Skip to main content
Log in

Emerging dual-atomic-site catalysts for electrocatalytic CO2 reduction

用于电催化CO2 还原的新兴双原子位点催化剂 (DASCs)

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The electrochemical CO2 reduction reaction (CO2RR) to yield high-value added fuels and chemicals provides a promising approach towards global carbon neutrality. Constant endeavors have been devoted to the exploration of high-efficiency catalyst with rapid reaction kinetics, low energy input, and high selectivity. In addition to the maximum metal atomic utilization and unique catalytic performance of single-atom catalyst (SAC), dual-atomic-site catalysts (DASCs) offer more sophisticated and tunable atomic structure through the modulations of another adjacent metal atom, which can bring new opportunities for CO2RR as a deeper extension of SACs and have recently aroused surging interest. In this review, we highlight the recent advances on DASCs for enhancing CO2RR. First, the classification, synthesis, and identification of DASCs are provided according to the geometric structure and electronic configuration of dual-atomic active sites. Then, the catalytic applications of DASCs in CO2RR are categorized based on marriage-type, hetero-nuclear, and homo-nuclear dual-atomic sites. Particularly, the structure-activity relationship of DASCs in CO2RR is elaborately summarized through systematically analyzing the reaction pathways and the atom structures. Finally, the opportunities and challenges are proposed for inspiring the design of future DASCs with high structural accuracy and high CO2RR activity and selectivity.

摘要

用于生产高附加值燃料和化学品的电化学CO2还原反应(CO2 RR)为实现全球碳中和提供了一种有前景的方法. 近年来, 单原子催化 剂(SACs)由于金属的最大原子利用率和独特的催化性能受到越来越多 的关注. 相比之下, 除了具有单原子催化剂的上述优点外, 双原子位点 催化剂(DASCs)还可以通过调节另一种相邻金属从而实现更复杂、可 调的原子结构. 作为SAC的更深层次的延伸, DASCs可以为CO2RR带来 新的机遇, 最近引起了人们的浓厚兴趣. 本文中, 我们重点介绍了 DASCs在提升CO2RR性能方面的最新进展. 首先, 根据双原子活性位点 的几何结构和电子配置, 对DASCs的分类、合成和证实进行了讨论. 之 后, 根据结合型、异核和同核双原子位点对DASCs在CO2RR中的催化 应用进行了分类. 特别是通过系统地分析反应途径和原子结构, 详细总 结了DASCs在CO2RR中的构效关系. 最后, 提出了未来设计DASCs面临 的机遇和挑战, 以启发设计具有高结构精度和高CO2RR活性、选择性 的DASCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhou Y, Zhang J, Wang L, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 2021, 373: 315–320

    Article  CAS  Google Scholar 

  2. Siegelman RL, Kim EJ, Long JR. Porous materials for carbon dioxide separations. Nat Mater, 2021, 20: 1060–1072

    Article  CAS  Google Scholar 

  3. Jing H, Zhu P, Zheng X, et al. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv Powder Mater, 2021, 1: 100013

    Article  Google Scholar 

  4. Wang H. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res, 2022, 15: 2834–2854

    Article  CAS  Google Scholar 

  5. Li J, Abbas SU, Wang H, et al. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett, 2021, 13: 216

    Article  CAS  Google Scholar 

  6. Yang D, Wang X. 2D π-conjugated metal-organic frameworks for CO2 electroreduction. SmartMat, 2022, 3: 54–67

    Article  CAS  Google Scholar 

  7. Zhou J, Liu H, Wang H. Photothermal catalysis for CO2 conversion. Chin Chem Lett, 2022, doi: https://doi.org/10.1016/j.cclet.2022.04.018

  8. Yang C, Gao Z, Wang D, et al. Bimetallic phthalocyanine heterostructure used for highly selective electrocatalytic CO2 reduction. Sci China Mater, 2022, 65: 155–162

    Article  CAS  Google Scholar 

  9. Chen FF, Chen J, Feng YN, et al. Controlling metallic Co0 in ZIF-67-derived N-C/Co composite catalysts for efficient photocatalytic CO2 reduction. Sci China Mater, 2022, 65: 413–421

