst: Introducing molecular-level control over heterogeneous CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 13423–13429.

    Article  CAS  Google Scholar 

  87. Kung, C. W.; Audu, C. O.; Peters, A. W.; Noh, H.; Farha, O. K.; Hupp, J. T. Copper nanoparticles installed in metal-organic framework thin films are electrocatalytically competent for CO2 reduction. ACS Energy Lett. 2017, 2, 2394–2401.

    Article  CAS  Google Scholar 

  88. Mian, M. R.; Redfern, L. R.; Pratik, S. M.; Ray, D.; Liu, J.; Idrees, K. B.; Islamoglu, T.; Gagliardi, L.; Farha, O. K. Precise control of Cu nanoparticle size and catalytic activity through pore templating in Zr metal-organic frameworks. Chem. Mater. 2020, 32, 3078–3086.

    Article  CAS  Google Scholar 

  89. Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; de Arquer, F. P. G.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.

    Article  CAS  Google Scholar 

  90. Thevenon, A.; Rosas-Hernández, A.; Herreros, A. M. F.; Agapie, T.; Peters, J. C. Dramatic her suppression on Ag electrodes via molecular films for highly selective CO2 to CO reduction. ACS Catal. 2021, 11, 4530–4537.

    Article  CAS  Google Scholar 

  91. Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

    Article  CAS  Google Scholar 

  92. Zhu, Z. H.; Zhao, B. H.; Hou, S. L.; Jiang, X. L.; Liang, Z. L.; Zhang, B.; Zhao, B. A facile strategy for constructing a carbon-particle-modified metal-organic framework for enhancing the efficiency of CO2 electroreduction into formate. Angew. Chem., Int. Ed. 2021, 60, 23394–23402.

    Article  CAS  Google Scholar 

  93. Xin, Z. F.; Wang, Y. R.; Chen, Y. F.; Li, W. L.; Dong, L. Z.; Lan, Y. Q. Metallocene implanted metalloporphyrin organic framework for highly selective CO2 electroreduction. Nano Energy 2020, 67, 104233.

    Article  CAS  Google Scholar 

  94. Wang, H. Q.; Chen, H.; Ni, B.; Wang, K.; He, T.; Wu, Y. L.; Wang, X. Mesoporous ZrO2 nanoframes for biomass upgrading. ACS Appl. Mater. Interfaces 2017, 9, 26897–26906.

    Article  CAS  Google Scholar 

  95. Wang, H. Q.; Liu, H. L.; Ji, Y. C.; Yang, R. Q.; Zhang, Z. F.; Wang, X.; Liu, H. Hybrid nanostructures of pit-rich TiO2 nanocrystals with Ru loading and N doping for enhanced solar water splitting. Chem. Commun. 2019, 55, 2781–2784.

    Article  CAS  Google Scholar 

  96. Wang, H. Q.; Lin, H. F.; Long, Y.; Ni, B.; He, T.; Zhang, S. M.; Zhu, H. H.; Wang, X. Titanocene dichloride (Cp2TiCl2) as a precursor for template-free fabrication of hollow TiO2 nanostructures with enhanced photocatalytic hydrogen production. Nanoscale 2017, 9, 2074–2081.

    Article  CAS  Google Scholar 

  97. Wang, H. Q.; Sun, D. H.; Lu, Q. C.; Wang, F. L.; Zhao, L. L.; Zhang, Z. F.; Wang, X.; Liu, H. Bio-inspired synthesis of mesoporous HfO2 nanoframes as reactors for piezotronic polymerization and Suzuki coupling reactions. Nanoscale 2019, 11, 5240–5246.

    Article  CAS  Google Scholar 

  98. Deng, X.; Li, R.; Wu, S. K.; Wang, L.; Hu, J. H.; Ma, J.; Jiang, W. B.; Zhang, N.; Zheng, X. S.; Gao, C. et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 10924–10929.

    Article  CAS  Google Scholar 

  99. Zhao, X.; Xu, H. T.; Wang, X. X.; Zheng, Z. Z.; Xu, Z. L.; Ge, J. P. Monodisperse metal-organic framework nanospheres with encapsulated core-shell nanoparticles Pt/Au@Pd@{Co2(oba)4(3-bpdh)2}4H2O for the highly selective conversion of CO2 to CO. ACS Appl. Mater. Interfaces 2018, 10, 15096–15103.

    Article  CAS  Google Scholar 

  100. Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.; Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett. 2016, 16, 7645–7649.

    Article  CAS  Google Scholar 

  101. Zhen, W. L.; Li, B.; Lu, G. X.; Ma, J. T. Enhancing catalytic activity and stability for CO2 methanation on Ni@MOF-5 via control of active species dispersion. Chem. Commun. 2015, 51, 1728–1731.

