Skip to main content
Log in

Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Transition metal nitride/carbide (TMN/C) have been actively explored as low-cost hydrogen evolution reaction (HER) electrocatalysts owing to their Pt-like physical and chemical properties. Unfortunately, pure TMN/C suffers from strong hydrogen adsorption and lacks active centers for water dissociation. Herein, we developed a switchable WO3-based in situ gas—solid reaction for preparing sophisticated Fe-N doped WC and Fe-C doped WN nanoarrays. Interestingly, the switch of codoping and phase can be effectively manipulated by regulating the amount of ferrocene. Resultant Fe-C-WN and Fe-N-WC exhibit robust electrocatalytic performance for HER in alkaline and acid electrolytes, respectively. The collective collaboration of morphological, phase and electronic effects are suggested to be responsible for the superior HER activity. The smallest ∣ΔGH⋆∣ value of Fe-N-WC indicates preferable hydrogen-evolving kinetics on the Fe-N-WC surface for HER under acid condition, while Fe-C-WN is suggested to be beneficial to the adsorption and dissociation of H2O for HER in alkaline electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

    Article  Google Scholar 

  2. Li, H. Y.; Chen, S. M.; Jia, X. F.; Xu, B.; Lin, H. F.; Yang, H. Z.; Song, L.; Wang, X. Amorphous nickel-cobalt complexes hybridized with 1T-phase molybdenum disulfide via hydrazine-induced phase transformation for water splitting. Nat. Commun. 2017, 8, 15377.

    Article  CAS  Google Scholar 

  3. Han, N. N.; Yang, K. R.; Lu, Z. Y.; Li, Y. J.; Xu, W. W.; Gao, T. F.; Cai, Z.; Zhang, Y.; Batista, V. S.; Liu, W. et al. Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid. Nat. Commun. 2018, 9, 924.

    Article  Google Scholar 

  4. Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Chen, B.; Zhu, Y. H.; Gong, Y.; Saleem, F.; Xi, S. B.; Du, Y. H.; Borgna, A. et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv. Mater. 2018, 30, 1801741.

    Article  Google Scholar 

  5. Centi, G. Smart catalytic materials for energy transition. SmartMat 2020, 1, e1005.

    Article  Google Scholar 

  6. Wang, H. Q.; Xu, J. H.; Zhang, Q. B.; Hu, S. X.; Zhou, W. J.; Liu, H.; Wang, X. Super-hybrid transition metal sulfide nanoarrays of Co3S4 nanosheet/p-doped WS2 nanosheet/Co9S8 nanoparticle with Pt-like activities for robust all-pH hydrogen evolution. Adv. Funct. Mater. 2022, 32, 2112362.

    Article  CAS  Google Scholar 

  7. Niu, S. W.; Fang, Y. Y.; Rao, D. W.; Liang, G. J.; Li, S. Y.; Cai, J. Y.; Liu, B.; Li, J. M.; Wang, G. M. Reversing the nucleophilicity of active sites in CoP2 enables exceptional hydrogen evolution catalysis. Small 2022, 18, 2106870.

    Article  CAS  Google Scholar 

  8. Zhang, Z. C.; Liu, G. G.; Cui, X. Y.; Gong, Y.; Yi, D.; Zhang, Q. H.; Zhu, C. Z.; Saleem, F.; Chen, B.; Lai, Z. C. et al. Evoking ordered vacancies in metallic nanostructures toward a vacated barlow packing for high-performance hydrogen evolution. Sci. Adv. 2021, 7, eabd6647.

    Article  CAS  Google Scholar 

  9. Wang, H. Q.; Zhang, W. J.; Zhang, X. W.; Hu, S. X.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 2021, 14, 4857–4864.

    Article  CAS  Google Scholar 

  10. Liu, M. M.; Li, H. X.; Liu, S. J.; Wang, L. L.; Xie, L. B.; Zhuang, Z. C.; Sun, C.; Wang, J.; Tang, M.; Sun, S. J. et al. Tailoring activation sites of metastable distorted 1T’-phase MoS2 by Ni doping for enhanced hydrogen evolution. Nano Res. 2022, 15, 5946–5952.

    Article  CAS  Google Scholar 

  11. Li, X. P.; Huang, C.; Han, W. K.; Ouyang, T.; Liu, Z. Q. Transition metal-based electrocatalysts for overall water splitting. Chin. Chem. Lett. 2021, 32, 2597–2616.

    Article  CAS  Google Scholar 

  12. Ling, M.; Li, N.; Jiang, B. B.; Tu, R. Y.; Wu, T.; Guan, P. L.; Ye, Y.; Cheong, W. C. M.; Sun, K. A.; Liu, S. J. et al. Rationally engineered Co and N co-doped WS2 as bifunctional catalysts for pH-universal hydrogen evolution and oxidative dehydrogenation reactions. Nano Res. 2022, 15, 1993–2002.