    Article  CAS  Google Scholar 

  10. Meng Y, Kuang S, Liu H, et al. Recent advances in electrochemical CO2 reduction using copper-based catalysts. Acta Physico Chim Sin, 2020, 0: 2006034–0

    Article  Google Scholar 

  11. Liu H, Zhu Y, Ma J, et al. Recent advances in atomic-level engineering of nanostructured catalysts for electrochemical CO2 reduction. Adv Funct Mater, 2020, 30: 1910534

    Article  CAS  Google Scholar 

  12. Gao Z, Li J, Zhang Z, et al. Recent advances in carbon-based materials for electrochemical CO2 reduction reaction. Chin Chem Lett, 2022, 33: 2270–2280

    Article  CAS  Google Scholar 

  13. Yang C, Zhu Y, Liu J, et al. Defect engineering for electrochemical nitrogen reduction reaction to ammonia. Nano Energy, 2020, 77: 105126

    Article  CAS  Google Scholar 

  14. Zhang S, Sun L, Fan Q, et al. Challenges and prospects of lithium-CO2 batteries. Nano Res Energy, 2022, 1: e9120001

    Article  Google Scholar 

  15. Choi C, Kwon S, Cheng T, et al. Highly active and stable stepped Cu surface for enhanced electrochemical CO2 reduction to C2H4. Nat Catal, 2020, 3: 804–812

    Article  CAS  Google Scholar 

  16. Birdja YY, Pérez-Gallent E, Figueiredo MC, et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat Energy, 2019, 4: 732–745

    Article  CAS  Google Scholar 

  17. Sun CY, Zhao ZW, Liu H, et al. Core-shell nanostructure for supra-photothermal CO2 catalysis. Rare Met, 2022, 41: 1403–1405

    Article  CAS  Google Scholar 

  18. Yang D, Zuo S, Yang H, et al. Tailoring layer number of 2D porphyrin-based MOFs towards photocoupled electroreduction of CO2. Adv Mater, 2022, 34: 2107293

    Article  CAS  Google Scholar 

  19. Yang D, Yu H, He T, et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electro-reduction of carbon dioxide. Nat Commun, 2019, 10: 3844

    Article  Google Scholar 

  20. Wang B, Chen S, Zhang Z, et al. Low-dimensional material supported single-atom catalysts for electrochemical CO2 reduction. SmartMat, 2022, 3: 84–110

    Article  CAS  Google Scholar 

  21. Zhao Q, Wang Y, Li M, et al. Organic frameworks confined Cu single atoms and nanoclusters for tandem electrocatalytic CO2 reduction to methane. SmartMat, 2022, 3: 183–193

    Article  CAS  Google Scholar 

  22. Cui X, Shi F. Selective conversion of CO2 by single-site catalysts. Acta Physico Chim Sin, 2020, 0: 2006080–0

    Article  Google Scholar 

  23. Monteiro MCO, Dattila F, López N, et al. The role of cation acidity on the competition between hydrogen evolution and CO2 reduction on gold electrodes. J Am Chem Soc, 2022, 144: 1589–1602

    Article  CAS  Google Scholar 

  24. Jiang L, Dong D, Lu YC. Design strategies for low temperature aqueous electrolytes. Nano Res Energy, 2022, 1: e9120003

    Article  Google Scholar 

  25. Wakerley D, Lamaison S, Ozanam F, et al. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat Mater, 2019, 18: 1222–1227

    Article  CAS  Google Scholar 

  26. Göttle AJ, Koper MTM. Proton-coupled electron transfer in the electrocatalysis of CO2 reduction: Prediction of sequential vs. concerted pathways using DFT. Chem Sci, 2017, 8: 458–465

    Article  Google Scholar 

  27. Nam DH, De Luna P, Rosas-Hernández A, et al. Molecular enhancement of heterogeneous CO2 reduction. Nat Mater, 2020, 19: 266–276