    Article  CAS  Google Scholar 

  102. Zhao, Z. W.; Zhou, X.; Liu, Y. N.; Shen, C. C.; Yuan, C. Z.; Jiang, Y. F.; Zhao, S. J.; Ma, L. B.; Cheang, T. Y.; Xu, A. W. Ultrasmall Ni nanoparticles embedded in Zr-based MOFs provide high selectivity for CO2 hydrogenation to methane at low temperatures. Catal. Sci. Technol. 2018, 8, 3160–3165.

    Article  CAS  Google Scholar 

  103. Chen, D. X.; Yang, W. J.; Jiao, L.; Li, L. Y.; Yu, S. H.; Jiang, H. L. Boosting catalysis of Pd nanoparticles in MOFs by pore wall engineering: The roles of electron transfer and adsorption energy. Adv. Mater. 2020, 32, 2000041.

    Article  CAS  Google Scholar 

  104. Habib, N. R.; Asedegbega-Nieto, E.; Taddesse, A. M.; Diaz, I. Non-noble MNP@MOF materials: Synthesis and applications in heterogeneous catalysis. Dalton Trans. 2021, 50, 10340–10353.

    Article  CAS  Google Scholar 

  105. Han, S.; Ciufo, R. A.; Wygant, B. R.; Keitz, B. K.; Mullins, C. B. Methanol oxidation catalyzed by copper nanoclusters incorporated in vacuum-deposited HKUST-1 thin films. ACS Catal. 2020, 10, 4997–5007.

    Article  CAS  Google Scholar 

  106. Mitsuka, Y.; Ogiwara, N.; Mukoyoshi, M.; Kitagawa, H.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Haneda, M.; Kawaguchi, S.; Kubota, Y. et al. Fabrication of integrated copper-based nanoparticles/amorphous metal-organic framework by a facile spray-drying method: Highly enhanced CO2 hydrogenation activity for methanol synthesis. Angew. Chem., Int. Ed. 2021, 60, 22283–22288.

    Article  CAS  Google Scholar 

  107. Kobayashi, H.; Taylor, J. M.; Mitsuka, Y.; Ogiwara, N.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kitagawa, H. Charge transfer dependence on CO2 hydrogenation activity to methanol in Cu nanoparticles covered with metal-organic framework systems. Chem. Sci. 2019, 10, 3289–3294.

    Article  CAS  Google Scholar 

  108. Mehla, S.; Kandjani, A. E.; Babarao, R.; Lee, A. F.; Periasamy, S.; Wilson, K.; Ramakrishna, S.; Bhargava, S. K. Porous crystalline frameworks for thermocatalytic CO2 reduction: An emerging paradigm. Energy Environ. Sci. 2021, 14, 320–352.

    Article  CAS  Google Scholar 

  109. Hu, S.; Liu, M.; Ding, F. S.; Song, C. S.; Zhang, G. L.; Guo, X. W. Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst to light olefins. J. CO2 Util. 2016, 15, 89–95.

    Article  CAS  Google Scholar 

  110. Mon, M.; Rivero-Crespo, M. A.; Ferrando-Soria, J.; Vidal-Moya, A.; Boronat, M.; Leyva-Pérez, A.; Corma, A.; Hernández-Garrido, J. C.; López-Haro, M.; Calvino, J. J. et al. Synthesis of densely packaged, ultrasmall Pt02 clusters within a thioether-functionalized MOF: Catalytic activity in industrial reactions at low temperature. Angew. Chem., Int. Ed. 2018, 57, 6186–6191.

    Article  CAS  Google Scholar 

  111. An, B.; Zeng, L. Z.; Jia, M.; Li, Z.; Lin, Z. K.; Song, Y.; Zhou, Y.; Cheng, J.; Wang, C.; Lin, W. B. Molecular iridium complexes in metal-organic frameworks catalyze CO2 hydrogenation via concerted proton and hydride transfer. J. Am. Chem. Soc. 2017, 139, 17747–17750.

    Article  CAS  Google Scholar 

  112. Kornienko, N. Operando spectroscopy of nanoscopic metal/covalent organic framework electrocatalysts. Nanoscale 2021, 13, 1507–1514.

    Article  CAS  Google Scholar 

  113. Wagner, A.; Sahm, C. D.; Reisner, E. Towards molecular understanding of local chemical environment effects in electro- and photocatalytic CO2 reduction. Nat. Catal. 2020, 3, 775–786.

    Article  CAS  Google Scholar 

  114. Endrődi, B.; Samu, A.; Kecsenovity, E.; Halmágyi, T.; Sebők, D.; Janáky, C. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 2021, 6, 439–448.

    Article  Google Scholar 

  115. Chen, G. Z.; Chen, K. J.; Fu, J. W.; Liu, M. Tracking dynamic evolution of catalytic active sites in photocatalytic CO2 reduction by in situ time-resolved spectroscopy. Rare Met. 2020, 39, 607–609.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation (No. ZR2019BB025) and the Project of “20 items of University” of Jinan (No. 2018GXRC031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiqing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 15, 2834–2854 (2022). https://doi.org/10.1007/s12274-021-3984-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3984-9

Keywords

Navigation