    Article  CAS  Google Scholar 

  13. Ang, E. H.; Dinh, K. N.; Sun, X. L.; Huang, Y.; Yang, J.; Dong, Z. L.; Dong, X. C.; Huang, W.; Wang, Z. G.; Zhang, H. et al. Highly efficient and stable hydrogen production in all pH range by two-dimensional structured metal-doped tungsten semicarbides. Research 2019, 2019, 4029516.

    Article  CAS  Google Scholar 

  14. Wang, H. P.; Zhu, S.; Deng, J. W.; Zhang, W. C.; Feng, Y. Z.; Ma, J. M. Transition metal carbides in electrocatalytic oxygen evolution reaction. Chin. Chem. Lett. 2021, 32, 291–298.

    Article  CAS  Google Scholar 

  15. Zhang, B. W.; Li, C. J.; Hu, J.; Peng, D. D.; Huang, K.; Wu, J. S.; Chen, Z.; Huang, Y. Z. Cobalt tungsten phosphide with tunable W-doping as highly efficient electrocatalysts for hydrogen evolution reaction. Nano Res. 2021, 14, 4073–4078.

    Article  CAS  Google Scholar 

  16. Jin, H. Y.; Gu, Q. F.; Chen, B.; Tang, C.; Zheng, Y.; Zhang, H.; Jaroniec, M.; Qiao, S. Z. Molten salt-directed catalytic synthesis of 2D layered transition-metal nitrides for efficient hydrogen evolution. Chem 2020, 6, 2382–2394.

    Article  CAS  Google Scholar 

  17. Wang, H. Q.; Xu, X. B.; Ni, B.; Li, H. Y.; Bian, W.; Wang, X. 3D self-assembly of ultrafine molybdenum carbide confined in N-doped carbon nanosheets for efficient hydrogen production. Nanoscale 2017, 9, 15895–15900.

    Article  CAS  Google Scholar 

  18. Kundu, A.; Ma, J.; Carrete, J.; Madsen, G. K. H.; Li, W. Anomalously large lattice thermal conductivity in metallic tungsten carbide and its origin in the electronic structure. Mater. Today Phys. 2020, 13, 100214.

    Article  Google Scholar 

  19. Yan, H. J.; Tian, C. G.; Wang, L.; Wu, A. P.; Meng, M. C.; Zhao, L.; Fu, H. G. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2015, 54, 6325–6329.

    Article  CAS  Google Scholar 

  20. Lv, C. C.; Wang, X. B.; Gao, L. J.; Wang, A. J.; Wang, S. F.; Wang, R. N.; Ning, X. K.; Li, Y. G.; Boukhvalov, D. W.; Huang, Z. P. et al. Triple functions of Ni(OH)2 on the surface of WN nanowires remarkably promoting electrocatalytic activity in full water splitting. ACS Catal. 2020, 10, 13323–13333.

    Article  CAS  Google Scholar 

  21. Li, H.; Hu, M. H.; Zhang, L. Y.; Huo, L. L.; Jing, P.; Liu, B. C.; Gao, R.; Zhang, J.; Liu, B. Hybridization of bimetallic molybdenum-tungsten carbide with nitrogen-doped carbon: A rational design of super active porous composite nanowires with tailored electronic structure for boosting hydrogen evolution catalysis. Adv. Funct. Mater. 2020, 30, 2003198.

    Article  CAS  Google Scholar 

  22. Zhang, S. G.; Gao, G. H.; Zhu, H.; Cai, L. J.; Jiang, X. D.; Lu, S. L.; Duan, F.; Dong, W. F.; Chai, Y.; Du, M. L. In situ interfacial engineering of nickel tungsten carbide janus structures for highly efficient overall water splitting. Sci. Bull. 2020, 65, 640–650.

    Article  CAS  Google Scholar 

  23. Ma, M. J.; Xu, J. H.; Wang, H. Q.; Zhang, X. W.; Hu, S. X.; Zhou, W. J.; Liu, H. Multi-interfacial engineering of hierarchical CoNi2S4/WS2/Co9S8 hybrid frameworks for robust all-pH electrocatalytic hydrogen evolution. Appl. Catal. B:Environ. 2021, 297, 120455.

    Article  CAS  Google Scholar 

  24. Wang, H. Q.; Ma, M. J.; Li, J. J.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Manipulating all-pH hydrogen evolution kinetics on metal sulfides through one-pot simultaneously derived multi-interface engineering and phosphorus doping. J. Mater. Chem. A 2021, 9, 25539–25546.