    Article  CAS  Google Scholar 

  28. Wang N, Yao K, Vomiero A, et al. Inhibiting carbonate formation using CO2—CO—C2+ tandems. SmartMat, 2021, 2: 423–425

    Article  Google Scholar 

  29. Jia Y, Li F, Fan K, et al. Cu-based bimetallic electrocatalysts for CO2 reduction. Adv Powder Mater, 2021, 1: 100012

    Article  Google Scholar 

  30. Ross MB, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal, 2019, 2: 648–658

    Article  CAS  Google Scholar 

  31. Gao D, Arán-Ais RM, Jeon HS, et al. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat Catal, 2019, 2: 198–210

    Article  CAS  Google Scholar 

  32. Wang N, Miao RK, Lee G, et al. Suppressing the liquid product crossover in electrochemical CO2 reduction. SmartMat, 2021, 2: 12–16

    Article  CAS  Google Scholar 

  33. Gu J, Liu S, Ni W, et al. Modulating electric field distribution by alkali cations for CO2 electroreduction in strongly acidic medium. Nat Catal, 2022, 5: 268–276

    Article  CAS  Google Scholar 

  34. Li Y, Singh M, Zhuang Z, et al. Efficient reversible CO/CO2 conversion in solid oxide cells with a phase-transformed fuel electrode. Sci China Mater, 2021, 64: 1114–1126

    Article  CAS  Google Scholar 

  35. Burdyny T, Smith WA. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions. Energy Environ Sci, 2019, 12: 1442–1453

    Article  CAS  Google Scholar 

  36. Ye K, Zhang G, Ma XY, et al. Resolving local reaction environment toward an optimized CO2-to-CO conversion performance. Energy Environ Sci, 2022, 15: 749–759

    Article  CAS  Google Scholar 

  37. Yang C, Li S, Zhang Z, et al. Organic-inorganic hybrid nanomaterials for electrocatalytic CO2 reduction. Small, 2020, 16: 2001847

    Article  CAS  Google Scholar 

  38. Meng X, Ma C, Jiang L, et al. Distance synergy of MoS2-confined rhodium atoms for highly efficient hydrogen evolution. Angew Chem Int Ed, 2020, 59: 10502–10507

    Article  CAS  Google Scholar 

  39. Yang H, Wu Y, Li G, et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J Am Chem Soc, 2019, 141: 12717–12723

    Article  CAS  Google Scholar 

  40. Liang L, Jin H, Zhou H, et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano Energy, 2021, 88: 106221

    Article  CAS  Google Scholar 

  41. Zhang H, He C, Han S, et al. Crystal facet-dependent electrocatalytic performance of metallic Cu in CO2 reduction reactions. Chin Chem Lett, 2022, 33: 3641–3649

    Article  CAS  Google Scholar 

  42. Yang J, Li W, Wang D, et al. Electronic metal-support interaction of single-atom catalysts and applications in electrocatalysis. Adv Mater, 2020, 32: 2003300

    Article  CAS  Google Scholar 

  43. Zhou J, Li L, Gao XJ, et al. Clusterphene: A new two-dimensional structure from cluster self-assembly. Nano Res, 2022, 15: 5790–5791

    Article  CAS  Google Scholar 

  44. Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat Commun, 2018, 9: 1460

    Article  Google Scholar 

  45. Di B, Peng Z, Wu Z, et al. Spatially resolved and quantitatively revealed charge transfer between single atoms and catalyst supports. J Mater Chem A, 2022, 10: 5889–5898

    Article  CAS  Google Scholar 

  46. Zhong Y, Wang S, Li M, et al. Rational design of copper-based electrocatalysts and electrochemical systems for CO2 reduction: From active sites engineering to mass transfer dynamics. Mater Today Phys, 2021, 18: 100354

    Article  CAS  Google Scholar 

  47. Yu J, Wang A, Yu W, et al. Tailoring the ruthenium reactive sites on N doped molybdenum carbide nanosheets via the anti-Ostwald ripening as efficient electrocatalyst for hydrogen evolution reaction in alkaline media. Appl Catal B-Environ, 2020, 277: 119236

    Article  CAS  Google Scholar 

  48. Lin Z, Escudero-Escribano M, Li J. Recent progress and perspectives on single-atom catalysis. J Mater Chem A, 2022, 10: 5670–5672

    Article  CAS  Google Scholar 

  49. Zhang W, Chao Y, Zhang W, et al. Emerging dual-atomic-site catalysts for efficient energy catalysis. Adv Mater, 2021, 33: 2102576

