Skip to main content
Log in

Nanodiamond: a promising metal-free nanoscale material in photocatalysis and electrocatalysis

  • Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Benefiting from its surface-rich functional groups, eco-friendliness, impressive electrochemical properties, excellent light absorption, structural tunability at the atomic/morphological level, and ultra-high stability under harsh conditions, nanodiamond has emerged as a promising carbon-based non-metallic material in the field of energy conversion such as electrocatalysis and photocatalysis. Furthermore, nanodiamond, as a new generation of green catalysts, can overcome the poisoning of catalysts by complex pollutants in advanced oxidation processes, thus effectively removing organic matter from water, which is unparalleled in reducing the cost of water purification and avoiding secondary cross-contamination of water by traditional heavy metal-based catalysts. Here, we review the research and development of nanodiamonds as major electrocatalysts and photocatalysts for energy conversion and for air/water treatment for environmental remediation. The relevant properties, trimming strategy, mechanistic understanding, and design principles of nanodiamond as a catalyst are described, as well as the challenges and prospects of this emerging field.

摘要

受益于表面丰富的官能团、生态友好性、独特的电化学性能、优异的光吸收性、原子/形貌层面的结构可调性以及在恶劣反应条件下的超高稳定性, 纳米金刚石在电催化和光催化等能源转换领域逐渐成为一种有前景的碳基非金属材料。此外, 纳米金刚石作为新一代绿色催化剂, 还可以克服高级氧化过程中复杂污染物对催化剂的毒害, 从而有效去除水中的有机物, 在降低水净化成本和避免传统重金属基催化剂对水的二次交叉污染方面具有无可比拟的优势。在此, 我们回顾了纳米金刚石作为主要的电催化剂和光催化剂在能源转换和空气/水处理等环境修复方面的研究和发展。综述了纳米金刚石基催化剂的相关性能、改性策略、机理阐释和设计原则, 以及总结了这一新兴领域的挑战和前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2

Reproduced with permission from Ref. [67]. Copyright 2008, AIP Publishing. b Cyclic voltammograms for (I) UNCD10, (II) BDD, (III) GC, and (IV) UNCD0 materials for 1 × 10−3 M [Fe(CN)6]3−/4− in 0.1 mol·L−1 KCl solution with a scan rate of 50 mV·s−1 at different carbon electrodes. Reproduced with permission from Ref. [68]. Copyright 2013, Elsevier. c UV-VIS-NIR absorption spectra of ND powders with different sp3 contents, and (inset) photographic images of respective powders. Reproduced with permission from Ref. [61]. Copyright 2001, Springer. d Core–shell structure of nanodiamond, hybridized forms of carbon, and various chemical functional groups on surface. Reproduced with permission from Ref. [66]. Copyright 2006, American Chemical Society

Fig. 3

Reproduced with permission from Ref. [102], Copyright 2017, American Chemical Society. b Synthesis of diamond aerogel from amorphous carbon aerogel precursor under HTHP: (i) schematic diagram showing a 1070-nm heating laser or polarized 532-nm Raman and photoluminescence (PL) laser focused into pressurized diamond anvil cell (DAC), which is loaded with a carbon aerogel precursor, ruby for pressure measurements, and solid argon pressure media, contained by a rhenium gasket. CCD, charge-coupled device (NF, notch filter; HLB, holographic beamsplitter cube); (ii) schematic diagram of nanodiamond synthesis inside sample chamber using adamantane as a molecular “seed,” tetracosane as alkane carbon source, and GeI4 as an initiator. Reproduced with permission from Ref. [103]. Copyright 2020, Elsevier. c (i) Detonation process in which a mixture of 60% C6H2(NO2)3CH3 and 40% C3H6N6O6 is detonated in a metal chamber filled with gas or water yielding 4–5-nm sized nanodiamonds; (ii) schematic diagram describing synthesis of nanodiamonds upon propagation of shock wave; (I) detonation method which leads to splitting of carbon precursor, (II) graphite or explosive molecules; (III) pressure region which is necessary to form the diamond phase; (IV) expandation of products of detonation; (V) condensation and crystallization; (VI) nanoclusters; (VII) agglomeration due to that the nanodiamonds finally grow and crystallize. Reproduced with permission from Ref. [104]. Copyright 2012, Nature. d Experimental setup for PLA in liquid water, where UV laser output is focused through a quartz lens (focal length of f = 40 cm) and irradiates pyrolytic graphite target. Ablated particles are suspended in water. Reproduced with permission from Ref. [105]. Copyright 2016, Nature

Fig. 4
Fig. 5

Reproduced with permission from Ref. [130]. Copyright 2019, Elsevier

Fig. 6

Reproduced with permission from Ref. [173]. Copyright 2019, Wiley

Fig. 7

Reproduced with permission from Ref. [210]. Copyright 2022, Elsevier

Fig. 8

Reproduced with permission from Ref. [249]. Copyright 2014, Wiley. b Electrochemical performance of different electrodes by mean of an LSV scan with a scan rate of 0.02 V·s−1 in 0.5 mol·L−1 KCl aqueous electrolyte before and after CO2 saturation; c Faradaic efficiency of CO2 RR on different electrodes; d HCOOH on electrodes with different boron doping/sp2 contents and corresponding potential, under a constant current density of − 2 mA·cm−2 for an 1 h reduction. Reproduced with permission from Ref. [200]. Copyright 2020, Elsevier

Fig. 9

Reproduced with permission from Ref. [184]. Copyright 2015, American Chemical Society. d Free energy diagram of a possible pathway and energetically favorable structures for elementary steps for electrochemical CO2 RR on (111) facet of BNDD, where gray, pink, blue, red, and white balls represent C, B, N, O, H atoms, respectively; e Faradaic efficiencies for CH3CH2OH during 16 consecutive runs for CO2 reduction on BND3 at −1.0 V; f Faradaic efficiencies for CO2 RR on NDD, BDD, BND1, BND2, and BND3 at −1.0 V. Reproduced with permission from Ref. [245]. Copyright 2017, Wiley

Fig. 10

Reproduced with permission from Ref. [250]. Copyright 2020, Nature

Fig. 11

Reproduced with permission from Ref. [252]. Copyright 2018, Springer

Fig. 12

Reproduced with permission from Ref. [164]. Copyright 2020, American Chemical Society. d SECCM topography and current images of H-BDD single particles with (100) orientated upward, respectively, with scan sizes of 18 μm × 9 μm and 15 μm × 7.5 μm, respectively, where applied voltage during electrochemical measurement was + 0.5 V vs. Ag/AgCl, both were filled with 4 mmol·L−1 K4[Fe(CN)6] in 0.1 mol·L−1 KCl. Reproduced with permission from Ref. [266]. Copyright 2021, American Chemical Society. e Plot of corresponding current density at 0.0 V vs. Ag QRE against scan rate for O-BDD (red circle open) and H-BDD (black square open) in 0.5 mol·L−1 H2SO4. Reproduced with permission from Ref. [164]. f Cyclic voltammograms for UNCDx films grown in (Ar–xN2)/CH4 (2.0%) plasma, with x = 3.4%, 5.0%, 10%, 20%, and 25% for 0.1 mol·L−1 HClO4 in H2O solution with a scan rate of 50 mV·A·s−1 at different carbon electrodes, showing oxygen/hydrogen evolution process. Reproduced with permission from Ref. [68]. Copyright 2013, Elsevier