    Article  CAS  Google Scholar 

  25. Zhang, Z. F.; Wang, H. Q.; Ma, M. J.; Liu, H. L.; Zhang, Z. C.; Zhou, W. J.; Liu, H. Integrating NiMoO wafer as a heterogeneous ‘turbo’ for engineering robust Ru-based electrocatalyst for overall water splitting. Chem. Eng. J. 2021, 420, 127686.

    Article  CAS  Google Scholar 

  26. Wang, H. Q.; Zhang, X. W.; Wang, J. G.; Liu, H. L.; Hu, S. X.; Zhou, W. J.; Liu, H.; Wang, X. Puffing quaternary FexCoyNi1−xyP nanoarray via kinetically controlled alkaline etching for robust overall water splitting. Sci. China Mater. 2020, 63, 1054–1064.

    Article  CAS  Google Scholar 

  27. Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.

    Article  Google Scholar 

  28. Li, Y. H.; Wang, M. L.; Yi, Y. Y.; Lu, C.; Dou, S. X.; Sun, J. Y. Metallic transition metal dichalcogenides of group VIB: Preparation, stabilization, and energy applications. Small 2021, 17, 2005573.

    Article  CAS  Google Scholar 

  29. Ma, M. J.; Feng, Z. C.; Zhang, X. W.; Sun, C. Y.; Wang, H. Q.; Zhou, W. J.; Liu, H. Progress in the preparation and application of electrocatalysts based on microorganisms as intelligent templates. Acta Phys. Chim. Sin. 2022, 38, 2106003.

    Google Scholar 

  30. Liao, L. L.; Cheng, C.; Zhou, H. Q.; Qi, Y.; Li, D. Y.; Cai, F. M.; Yu, B.; Long, R.; Yu, F. Accelerating pH-universal hydrogen-evolving activity of a hierarchical hybrid of cobalt and dinickel phosphides by interfacial chemical bonds. Mater. Today Phys. 2022, 22, 100589.

    Article  CAS  Google Scholar 

  31. Gao, Z. Q.; Wang, C. Y.; Li, J. J.; Zhu, Y. T.; Zhang, Z. C.; Hu, W. P. Conductive metal-organic frameworks for electrocatalysis: Achievements, challenges, and opportunities. Acta Phys. Chim. Sin. 2021, 37, 2010025.

    Google Scholar 

  32. Fu, H. C.; Wang, X. H.; Chen, X. H.; Zhang, Q.; Li, N. B.; Luo, H. Q. Interfacial engineering of Ni(OH)2 on W2C for remarkable alkaline hydrogen production. Appl. Catal. B:Environ. 2022, 301, 120818.

    Article  CAS  Google Scholar 

  33. Zhao, Y.; Kamiya, K.; Hashimoto, K.; Nakanishi, S. Hydrogen evolution by tungsten carbonitride nanoelectrocatalysts synthesized by the formation of a tungsten acid/polymer hybrid in situ. Angew. Chem., Int. Ed. 2013, 52, 13638–13641.

    Article  CAS  Google Scholar 

  34. Chen, Y. D.; Zheng, Y.; Yue, X.; Huang, S. M. Hydrogen evolution reaction in full pH range on nickel doped tungsten carbide nanocubes as efficient and durable non-precious metal electrocatalysts. Int. J. Hydrogen Energy 2020, 45, 8695–8702.

    Article  CAS  Google Scholar 

  35. Wu, A. P.; Gu, Y.; Yang, B. R.; Wu, H.; Yan, H. J.; Jiao, Y. Q.; Wang, D. X.; Tian, C. G.; Fu, H. G. Porous cobalt/tungsten nitride polyhedra as efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2020, 8, 22938–22946.

    Article  CAS  Google Scholar 

  36. Xu, X. B.; Nosheen, F.; Wang, X. Ni-decorated molybdenum carbide hollow structure derived from carbon-coated metal-organic framework for electrocatalytic hydrogen evolution reaction. Chem. Mater. 2016, 28, 6313–6320.

    Article  CAS  Google Scholar 

  37. Li, Y. C.; Xia, L. L.; Fan, Y. M.; Wang, Q. Y.; Hu, M. Recent advances in autonomous synthesis of materials. ChemPhysMater 2022, 1, 77–85.

    Article  Google Scholar 

  38. Zhang, S. J.; Qin, Z. L.; Hou, Z. G.; Ye, J. J.; Xu, Z. B.; Qian, Y. T. Large-scale preparation of black phosphorus by molten salt method for energy storage. ChemPhysMater 2022, 1, 1–5.

    Article  Google Scholar 

  39. Cui, Y. L. S.; Tan, X.; Xiao, K. F.; Zhao, S. L.; Bedford, N. M.; Liu, Y. F.; Wang, Z. C.; Wu, K. H.; Pan, J.; Saputera, W. H. et al. Tungsten oxide/carbide surface heterojunction catalyst with high hydrogen evolution activity. ACS Energy Lett. 2020, 5, 3560–3568.