    Article  CAS  Google Scholar 

  50. Tian S, Fu Q, Chen W, et al. Carbon nitride supported Fe-2 cluster catalysts with superior performance for alkene epoxidation. Nat Commun, 2018, 9: 2353

    Article  Google Scholar 

  51. Li K, Wang W, Zheng H, et al. Visualizing highly selective electrochemical CO2 reduction on a molecularly dispersed catalyst. Mater Today Phys, 2021, 19: 100427

    Article  CAS  Google Scholar 

  52. Fang B, Xing Z, Sun D, et al. Hollow semiconductor photocatalysts for solar energy conversion. Adv Powder Mater, 2022, 1: 100021

    Article  Google Scholar 

  53. Li Y, Su H, Chan SH, et al. CO2 electroreduction performance of transition metal dimers supported on graphene: A theoretical study. ACS Catal, 2015, 5: 6658–6664

    Article  CAS  Google Scholar 

  54. Li R, Wang D. Superiority of dual-atom catalysts in electrocatalysis: One step further than single-atom catalysts. Adv Energy Mater, 2022, 12: 2103564

    Article  CAS  Google Scholar 

  55. Zhao J, Zhao J, Li F, et al. Copper dimer supported on a C2N layer as an efficient electrocatalyst for CO2 reduction reaction: A computational study. J Phys Chem C, 2018, 122: 19712–19721

    Article  CAS  Google Scholar 

  56. Chen C, Sun M, Wang K, et al. Dual-metal single-atomic catalyst: The challenge in synthesis, characterization, and mechanistic investigation for electrocatalysis. SmartMat, 2022,: doi: https://doi.org/10.1002/smm2.1085

  57. Zhang S, Wu Y, Zhang YX, et al. Dual-atom catalysts: Controllable synthesis and electrocatalytic applications. Sci China Chem, 2021, 64: 1908–1922

    Article  CAS  Google Scholar 

  58. Ji S, Chen Y, Wang X, et al. Chemical synthesis of single atomic site catalysts. Chem Rev, 2020, 120: 11900–11955

    Article  CAS  Google Scholar 

  59. Xing L, Jin Y, Weng Y, et al. Top-down synthetic strategies toward single atoms on the rise. Matter, 2022, 5: 788–807

    Article  CAS  Google Scholar 

  60. Li Y, Xia L, Fan Y, et al. Recent advances in autonomous synthesis of materials. ChemPhysMater, 2022, 1: 77–85

    Article  Google Scholar 

  61. Hou CC, Wang HF, Li C, et al. From metal-organic frameworks to single/dual-atom and cluster metal catalysts for energy applications. Energy Environ Sci, 2020, 13: 1658–1693

    Article  CAS  Google Scholar 

  62. Xie W, Li H, Cui G, et al. NiSn atomic pair on an integrated electrode for synergistic electrocatalytic CO2 reduction. Angew Chem Int Ed, 2021, 60: 7382–7388

    Article  CAS  Google Scholar 

  63. Feng M, Wu X, Cheng H, et al. Well-defined Fe-Cu diatomic sites for efficient catalysis of CO2 electroreduction. J Mater Chem A, 2021, 9: 23817–23827

    Article  CAS  Google Scholar 

  64. Ding T, Liu X, Tao Z, et al. Atomically precise dinuclear site active toward electrocatalytic CO2 reduction. J Am Chem Soc, 2021, 143: 11317–11324

    Article  CAS  Google Scholar 

  65. Gao Z, Wang C, Li J, et al. Conductive metal-organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Acta Phys-Chim Sin, 2021, 37: 2010025

    Google Scholar 

  66. Vorobyeva E, Fako E, Chen Z, et al. Atom-by-atom resolution of structure-function relations over low-nuclearity metal catalysts. Angew Chem Int Ed, 2019, 58: 8724–8729

    Article  CAS  Google Scholar 

  67. Ye W, Chen S, Lin Y, et al. Precisely tuning the number of Fe atoms in clusters on N-doped carbon toward acidic oxygen reduction reaction. Chem, 2019, 5: 2865–2878