Fig. 13

Reproduced with permission from Ref. [277]. Copyright 2016, Wiley

Fig. 14

Reproduced with permission from Ref. [278]. Copyright 2018, Wiley

Fig. 15

Reproduced with permission from Ref. [177]. Copyright 2017, American Chemical Society

Fig. 16

Reproduced with permission from Ref. [295]. Copyright 2013, Royal Society of Chemical

Fig. 17

Reproduced with permission from Ref. [297]. Copyright 2022, IOP Publishing

Fig. 18

Reproduced with permission from Ref. [304]. Copyright 2021, Elsevier. b Mechanism of a radical pathway of persulfate activation process occurred at annealed nanodiamond; c scheme diagram of radical and non-radical pathways revealed at G-ND. Reproduced with permission from Ref. [308]. Copyright 2017, Elsevier

Fig. 19

Reproduced with permission from Ref. [322]. Copyright 2017, Royal Society of Chemical. c Schematic representation of persulfate reaction pathway on BDD/BCNW electrode (inset); d SEM images of BDD/BCNW grown on Nb; e cyclic voltammograms of planar BDD and BDDNW electrodes in a 0.5 mol·L−1 H2SO4; f TOC, phenol removal (inset) curves for phenol oxidation on different electrodes; g residual COD values, as a function of j (2.5 and 15.0 mA·cm−2), after 40-min electrolysis at different anodic electrode materials in EO tests at 25 °C. Reproduced with permission from Ref. [319]. Copyright 2022, Elsevier

Fig. 20

Reproduced with permission from Ref. [331]. Copyright 2022, Elsevier. b Time-resolved phenol removal at surface-modified NDs and (inset) HRTEM image of G-ND samples; c G-ND annealed at different temperatures in presence of PDS; d, e phenol removal by carbon-materials removal of PDS. Reproduced with permission from Ref. [324]. Copyright 2016, American Chemical Society

Fig. 21

Reproduced with permission from Ref. [328]. Copyright 2022, Elsevier

Similar content being viewed by others

References

  1. Kumar A, Kumar A, Krishnan V. Perovskite oxide based materials for energy and environment-oriented photocatalysis. ACS Catal. 2020;10(17):10253. https://doi.org/10.1021/acscatal.0c02947.

    Article  CAS  Google Scholar 

  2. Parvulescu VI, Epron F, Garcia H, Granger P. Recent progress and prospects in catalytic water treatment. Chem Rev. 2022;122(3):2981. https://doi.org/10.1021/acs.chemrev.1c00527.

    Article  CAS  PubMed  Google Scholar 

  3. Jayaraman T, Murthy AP, Elakkiya V, Chandrasekaran S, Nithyadharseni P, Khan Z, Ashokkumar M. Recent development on carbon based heterostructures for their applications in energy and environment: a review. J Ind Eng Chem. 2018;64:16. https://doi.org/10.1016/j.jiec.2018.02.029.

    Article  CAS  Google Scholar 

  4. Xue D, Xia H, Yan W, Zhang J, Mu S. Defect engineering on carbon-based catalysts for electrocatalytic CO2 reduction. Nano-Micro Lett. 2021. https://doi.org/10.1007/s40820-020-00538-7.

    Article  Google Scholar 

  5. Wu Z, Zhao Y, Jin W, Jia B, Wang J, Ma T. Recent progress of vacancy engineering for electrochemical energy conversion related applications. Adv Funct Mater. 2021;31(9):2009070. https://doi.org/10.1002/adfm.202009070.

    Article  CAS  Google Scholar 

  6. Hu C, Xiao Y, Zou Y, Dai L. Carbon-based metal-free electrocatalysis for energy conversion, energy storage, and environmental protection. Electrochem Energy R. 2018;1(1):84. https://doi.org/10.1007/s41918-018-0003-2.

    Article  CAS  Google Scholar 

  7. Madima N, Mishra SB, Inamuddin I, Mishra AK. Carbon-based nanomaterials for remediation of organic and inorganic pollutants from wastewater. a review. Environ Chem Lett. 2020;18(4):1169. https://doi.org/10.1007/s10311-020-01001-0.

    Article  CAS  Google Scholar 

  8. Li M, Han N, Zhang X, Wang S, Jiang M, Bokhari A, Show PL. Perovskite oxide for emerging photo(electro)catalysis in energy and environment. Environ Res. 2022;205:221222112544. https://doi.org/10.1016/j.envres.2021.112544.

    Article  CAS  PubMed  Google Scholar 

  9. Peng W, Feng Y, Yan X, Hou F, Wang L, Liang J. Multiatom catalysts for energy-related electrocatalysis. Adv Sustain Syst. 2021;5(3):2000213. https://doi.org/10.1002/adsu.202000213.

    Article  CAS  Google Scholar 

  10. Chen Z, Liu Y, Wei W, Ni B. Recent advances in electrocatalysts for halogenated organic pollutant degradation. Environ Sci Nano. 2019;6(8):2332. https://doi.org/10.1039/c9en00411d.

    Article  CAS  Google Scholar 

  11. Wang T, Nie C, Ao Z, Wang S, An T. Recent progress in g-C3N4 quantum dots: synthesis, properties and applications in photocatalytic degradation of organic pollutants. J Mater Chem A. 2020;8(2):485. https://doi.org/10.1039/C9TA11368A.

    Article  CAS  Google Scholar 

  12. Wang C, Sun Z, Zheng Y, Hu YH. Recent progress in visible light photocatalytic conversion of carbon dioxide. J Mater Chem A, Mater Renew Sustain Energy. 2019;7(3):865. https://doi.org/10.1039/c8ta09865d.

    Article  CAS  Google Scholar 

  13. Zhang B, Jiang Y, Gao M, Ma T, Sun W, Pan H. Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction. Nano Energy. 2021;80:105504. https://doi.org/10.1016/j.nanoen.2020.105504.

    Article  CAS  Google Scholar 

  14. Li Y, Tsang SCE. Recent progress and strategies for enhancing photocatalytic water splitting. Mater Today Sustain. 2020;9: 100032. https://doi.org/10.1016/j.mtsust.2020.100032.

    Article  Google Scholar 

  15. Ali A, Shen PK. Recent progress in graphene-based nanostructured electrocatalysts for overall water splitting. Electrochem Energy R. 2020;3(2):370. https://doi.org/10.1007/s41918-020-00066-3.