    Article  CAS  Google Scholar 

  40. Ma, F. H.; Wang, S. H.; Gong, X. Q.; Liu, X. L.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Cheng, H. F.; Dai, Y.; Zheng, Z. K. et al. Highly efficient electrocatalytic hydrogen evolution coupled with upcycling of microplastics in seawater enabled via Ni3N/W5N4 janus nanostructures. Appl. Catal. B:Environ. 2022, 307, 121198.

    Article  CAS  Google Scholar 

  41. Zhang, Q.; Luo, F.; Long, X.; Yu, X. X.; Qu, K. G.; Yang, Z. H. N, P doped carbon nanotubes confined WN-Ni Mott-Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries. Appl. Catal. B:Environ. 2021, 298, 120511.

    Article  CAS  Google Scholar 

  42. Yu, H. M.; Yang, X.; Xiao, X.; Chen, M.; Zhang, Q. H.; Huang, L.; Wu, J. B.; Li, T. Q.; Chen, S. M.; Song, L. et al. Atmospheric-pressure synthesis of 2D nitrogen-rich tungsten nitride. Adv. Mater. 2018, 30, 1805655.

    Article  Google Scholar 

  43. Zhu, Y. P.; Chen, G.; Zhong, Y. J.; Zhou, W.; Shao, Z. P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2018, 5, 1700603.

    Article  Google Scholar 

  44. Emin, S.; Altinkaya, C.; Semerci, A.; Okuyucu, H.; Yildiz, A.; Stefanov, P. Tungsten carbide electrocatalysts prepared from metallic tungsten nanoparticles for efficient hydrogen evolution. Appl. Catal. B:Environ. 2018, 236, 147–153.

    Article  CAS  Google Scholar 

  45. Zhao, B. H.; Sun, M. Y.; Chen, F. P.; Shi, Y. M.; Yu, Y. F.; Li, X. G.; Zhang, B. Unveiling the activity origin of iron nitride as catalytic material for efficient hydrogenation of CO2 to C2+ hydrocarbons. Angew. Chem., Int. Ed. 2021, 60, 4496–4500.

    Article  CAS  Google Scholar 

  46. Jin, Y.; Zhang, Z.; Yang, H.; Wang, P. T.; Shen, C. Q.; Cheng, T.; Huang, X. Q.; Shao, Q. Boosting hydrogen production with ultralow working voltage by selenium vacancy-enhanced ultrafine platinum-nickel nanowires. SmartMat 2022, 3, 130–141.

    Article  CAS  Google Scholar 

  47. Lu, T. Y.; Li, T. F.; Shi, D. S.; Sun, J. L.; Pang, H.; Xu, L.; Yang, J.; Tang, Y. W. In situ establishment of Co/MoS2 heterostructures onto inverse opal-structured N, S-doped carbon hollow nanospheres: Interfacial and architectural dual engineering for efficient hydrogen evolution reaction. SmartMat 2021, 2, 591–602.

    Article  CAS  Google Scholar 

  48. Jing, H. Y.; Zhu, P.; Zheng, X. B.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Theory-oriented screening and discovery of advanced energy transformation materials in electrocatalysis. Adv. Powder Mater. 2022, 1, 100013.

    Article  Google Scholar 

  49. Nasiri, M. B.; Iranshahi, F. Comprehensive unified model and simulation approach for microstructure evolution. ChemPhysMater 2022, 1, 133–147.

    Article  Google Scholar 

  50. Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy, 2022, 1, e9120017.

    Article  Google Scholar 

  51. Qi, D. F.; Lv, F.; Wei, T. R.; Jin, M. M.; Meng, G.; Zhang, S. S.; Liu, Q.; Liu, W. X.; Ma D.; Hamdy, M. S. et al. High-efficiency electrocatalytic NO reduction to NH3 by nanoporous VN. Nano Res. Energy, 2022, 1, e9120022.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Shandong Provincial Natural Science Foundation (No. ZR2019BB025), the National Natural Science Foundation of China (Nos. 21976014 and U1930402), The Fundamental Research Funds for the Central Universities (FRF-TP-20-11B and FRF-BR-20-02B), and the generous computer time from TianHe2-JK Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiqing Wang, Shuxian Hu or Hong Liu.

Electronic Supplementary Material

12274_2022_4901_MOESM1_ESM.pdf

Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Wang, F., Wang, H. et al. Ferrocene-induced switchable preparation of metal-nonmetal codoped tungsten nitride and carbide nanoarrays for electrocatalytic HER in alkaline and acid media. Nano Res. 16, 2085–2093 (2023). https://doi.org/10.1007/s12274-022-4901-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4901-6

Keywords

Navigation