    Article  CAS  Google Scholar 

  68. Zhang N, Zhou T, Ge J, et al. High-density planar-like Fe2N6 structure catalyzes efficient oxygen reduction. Matter, 2020, 3: 509–521

    Article  Google Scholar 

  69. Qu Y, Li Z, Chen W, et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat Catal, 2018, 1: 781–786

    Article  CAS  Google Scholar 

  70. Yan H, Lin Y, Wu H, et al. Bottom-up precise synthesis of stable platinum dimers on graphene. Nat Commun, 2017, 8: 1070

    Article  Google Scholar 

  71. Wang J, Liu W, Luo G, et al. Synergistic effect of well-defined dual sites boosting the oxygen reduction reaction. Energy Environ Sci, 2018, 11: 3375–3379

    Article  CAS  Google Scholar 

  72. Wang Y, Su H, He Y, et al. Advanced electrocatalysts with single-metal-atom active sites. Chem Rev, 2020, 120: 12217–12314

    Article  CAS  Google Scholar 

  73. Wang J, Huang Z, Liu W, et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J Am Chem Soc, 2017, 139: 17281–17284

    Article  CAS  Google Scholar 

  74. Guan A, Chen Z, Quan Y, et al. Boosting CO2 electroreduction to CH4via tuning neighboring single-copper sites. ACS Energy Lett, 2020, 5: 1044–1053

    Article  CAS  Google Scholar 

  75. Liang Z, Song L, Sun M, et al. Tunable CO/H2 ratios of electrochemical reduction of CO2 through the Zn-Ln dual atomic catalysts. Sci Adv, 2021, 7: eabl4915

    Article  CAS  Google Scholar 

  76. Zhang M, Hu Z, Gu L, et al. Electrochemical conversion of CO2 to syngas with a wide range of CO/H2 ratio over Ni/Fe binary single-atom catalysts. Nano Res, 2020, 13: 3206–3211

    Article  CAS  Google Scholar 

  77. Meng L, Zhang E, Peng H, et al. Bi/Zn dual single-atom catalysts for electroreduction of CO2 to syngas. ChemCatChem, 2022, 14: e202101801

    Article  CAS  Google Scholar 

  78. Wang L, Wang L, Du Y, et al. Progress and perspectives of bismuth oxyhalides in catalytic applications. Mater Today Phys, 2021, 16: 100294

    Article  CAS  Google Scholar 

  79. Wang YH, Jiang WJ, Yao W, et al. Advances in electrochemical reduction of carbon dioxide to formate over bismuth-based catalysts. Rare Met, 2021, 40: 2327–2353

    Article  CAS  Google Scholar 

  80. He Q, Liu D, Lee JH, et al. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew Chem Int Ed, 2020, 59: 3033–3037

    Article  CAS  Google Scholar 

  81. Hu C, Wang Y, Chen J, et al. Main-group metal single-atomic regulators in dual-metal catalysts for enhanced electrochemical CO2 reduction. Small, 2022, 18: 2201391

    Article  CAS  Google Scholar 

  82. Zeng Z, Gan LY, Bin Yang H, et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat Commun, 2021, 12: 4088

    Article  CAS  Google Scholar 

  83. Ren W, Tan X, Yang W, et al. Isolated diatomic Ni-Fe metal-nitrogen sites for synergistic electroreduction of CO2. Angew Chem Int Ed, 2019, 58: 6972–6976

    Article  CAS  Google Scholar 

  84. Yang X, Tat T, Libanori A, et al. Single-atom catalysts with bimetallic centers for high-performance electrochemical CO2 reduction. Mater Today, 2021, 45: 54–61

    Article  CAS  Google Scholar 

  85. Li Y, Shan W, Zachman MJ, et al. Atomically dispersed dual-metal site catalysts for enhanced CO2 reduction: Mechanistic Insight into active site structures. Angew Chem Int Ed, 2022, 61

  86. Pei J, Wang T, Sui R, et al. N-bridged Co—N—Ni: New bimetallic sites for promoting electrochemical CO2 reduction. Energy Environ Sci, 2021, 14: 3019–3028