    Article  CAS  Google Scholar 

  16. Wang S, Chen S, Ma L, Zapien JA. Recent progress in cobalt-based carbon materials as oxygen electrocatalysts for zinc-air battery applications. Mater Today Energy. 2021;20: 100659. https://doi.org/10.1016/j.mtener.2021.100659.

    Article  CAS  Google Scholar 

  17. Govindaraju S, Arumugasamy SK, Chellasamy G, Yun K. Zn-MOF decorated bio activated carbon for photocatalytic degradation, oxygen evolution and reduction catalysis. J Hazard Mater. 2022;421:126720. https://doi.org/10.1016/j.jhazmat.2021.126720.

    Article  CAS  PubMed  Google Scholar 

  18. Long X, Qiu W, Wang Z, Wang Y, Yang S. Recent advances in transition metal–based catalysts with heterointerfaces for energy conversion and storage. Mater Today Chem. 2019;11:16. https://doi.org/10.1016/j.mtchem.2018.09.003.

    Article  CAS  Google Scholar 

  19. Yu LH, Tao X, Feng SR, Liu JT, Zhang LL, Zhao GZ, Zhu G. Recent development of three-dimension printed graphene oxide and MXene-based energy storage devices. Tungsten. 2022. https://doi.org/10.1007/s42864-022-00181-2.

  20. Hu C, Qu J, Xiao Y, Zhao S, Chen H, Dai L. Carbon nanomaterials for energy and biorelated catalysis: recent advances and looking forward. Acs Central Sci. 2019;5(3):389. https://doi.org/10.1021/acscentsci.8b00714.

    Article  CAS  Google Scholar 

  21. Liu X, Dai L. Carbon-based metal-free catalysts. Nat Rev Mater. 2016. https://doi.org/10.1038/natrevmats.2016.64.

    Article  Google Scholar 

  22. Wang Y, Zhang C, Li X, Gao T, Wang X. Metal-free carbon-based nanomaterials for electrochemical nitrogen and carbon dioxide reductions. Mater Res Bull. 2021;140:111294. https://doi.org/10.1016/j.materresbull.2021.111294.

  23. Paul R, Zhu L, Chen H, Qu J, Dai L. Recent advances in carbon-based metal-free electrocatalysts. Adv Mater. 2019;31(31):1806403. https://doi.org/10.1002/adma.201806403.

    Article  CAS  Google Scholar 

  24. Liu D, Dai L, Lin X, Chen JF, Zhang J, Feng X, Dai S. Chemical approaches to carbon-based metal-free catalysts. Adv Mater. 2019;31(13):1804863. https://doi.org/10.1002/adma.201804863.

    Article  CAS  Google Scholar 

  25. Zhang L, Lin CY, Zhang D, Gong L, Zhu Y, Zhao Z, Xia Z. Guiding principles for designing highly efficient metal-free carbon catalysts. Adv Mater. 2019;31(13):1805252. https://doi.org/10.1002/adma.201805252.

    Article  CAS  Google Scholar 

  26. Burmeister D, Trunk MG, Bojdys MJ. Development of metal-free layered semiconductors for 2D organic field-effect transistors. Chem Soc Rev. 2021;5(2):11559–76. https://doi.org/10.1039/d1cs00497b.

    Article  CAS  Google Scholar 

  27. Yeh C, Teng P, Chiu Y, Hsiao W, Hsu SSH, Chiu P. Gigahertz field-effect transistors with cmos-compatible transfer-free graphene. Acs Appl Mater Inter. 2019;11(6):6336. https://doi.org/10.1021/acsami.8b16957.

    Article  CAS  Google Scholar 

  28. Zhao S, Wang DW, Amal R, Dai L. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv Mater. 2019;31(9):1801526. https://doi.org/10.1002/adma.201801526.

    Article  CAS  Google Scholar 

  29. Hu C, Dai Q, Dai L. Multifunctional carbon-based metal-free catalysts for advanced energy conversion and storage. Cell Rep Phys Sci. 2021;2(2):100328. https://doi.org/10.1016/j.xcrp.2021.100328.

    Article  CAS  Google Scholar 

  30. Rocha RP, Pereira MFR, Figueiredo JL. Metal-free carbon materials as catalysts for wet air oxidation. Catal Today. 2020;356:189. https://doi.org/10.1016/j.cattod.2019.04.047.

    Article  CAS  Google Scholar 

  31. Zhao Q, Mao Q, Zhou Y, Wei J, Liu X, Yang J, Tang L. Metal-free carbon materials-catalyzed sulfate radical-based advanced oxidation processes: a review on heterogeneous catalysts and applications. Chemosphere. 2017;189:224. https://doi.org/10.1016/j.chemosphere.2017.09.042.

    Article  CAS  PubMed  Google Scholar 

  32. Luo Y, Li Z, Zhu C, Cai X, Qu L, Du D, Lin Y. Graphene-like metal-free 2d nanosheets for cancer imaging and theranostics. Trends Biotechnol. 2018;36(11):1145. https://doi.org/10.1016/j.tibtech.2018.05.012.

    Article  CAS  PubMed  Google Scholar 

  33. Han S, Sun J, He S, Tang M, Chai R. The application of graphene-based biomaterials in biomedicine. Am J Transl Res. 2019;11(6):3246.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev. 2013;42(7):2824. https://doi.org/10.1039/c2cs35335k.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Yang P, Zheng L, Shi X, Zheng H. Carbon nanomaterials with sp2 or/and sp3 hybridization in energy conversion and storage applications: a review. Energy Storage Mater. 2020;26:349. https://doi.org/10.1016/j.ensm.2019.11.006.

    Article  Google Scholar 

  36. Yang Z, Ren J, Zhang Z, Chen X, Guan G, Qiu L, Peng H. Recent advancement of nanostructured carbon for energy applications. Chem Rev. 2015;115(11):5159. https://doi.org/10.1021/cr5006217.

    Article  CAS  PubMed  Google Scholar 

  37. Rahman A, Ali I, Al Zahrani SM, Eleithy RH. A review of the applications of nanocarbon polymer composites. Nano. 2011;6(03):185. https://doi.org/10.1142/S179329201100255X.

    Article  CAS  Google Scholar 

  38. Greil P. Perspectives of nano-carbon based engineering materials. Adv Eng Mater. 2015;17(2):124. https://doi.org/10.1002/adem.201400110.

    Article  CAS  Google Scholar 

  39. Nunn N, Torelli M, McGuire G, Shenderova O. Nanodiamond: a high impact nanomaterial. Curr Opin Solid State Mater Sci. 2017;21(1):1. https://doi.org/10.1016/j.cossms.2016.06.008.