    Article  CAS  Google Scholar 

  87. Huang Q, Liu H, An W, et al. Synergy of a metallic NiCo dimer anchored on a C2 N-graphene matrix promotes the electrochemical CO2 reduction reaction. ACS Sustain Chem Eng, 2019, 7: 19113–19121

    Article  CAS  Google Scholar 

  88. Yun R, Zhan F, Wang X, et al. Design of binary Cu-Fe sites coordinated with nitrogen dispersed in the porous carbon for synergistic CO2 electroreduction. Small, 2021, 17: 2006951

    Article  CAS  Google Scholar 

  89. Wang F, Xie H, Liu T, et al. Highly dispersed CuFe-nitrogen active sites electrode for synergistic electrochemical CO2 reduction at low overpotential. Appl Energy, 2020, 269: 115029

    Article  CAS  Google Scholar 

  90. Cheng H, Wu X, Feng M, et al. Atomically dispersed Ni/Cu dual sites for boosting the CO2 reduction reaction. ACS Catal, 2021, 11: 12673–12681

    Article  CAS  Google Scholar 

  91. Hao J, Zhuang Z, Hao J, et al. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv Energy Mater, 2022, 12: 2200579

    Article  CAS  Google Scholar 

  92. Zhu J, Xiao M, Ren D, et al. Quasi-covalently coupled Ni-Cu atomic pair for synergistic electroreduction of CO2. J Am Chem Soc, 2022, 144: 9661–9671

    Article  CAS  Google Scholar 

  93. Zhu W, Zhang L, Liu S, et al. Enhanced CO2 electroreduction on neighboring Zn/Co monomers by electronic effect. Angew Chem Int Ed, 2020, 59: 12664–12668

    Article  CAS  Google Scholar 

  94. Lin L, Li H, Yan C, et al. Synergistic catalysis over iron-nitrogen sites anchored with cobalt phthalocyanine for efficient CO2 electroreduction. Adv Mater, 2019, 31: 1903470

    Article  CAS  Google Scholar 

  95. Jiao J, Lin R, Liu S, et al. Copper atom-pair catalyst anchored on alloy nanowires for selective and efficient electrochemical reduction of CO2. Nat Chem, 2019, 11: 222–228

    Article  CAS  Google Scholar 

  96. Zheng QH, Chen C, Cao SM, et al. Well-dispersed porous Fe—N—C catalyst towards the high-selective and high-efficiency conversion of CO2 to CO. Chin Chem Lett, 2022,: doi: https://doi.org/10.1016/j.cclet.2022.02.078

  97. Wang Y, Park BJ, Paidi VK, et al. Precisely constructing orbital coupling-modulated dual-atom Fe pair sites for synergistic CO2 electroreduction. ACS Energy Lett, 2022, 7: 640–649

    Article  CAS  Google Scholar 

  98. Zhang N, Zhang X, Kang Y, et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction. Angew Chem Int Ed, 2021, 60: 13388–13393

    Article  CAS  Google Scholar 

  99. Cao X, Zhao L, Wulan B, et al. Atomic bridging structure of nickel-nitrogen-carbon for highly efficient electrocatalytic reduction of CO2. Angew Chem Int Ed, 2022, 61: e202113918

    CAS  Google Scholar 

  100. Li Y, Chen C, Cao R, et al. Dual-atom Ag2/graphene catalyst for efficient electroreduction of CO2 to CO. Appl Catal B-Environ, 2020, 268: 118747

    Article  CAS  Google Scholar 

  101. Chen Y, Ji S, Sun W, et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew Chem Int Ed, 2020, 59: 1295–1301

    Article  CAS  Google Scholar 

  102. Liu Y, Yang H, Fan X, et al. Promoting electrochemical reduction of CO2 to ethanol by B/N-doped sp3/sp2 nanocarbon electrode. Chin Chem Lett, 2022, 33: 4691–4694

    Article  Google Scholar 

  103. Zhang S, Qin Z, Hou Z, et al. Large-scale preparation of black phosphorus by molten salt method for energy storage. ChemPhysMater, 2022, 1: 1–5

    Article  Google Scholar 

  104. Zhao Y, Liu X, Chen D, et al. Atomic-level-designed copper atoms on hierarchically porous gold architectures for high-efficiency electrochemical CO2 reduction. Sci China Mater, 2021, 64: 1900–1909