    Article  CAS  Google Scholar 

  40. Remiš T, Bělský P, Kovářík T, Kadlec J, Ghafouri Azar M, Medlín R, Sadasivuni KK. Study on structure, thermal behavior, and viscoelastic properties of nanodiamond-reinforced poly (vinyl alcohol) nanocomposites. Polymers-Basel. 2021;13(9):1426. https://doi.org/10.3390/polym13091426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Williams OA, Nesládek M. Growth and properties of nanocrystalline diamond films. Physica Status Solidi (a). 2006;203(13):3375. https://doi.org/10.1002/pssa.200671406.

    Article  CAS  Google Scholar 

  42. Williams OA. Nanocrystalline diamond. Diam Relat Mater. 2011;20(5–6):621. https://doi.org/10.1016/j.diamond.2011.02.015.

    Article  CAS  Google Scholar 

  43. Varley TS, Hirani M, Harrison G, Holt KB. Nanodiamond surface redox chemistry: influence of physicochemical properties on catalytic processes. Faraday Discuss. 2014;172:349. https://doi.org/10.1039/c4fd00041b.

    Article  CAS  PubMed  Google Scholar 

  44. Camacho-Mojica DC, Ha J, Min SK, Vianello R, Ruoff RS. Proton affinity and gas phase basicity of diamandoid molecules: diamantane to C131H116. Phys Chem Chem Phys. 2022;24(5):3470. https://doi.org/10.1039/D1CP04177K.

    Article  CAS  PubMed  Google Scholar 

  45. Skrobas K, Stefanska-Skrobas K, Stelmakh S, Gierlotka S, Palosz B. Surface free energy of diamond nanocrystals - a molecular dynamics study of its size dependence. Phys Chem Chem Phys. 2021;23(18):11075. https://doi.org/10.1039/d1cp00282a.

    Article  CAS  PubMed  Google Scholar 

  46. Huynh VT, Pearson S, Noy J, Abboud A, Utama RH, Lu H, Stenzel MH. Nanodiamonds with surface grafted polymer chains as vehicles for cell imaging and cisplatin delivery: enhancement of cell toxicity by poegmema coating. Acs Macro Lett. 2013;2(3):246. https://doi.org/10.1021/mz4000199.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang T, Ma L, Wang L, Xu F, Wei Q, Wang W, Chu Z. Scalable fabrication of clean nanodiamondsvia salt-assisted air oxidation: implications for sensing and imaging. Acs Appl Nano Mater. 2021;4(9):9223. https://doi.org/10.1021/acsanm.1c01751.

    Article  CAS  Google Scholar 

  48. Navalón S, Dhakshinamoorthy A, Álvaro M, García H. Diamond nanoparticles in heterogeneous catalysis. Chem Mater. 2020;32(10):4116. https://doi.org/10.1021/acs.chemmater.0c00204.

    Article  CAS  Google Scholar 

  49. Liu B, Zheng Y, Peng H, Ji B, Yang Y, Tang Y, Zhang W. Nanostructured and boron-doped diamond as an electrocatalyst for nitrogen fixation. Acs Energy Lett. 2020;5(8):2590. https://doi.org/10.1021/acsenergylett.0c01317.

    Article  CAS  Google Scholar 

  50. Qin J, Yang X, Lv C, Li Y, Chen X, Zhang Z, Shan C. Humidity sensors realized via negative photoconductivity effect in nanodiamonds. J Phys Chem Lett. 2021;12(16):4079. https://doi.org/10.1021/acs.jpclett.1c01011.

    Article  CAS  PubMed  Google Scholar 

  51. Jariwala DH, Patel D, Wairkar S. Surface functionalization of nanodiamonds for biomedical applications. Mater Sci Eng C. 2020;113:110996. https://doi.org/10.1016/j.msec.2020.110996.

    Article  CAS  Google Scholar 

  52. Vervald AM, Burikov SA, Scherbakov AM, Kudryavtsev OS, Kalyagina NA, Vlasov II, Dolenko TA. Boron-doped nanodiamonds as anticancer agents: en route to hyperthermia/thermoablation therapy. Acs Biomater Sci Eng. 2020;6(8):4446. https://doi.org/10.1021/acsbiomaterials.0c00505.

    Article  CAS  PubMed  Google Scholar 

  53. Segawa TF, Shames AI. How to identify, attribute, and quantify triplet defects in ensembles of small nanoparticles. J Phys Chem Lett. 2020;11(17):7438. https://doi.org/10.1021/acs.jpclett.0c01922.

    Article  CAS  PubMed  Google Scholar 

  54. Yavkin BV, Zverev DG, Mamin GV, Gafurov MR, Orlinskii SB. Influence of the chemical modification of the nanodiamond surface on electron paramagnetic resonance/electron-nuclear double resonance spectra of intrinsic nitrogen defects. J Phys Chem C. 2019;123(36):22384. https://doi.org/10.1021/acs.jpcc.9b06329.

    Article  CAS  Google Scholar 

  55. Alkahtani M, Lang J, Naydenov B, Jelezko F, Hemmer P. Growth of high-purity low-strain fluorescent nanodiamonds. ACS Photonics. 2019;6(5):1266. https://doi.org/10.1021/acsphotonics.9b00224.

    Article  CAS  Google Scholar 

  56. Huang L, Harajiri S, Wang S, Wu X, Teii K. Enhanced field emission from ultrananocrystalline diamond-decorated carbon nanowalls prepared by a self-assembly seeding technique. ACS Appl Mater Inter. 2022;14(3):4389. https://doi.org/10.1021/acsami.1c17279.

    Article  CAS  Google Scholar 

  57. Schrinner PPJ, Olthaus J, Reiter DE, Schuck C. Integration of diamond-based quantum emitters with nanophotonic circuits. Nano Lett. 2020;20(11):8170. https://doi.org/10.1021/acs.nanolett.0c03262.

    Article  CAS  PubMed  Google Scholar 

  58. Bogdanowicz R. Functionalized nanodiamonds as a perspective green carbo-catalyst for removal of emerging organic pollutants. Curr Opin Solid State Mater Sci. 2022;26(3): 100991. https://doi.org/10.1016/j.cossms.2022.100991.

    Article  CAS  Google Scholar 

  59. Baidakova M, Vul’ A. New prospects and frontiers of nanodiamond clusters. J Physics D, Appl Phys. 2007;40(20):6300. https://doi.org/10.1088/0022-3727/40/20/S14.

    Article  CAS  Google Scholar 

  60. Batsanov SS, Gavrilkin SM, Batsanov AS, Poyarkov KB, Kulakova II, Johnson DW, Mendis BG. Giant dielectric permittivity of detonation-produced nanodiamond is caused by water. J Mater Chem. 2012;22(22):11166. https://doi.org/10.1039/c2jm30836c.

    Article  CAS  Google Scholar 

  61. Aleksenskii AE, Osipov VY, Vul AY, Ber BY, Smirnov AB, Melekhin VG, Iakoubovskii K. Optical properties of nanodiamond layers. Phys Solid State. 2001;43(1):145. https://doi.org/10.1134/1.1340200.

    Article  CAS  Google Scholar 

  62. Azevedo AF, Baldan MR, Ferreira NG. Nanodiamond films for applications in electrochemical systems. Int J Electrochem. 2012;2012:1. https://doi.org/10.1155/2012/508453.

    Article  CAS  Google Scholar 

  63. Angadi MA, Watanabe T, Bodapati A, Xiao X, Auciello O, Carlisle JA, Phillpot SR. Thermal transport and grain boundary conductance in ultrananocrystalline diamond thin films. J Appl Phys. 2006;99(11):114301. https://doi.org/10.1063/1.2199974.

    Article  CAS  Google Scholar 

  64. Williams OA, Curat S, Gerbi JE, Gruen DM, Jackman RB. N-type conductivity in ultrananocrystalline diamond films. Appl Phys Lett. 2004;85(10):1680. https://doi.org/10.1063/1.1785288.

    Article  CAS  Google Scholar 

  65. Liu T, Ali S, Li B, Su DS. Revealing the role of sp2@sp3 structure of nanodiamond in direct dehydrogenation: insight from dft study. Acs Catal. 2017;7(6):3779. https://doi.org/10.1021/acscatal.6b03619.

    Article  CAS  Google Scholar 

  66. Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc. 2006;128(35):11635. https://doi.org/10.1021/ja063303n.

    Article  CAS  PubMed  Google Scholar 

  67. Sasagawa T, Shen Z. A route to tunable direct band-gap diamond devices: electronic structures of nanodiamond crystals. J Appl Phys. 2008;104(7):073704. https://doi.org/10.1063/1.2986637.

    Article  CAS  Google Scholar 

  68. Shalini J, Lin Y, Chang T, Sankaran KJ, Chen H, Lin IN, Tai N. Ultra-nanocrystalline diamond nanowires with enhanced electrochemical properties. Electrochim Acta. 2013;92:9. https://doi.org/10.1016/j.electacta.2012.12.078.

    Article  CAS  Google Scholar 

  69. Williams OA. Ultrananocrystalline diamond for electronic applications. Semicond Sci Tech. 2006;21(8):R49. https://doi.org/10.1088/0268-1242/21/8/R01.

    Article  CAS  Google Scholar 

  70. Chen Q, Gruen DM, Krauss AR, Corrigan TD, Witek M, Swain GM. The structure and electrochemical behavior of nitrogen-containing nanocrystalline diamond films deposited from CH4/N2/Ar mixtures. J Electrochem Soc. 2001;148:44.

    Article  Google Scholar 

  71. Bhattacharyya S, Auciello O, Birrell J, Carlisle JA, Curtiss LA, Goyette AN. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films. Appl Phys Lett. 2001;79(10):1441. https://doi.org/10.1063/1.1400761.

    Article  CAS  Google Scholar 

  72. Robertson J. Mechanical properties and structure of diamond-like carbon. Diam Relat Mater. 1992;5–6(1):397.

    Article  Google Scholar 

  73. Ikeda T, Teii K, Casiraghi C, Robertson J, Ferrari AC. Effect of the sp2 carbon phase on n-type conduction in nanodiamond films. J Appl Phys. 2008;104(7):073720. https://doi.org/10.1063/1.2990061.

    Article  CAS  Google Scholar 

  74. Zhao FL, Gong Z, Liang SD, Xu NS, Deng SZ, Chen J, Wang HZ. Ultrafast optical emission of nanodiamond induced by laser excitation. Appl Phys Lett. 2004;85(6):914. https://doi.org/10.1063/1.1777803.

    Article  CAS  Google Scholar 

  75. Williams OA, Nesladek M, Daenen M, Michaelson S, Hoffman A, Osawa E, Jackman RB. Growth, electronic properties and applications of nanodiamond. Diam Relat Mater. 2008;17(7–10):1080. https://doi.org/10.1016/j.diamond.2008.01.103.

    Article  CAS  Google Scholar 

  76. Achatz P, Garrido JA, Stutzmann M, Williams OA, Gruen DM, Kromka A, Steinmüller D. Optical properties of nanocrystalline diamond thin films. Appl Phys Lett. 2006;88(10):101908. https://doi.org/10.1063/1.2183366.

    Article  CAS  Google Scholar 

  77. Aleksenskii AE, Vul AY, Konyakhin SV, Reich KV, Sharonova LV, Eidel Man ED. Optical properties of detonation nanodiamond hydrosols. Phys Solid State. 2012;54(3):578. https://doi.org/10.1134/S1063783412030031.

    Article  CAS  Google Scholar 

  78. Sainio S, Nordlund D, Caro MA, Gandhiraman R, Koehne J, Wester N, Laurila T. Correlation between sp3-to-sp2 ratio and surface oxygen functionalities in tetrahedral amorphous carbon (ta-C) thin film electrodes and implications of their electrochemical properties. J Phys Chem C. 2016;120(15):8298. https://doi.org/10.1021/acs.jpcc.6b02342.

    Article  CAS  Google Scholar 

  79. Dolmatov VY, Fujimura T. Physical and chemical problems of modification of detonation nanodiamond surface properties: synthesis, properties and applications of ultrananocrystalline diamond. Dordrecht: Springer; 2005. 217.

    Google Scholar 

  80. Krueger A, Lang D. Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater. 2012;22(5):890. https://doi.org/10.1002/adfm.201102670.

    Article  CAS  Google Scholar 

  81. Zhang J, Liu X, Blume R, Zhang A, Schlogl R, Su DS. Surface-modified carbon nanotubes catalyze oxidative dehydrogenation of n-butane. Science. 2008;322(5898):73. https://doi.org/10.1126/science.1161916.

    Article  CAS  PubMed  Google Scholar 

  82. Panich AM, Aleksenskii AE. Deaggregation of diamond nanoparticles studied by NMR. Diam Relat Mater. 2012;27:45. https://doi.org/10.1016/j.diamond.2012.05.005.

    Article  CAS  Google Scholar 

  83. Sque SJ, Jones R, Briddon PR. Structure, electronics, and interaction of hydrogen and oxygen on diamond surfaces. Phys Rev B Condens. 2006. https://doi.org/10.1103/PhysRevB.73.085313.

    Article  Google Scholar 

  84. Gunawan MA, Moncea O, Poinsot D, Keskes M, Domenichini B, Heintz O, Hierso JC. Nanodiamond-palladium core–shell organohybrid synthesis: a mild vapor-phase procedure enabling nanolayering metal onto functionalized sp3-carbon. Adv Funct Mater. 2018;28(13):1705786. https://doi.org/10.1002/adfm.201705786.