    Article  CAS  Google Scholar 

  105. Yang CH, Nosheen F, Zhang ZC. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO2 reduction. Rare Met, 2021, 40: 1412–1430

    Article  CAS  Google Scholar 

  106. Boucher MB, Zugic B, Cladaras G, et al. Single atom alloy surface analogs in Pd0.18Cu15 nanoparticles for selective hydrogenation reactions. Phys Chem Chem Phys, 2013, 15: 12187–12196

    Article  CAS  Google Scholar 

  107. Ran N, Song E, Wang Y, et al. Dynamic coordination transformation of active sites in single-atom MoS2 catalysts for boosted oxygen evolution catalysis Energy Environ Sci, 2022, 15: 2071–2083

    Article  CAS  Google Scholar 

  108. Nasiri MB, Iranshahi F. Comprehensive unified model and simulation approach for microstructure evolution ChemPhysMater, 2022, 1: 133–147

    Article  Google Scholar 

  109. Handoko AD, Wei F, Jenndy F, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques Nat Catal, 2018, 1: 922–934

    Article  CAS  Google Scholar 

  110. Meirer F, Weckhuysen BM. Spatial and temporal exploration of heterogeneous catalysts with synchrotron radiation. Nat Rev Mater, 2018, 3: 324–340

    Article  Google Scholar 

  111. Yang J, Liu W, Xu M, et al. Dynamic behavior of single-atom catalysts in electrocatalysis: Identification of Cu-N3 as an active site for the oxygen reduction reaction J Am Chem Soc, 2021, 143: 14530–14539

    Article  CAS  Google Scholar 

  112. Gu J, Hsu CS, Bai L, et al. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science, 2019, 364: 1091–1094

    Article  CAS  Google Scholar 

  113. Mariano RG, Kang M, Wahab OJ, et al. Microstructural origin of locally enhanced CO2 electroreduction activity on gold. Nat Mater, 2021, 20: 1000–1006

    Article  CAS  Google Scholar 

  114. Xiao YH, Zhang YX, Zhai R, et al. Helical copper-porphyrinic framework nanoarrays for highly efficient CO2 electroreduction. Sci China Mater, 2022, 65: 1269–1275

    Article  CAS  Google Scholar 

  115. Zhao ZJ, Liu S, Zha S, et al. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat Rev Mater, 2019, 4: 792–804

    Article  Google Scholar 

  116. Vogt C, Weckhuysen BM. The concept of active site in heterogeneous catalysis. Nat Rev Chem, 2022, 6: 89–111

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation (ZR2019BB025), the Project of “20 items of University” of Jinan (2018GXRC031), and the National Natural Science Foundation of China (22071172).

Author information

Authors and Affiliations

Authors

Contributions

Wang H and Zhang Z proposed the topic and outline of the review paper. Qiu N and Li J collected the related information and wrote the manuscript.

Corresponding authors

Correspondence to Haiqing Wang  (王海青) or Zhicheng Zhang  (张志成).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Haiqing Wang is an assistant professor at the Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, after a postdoctoral fellowship at the Department of Chemistry, Tsinghua University. He received his PhD degree in 2015 from Nanjing Tech University. His current research focuses on nanostructure-controlled functional materials for energy and environmental applications including electro(photo)-catalytic water splitting, organics conversion, and CO2 reduction.

Zhicheng Zhang is currently a professor at the Department of Chemistry, School of Science, Tianjin University. He received his PhD degree from the College of Chemical Engineering, China University of Petroleum (Beijing) in 2012. He then worked as a postdoc at the Department of Chemistry, Tsinghua University, Beijing, China. In 2014, he worked as a research fellow at the School of Materials Science and Engineering, Nanyang Technological University, Singapore. His research interests mainly focus on the synthesis and catalytic application of metalbased nanomaterials.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, N., Li, J., Wang, H. et al. Emerging dual-atomic-site catalysts for electrocatalytic CO2 reduction. Sci. China Mater. 65, 3302–3323 (2022). https://doi.org/10.1007/s40843-022-2189-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2189-x

Keywords

Navigation