    Article  CAS  Google Scholar 

  85. Qin J, Yang X, Lv C, Li Y, Liu K, Zang J, Shan C. Nanodiamonds: synthesis, properties, and applications in nanomedicine. Mater Design. 2021;210: 110091. https://doi.org/10.1016/j.matdes.2021.110091.

    Article  CAS  Google Scholar 

  86. Tallaire A, Brinza O, De Feudis M, Ferrier A, Touati N, Binet L, Achard J. Synthesis of loose nanodiamonds containing nitrogen-vacancy centers for magnetic and thermal sensing. Acs Appl Nano Mater. 2019;2(9):5952. https://doi.org/10.1021/acsanm.9b01395.

    Article  CAS  Google Scholar 

  87. Zhang Y, Rhee KY, Hui D, Park S. A critical review of nanodiamond based nanocomposites: synthesis, properties and applications. Compos B Eng. 2018;143:19. https://doi.org/10.1016/j.compositesb.2018.01.028.

    Article  CAS  Google Scholar 

  88. Jiao S, Sumant A, Kirk MA, Gruen DM, Krauss AR, Auciello O. Microstructure of ultrananocrystalline diamond films grown by microwave Ar–CH4 plasma chemical vapor deposition with or without added H2. J Appl Phys. 2001;90(1):118. https://doi.org/10.1063/1.1377301.

    Article  CAS  Google Scholar 

  89. Butler JE, Sumant AV. The CVD of nanodiamond materials. Chem Vap Deposition. 2008;14(7–8):145. https://doi.org/10.1002/cvde.200700037.

    Article  CAS  Google Scholar 

  90. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim K. Nanodiamonds: emerging face of future nanotechnology. Carbon. 2019;143:678. https://doi.org/10.1016/j.carbon.2018.11.060.

    Article  CAS  Google Scholar 

  91. Basso L, Cazzanelli M, Orlandi M, Miotello A. Nanodiamonds: synthesis and application in sensing, catalysis, and the possible connection with some processes occurring in space. Appl Sci. 2020;10(12):4094. https://doi.org/10.3390/app10124094.

    Article  CAS  Google Scholar 

  92. Bogdanov D, Bogdanov A, Plotnikov V, Makarov S, Yelisseyev A, Chepurov A. Core growth of detonation nanodiamonds under high-pressure annealing. Rsc Adv. 2021;11(21):12961. https://doi.org/10.1039/d1ra00270h.

    Article  CAS  Google Scholar 

  93. Abbaschian R, Zhu H, Clarke C. High pressure–high temperature growth of diamond crystals using split sphere apparatus. Diam Relat Mater. 2005;14(11–12):1916. https://doi.org/10.1016/j.diamond.2005.09.007.

    Article  CAS  Google Scholar 

  94. Liu T, Yang X, Li Z, Hu Y, Lv C, Zhao W, Shan C. Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene. Chinese Phys B. 2020. https://doi.org/10.1088/1674-1056/abad1c.

    Article  Google Scholar 

  95. Ekimov E, Shiryaev AA, Grigoriev Y, Averin A, Shagieva E, Stehlik S, Kondrin M. Size-dependent thermal stability and optical properties of ultra-small nanodiamonds synthesized under high pressure. Nanomaterials-Basel. 2022;12(3):351. https://doi.org/10.3390/nano12030351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Reina G, Zhao L, Bianco A, Komatsu N. Chemical functionalization of nanodiamonds: opportunities and challenges ahead. Angewandte Chemie. 2019;131(50):18084. https://doi.org/10.1002/ange.201905997.

    Article  Google Scholar 

  97. Crane MJ, Petrone A, Beck RA, Lim MB, Zhou X, Li X, Pauzauskie PJ. High-pressure, high-temperature molecular doping of nanodiamond. Sci Adv. 2019;5(5):eaau6073. https://doi.org/10.1126/sciadv.aau6073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Stehlik S, Varga M, Ledinsky M, Jirasek V, Artemenko A, Kozak H, Rezek B. Size and purity control of hpht nanodiamonds down to 1 nm. J Phys Chem C. 2015;119(49):27708. https://doi.org/10.1021/acs.jpcc.5b05259.

    Article  CAS  Google Scholar 

  99. Moore L, Grobarova V, Shen H, Man HB, Micova J, Ledvina M, Ho D. Comprehensive interrogation of the cellular response to fluorescent, detonation and functionalized nanodiamonds. Nanoscale. 2014;6(20):11712. https://doi.org/10.1039/c4nr02570a.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Nunn N, Torelli M, McGuire G, Shenderova O. Nanodiamond: a high impact nanomaterial. Curr Opin Solid State Mater Sci. 2017;21(1):1. https://doi.org/10.1016/j.cossms.2016.06.008.

    Article  CAS  Google Scholar 

  101. Stehlik S, Mermoux M, Schummer B, Vanek O, Kolarova K, Stenclova P, Rezek B. Size effects on surface chemistry and raman spectra of sub-5 nm oxidized high-pressure high-temperature and detonation nanodiamonds. J Phys Chem C. 2021;125(10):5647. https://doi.org/10.1021/acs.jpcc.0c09190.

    Article  CAS  Google Scholar 

  102. Tzeng Y, Zhang JL, Lu H, Ishiwata H, Dahl J, Carlson RM, KChu S. Vertical-substrate mpcvd epitaxial nanodiamond growth. Nano Lett. 2017;17(3):1489. https://doi.org/10.1021/acs.nanolett.6b04543.

    Article  CAS  PubMed  Google Scholar 

  103. Liang J, Ender CP, Zapata T, Ermakova A, Wagner M, Weil T. Germanium iodide mediated synthesis of nanodiamonds from adamantane “seeds” under moderate high-pressure high-temperature conditions. Diam Relat Mater. 2020;108:108000. https://doi.org/10.1016/j.diamond.2020.108000.

    Article  CAS  Google Scholar 

  104. Mochalin VN, Shenderova O, Ho D, Gogotsi Y. The properties and applications of nanodiamonds. Nat Nanotechnol. 2012;7(1):11. https://doi.org/10.1038/nnano.2011.209.

    Article  CAS  Google Scholar 

  105. Gorrini F, Cazzanelli M, Bazzanella N, Edla R, Gemmi M, Cappello V, Miotello A. On the thermodynamic path enabling a room-temperature, laser-assisted graphite to nanodiamond transformation. Sci Rep-Uk. 2016. https://doi.org/10.1038/srep35244.

    Article  Google Scholar 

  106. Whitlow J, Pacelli S, Paul A. Multifunctional nanodiamonds in regenerative medicine: recent advances and future directions. J Control Release. 2017;261:62. https://doi.org/10.1016/j.jconrel.2017.05.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang L, Zhou M, Wang A, Zhang T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem Rev. 2020;120(2):683. https://doi.org/10.1021/acs.chemrev.9b00230.

    Article  CAS  PubMed  Google Scholar 

  108. Zamani Y, Zareein A, Bazli L, NasrAzadani R, Mahammod BP, Nasibi S, Chahardehi AM. Nanodiamond-containing composites for tissue scaffolds and surgical implants: a review. J Compos Compd. 2020;2(5):215. https://doi.org/10.29252/jcc.2.4.6.

    Article  Google Scholar 

  109. Dolmatov VY, Veretennikova MV, Marchukov VA, Sushchev VG. Currently available methods of industrial nanodiamond synthesis. Phys Solid State. 2004;46(4):611. https://doi.org/10.1134/1.1711434.

    Article  CAS  Google Scholar 

  110. Bernat-Quesada F, Vallés-García C, Montero-Lanzuela E, López-Francés A, Ferrer B, Baldoví HG, Navalón S. Hybrid sp2/sp3 nanodiamonds as heterogeneous metal-free ozonation catalysts in water. Appl Catal B. 2021;299:120673. https://doi.org/10.1016/j.apcatb.2021.120673.

    Article  CAS  Google Scholar 

  111. Kuznetsov NM, Belousov SI, Kamyshinsky RA, Vasiliev AL, Chvalun SN, Yudina EB, Vul YA. Detonation nanodiamonds dispersed in polydimethylsiloxane as a novel electrorheological fluid: effect of nanodiamonds surface. Carbon. 2021;174:138. https://doi.org/10.1016/j.carbon.2020.12.014.

    Article  CAS  Google Scholar 

  112. Duan X, Tian W, Zhang H, Sun H, Ao Z, Shao Z, Wang S. sp2/sp3 framework from diamond nanocrystals: a key bridge of carbonaceous structure to carbocatalysis. Acs Catal. 2019;9(8):7494. https://doi.org/10.1021/acscatal.9b01565/.

    Article  CAS  Google Scholar 

  113. Bagge-Hansen M, Bastea S, Hammons JA, Nielsen MH, Lauderbach LM, Hodgin RL, Willey TM. Detonation synthesis of carbon nano-onions via liquid carbon condensation. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-11666-z.

    Article  PubMed  PubMed Central  Google Scholar 

  114. El-Demrdash SA, Nixon-Luke R, Thomsen L, Tadich A, Lau D, Chang S, Reineck P. The effect of salt and particle concentration on the dynamic self-assembly of detonation nanodiamonds in water. Nanoscale. 2021;13(33):14110. https://doi.org/10.1039/d1nr04847c.

    Article  CAS  PubMed  Google Scholar 

  115. Yang G, Wang J, Liu Q. Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J Phys Conden Matter. 1998;10(35):7923. https://doi.org/10.1088/0953-8984/10/35/024.

    Article  CAS  Google Scholar 

  116. Shakun A, Vuorinen J, Hoikkanen M, Poikelispää M, Das A. Hard nanodiamonds in soft rubbers: past, present and future–a review. Compos Part A Appl Sci Manuf. 2014;64:49. https://doi.org/10.1016/j.compositesa.2014.04.014.

    Article  CAS  Google Scholar 

  117. Joshi P, Riley P, Gupta S, Narayan RJ, Narayan J. Advances in laser-assisted conversion of polymeric and graphitic carbon into nanodiamond films. Nanotechnology. 2021. https://doi.org/10.1088/1361-6528/ac1097.

    Article  PubMed  Google Scholar 

  118. Nee CH, Yap SL, Tou TY, Chang HC, Yap SS . Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol. Sci Rep. 2016;6:33966. https://doi.org/10.1038/srep33966Ò.

    Article  CAS  Google Scholar 

  119. Lin Y, Zhang Q, Deng Y, Shen K, Xu K, Yu Y, Fang G. Fabricating nanodiamonds from biomass by direct laser writing under ambient conditions. ACS Sustain Chem Eng. 2021;9(8):3112. https://doi.org/10.1021/acssuschemeng.0c07607.

    Article  CAS  Google Scholar 

  120. Xiao J, Ouyang G, Liu P, Wang CX, Yang GW. Reversible nanodiamond-carbon onion phase transformations. Nano Lett. 2014;14(6):3645. https://doi.org/10.1021/nl5014234.

    Article  CAS  PubMed  Google Scholar 

  121. Yogesh GK, Shukla S, Sastikumar D, Koinkar P. Progress in pulsed laser ablation in liquid (PAIL) technique for the synthesis of carbon nanomaterials: a review. Appl Phys A. 2021. https://doi.org/10.1007/s00339-021-04951-6.

    Article  Google Scholar 

  122. Basso L, Gorrini F, Bazzanella N, Cazzanelli M, Dorigoni C, Bifone A, Miotello A. The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient. Appl Phys A. 2018. https://doi.org/10.1007/s00339-017-1491-3.

    Article  Google Scholar 

  123. Wang CX, Yang YH, Yang GW. Thermodynamical predictions of nanodiamonds synthesized by pulsed-laser ablation in liquid. J Appl Phys. 2005;97(6):066104. https://doi.org/10.1063/1.1863415.

    Article  CAS  Google Scholar 

  124. Proskurnin MA, Usoltseva LO, Volkov DS, Nedosekin DA, Korobov MV, Zharov VP. Photothermal and heat-transfer properties of aqueous detonation nanodiamonds by photothermal microscopy and transient spectroscopy. J Phys Chem C. 2021;125(14):7808. https://doi.org/10.1021/acs.jpcc.0c09329.

    Article  CAS  Google Scholar 

  125. Cazzanelli M, Basso L, Cestari C, Bazzanella N, Moser E, Orlandi M, Miotello A. Fluorescent nanodiamonds synthesized in one-step by pulsed laser ablation of graphite in liquid-nitrogen. J Carbon Res. 2021;7(2):49. https://doi.org/10.3390/c7020049.

    Article  CAS  Google Scholar 

  126. Tilaki RM, Iraji Zad A, Mahdavi SM. Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl Phys A. 2006;84(1–2):215. https://doi.org/10.1007/s00339-006-3604-2.

    Article  CAS  Google Scholar 

  127. He C, Sasaki T, Zhou Y, Shimizu Y, Masuda M, Koshizaki N. Surfactant-assisted preparation of novel layered silver bromide-based inorganic/organic nanosheets by pulsed laser ablation in aqueous media. Adv Funct Mater. 2007;17(17):3554. https://doi.org/10.1002/adfm.200700081.

    Article  CAS  Google Scholar 

  128. Boruah A, Saikia BK. Synthesis, characterization, properties, and novel applications of fluorescent nanodiamonds. J Fluoresc. 2022. https://doi.org/10.1007/s10895-022-02898-2.

    Article  PubMed  Google Scholar 

  129. Khan SA, Ganeev RA, Boltaev GS, Alnaser AS. Wettability modification of glass surfaces by deposition of carbon-based nanostructured films. Fullerenes, Nanotubes, Carbon Nanostruct. 2021;29(8):576. https://doi.org/10.1080/1536383X.2021.1871897.

    Article  CAS  Google Scholar 

  130. Tinwala H, Wairkar S. Production, surface modification and biomedical applications of nanodiamonds: a sparkling tool for theranostics. Mater Sci Eng C. 2019;97:913. https://doi.org/10.1016/j.msec.2018.12.073.

    Article  CAS  Google Scholar 

  131. Paci JT, Man HB, Saha B, Ho D, Schatz GC. Understanding the surfaces of nanodiamonds. J Phys Chem C. 2013;117(33):17256. https://doi.org/10.1021/jp404311a.

    Article  CAS  Google Scholar 

  132. Lin Y, Sun X, Su DS, Centi G, Perathoner S. Catalysis by hybrid sp2/sp3 nanodiamonds and their role in the design of advanced nanocarbon materials. Chem Soc Rev. 2018;47(22):8438. https://doi.org/10.1039/c8cs00684a.

    Article  CAS  PubMed  Google Scholar 

  133. Brown N, Hod O. Controlling the electronic properties of nanodiamonds via surface chemical functionalization: a DFT study. J Phys Chem C. 2014;118(10):5530. https://doi.org/10.1021/jp409236t.

    Article  CAS  Google Scholar 

  134. Li Y, Huang S, Zhou S, Fane AG, Zhang Y, Zhao S. Enhancing water permeability and fouling resistance of polyvinylidene fluoride membranes with carboxylated nanodiamonds. J Membrane Sci. 2018;556:154. https://doi.org/10.1016/j.memsci.2018.04.004.

    Article  CAS  Google Scholar 

  135. Wang L, Qin X, Sun T, Cai X, Peng M, Jia Z, Ma D. Fully-exposed pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation. Nano Res. 2022;15(12):10029. https://doi.org/10.1007/s12274-022-4650-6.

    Article  CAS  Google Scholar 

  136. Zhang L, Liu H, Huang X, Sun X, Jiang Z, Schlögl R, Su D. Stabilization of palladium nanoparticles on nanodiamond–graphene core–shell supports for co oxidation. Angew Chem Int Ed. 2015;54(52):15823. https://doi.org/10.1002/anie.201507821.

    Article  CAS  Google Scholar 

  137. Yudina EB, Aleksenskii AE, Fomina IG, Shvidchenko AV, Danilovich DP, Eremenko IL, Vul AY. Interaction of carboxyl groups with rare metal ions on the surface of detonation nanodiamonds. Eur J Inorg Chem. 2019;2019(39–40):4345. https://doi.org/10.1002/ejic.201900607.

    Article  CAS  Google Scholar 

  138. Raeiszadeh M, Hakimian A, Shojaei A, Molavi H. Nanodiamond-filled chitosan as an efficient adsorbent for anionic dye removal from aqueous solutions. J Environ Chem Eng. 2018;6(2):3283. https://doi.org/10.1016/j.jece.2018.05.005.

    Article  CAS  Google Scholar 

  139. Kuznetsov O, Sun Y, Thaner R, Bratt A, Shenoy V, Wong MS, Billups WE. Water-soluble nanodiamond. Langmuir. 2012;28(11):5243. https://doi.org/10.1021/la204660h.

    Article  CAS  PubMed  Google Scholar 

  140. Lanin SN, Rychkova SA, Vinogradov AE, Lanina KS, Obrezkov ON, Nesterenko PN. Investigation of adsorption of phenols on detonation nanodiamonds using liquid column chromatography. Diam Relat Mater. 2016;64:49. https://doi.org/10.1016/j.diamond.2016.01.005.

    Article  CAS  Google Scholar 

  141. Jiang L, Santiago I, Foord J. Nanocarbon and nanodiamond for high performance phenolics sensing. Commun Chem. 2018. https://doi.org/10.1038/s42004-018-0045-8.

    Article  Google Scholar 

  142. Pastrana-Martínez LM, Morales-Torres S, Carabineiro SAC, Buijnsters JG, Faria JL, Figueiredo JL, Silva AMT. Nanodiamond-TiO2 composites for heterogeneous photocatalysis. ChemPlusChem. 2013;78(8):801. https://doi.org/10.1002/cplu.201300094.

    Article  CAS  PubMed  Google Scholar 

  143. Shenoy G, Ettedgui J, Mushti C, Hong J, Lane K, Blackman B, Neuman KC. General method to increase carboxylic acid content on nanodiamonds. Molecules. 2022;27(3):736. https://doi.org/10.3390/molecules27030736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhou Q, Guo X, Song C, Zhao Z, Defect-enriched N. O-codoped nanodiamond/carbon nanotube catalysts for styrene production via dehydrogenation of ethylbenzene. Acs Appl Nano Mater. 2019;2(4):2152. https://doi.org/10.1021/acsanm.9b00124.

    Article  CAS  Google Scholar 

  145. Shao P, Tian J, Yang F, Duan X, Gao S, Shi W, Wang S. Identification and regulation of active sites on nanodiamonds: establishing a highly efficient catalytic system for oxidation of organic contaminants. Adv Funct Mater. 2018;28(13):1705295. https://doi.org/10.1002/adfm.201705295.

    Article  CAS  Google Scholar 

  146. Lai L, Barnard AS. Anisotropic adsorption and distribution of immobilized carboxyl on nanodiamond. Nanoscale. 2014;6(23):14185. https://doi.org/10.1039/C4NR05363J.

    Article  CAS  PubMed  Google Scholar 

  147. Bilal M, Cheng H, González-González RB, Parra-Saldívar R, Iqbal HMN. Bio-applications and biotechnological applications of nanodiamonds. J Mater Res Technol. 2021;15:6175. https://doi.org/10.1016/j.jmrt.2021.11.037.

    Article  CAS  Google Scholar 

  148. Huang Z, Jurewicz I, Muñoz E, Garriga R, Keddie JL. Pickering emulsions stabilized by carboxylated nanodiamonds over a broad ph range. J Colloid Interf Sci. 2022;608:2025. https://doi.org/10.1016/j.jcis.2021.10.130.

    Article  CAS  Google Scholar 

  149. Kim M, Lee D, Jeong SH, Lee S, Kang E. Nanodiamond–gold nanocomposites with the peroxidase-like oxidative catalytic activity. Acs Appl Mater Inter. 2016;8(50):34317–26. https://doi.org/10.1021/acsami.6b10471.

    Article  CAS  Google Scholar 

  150. Ye W, Han H, Li H, Jin Q, Wu Y, Chakrabortty S, Ji J. Polymer coated nanodiamonds as gemcitabine prodrug with enzymatic sensitivity for pancreatic cancer treatment. Prog Nat Sci-Mater. 2020;30(5):711. https://doi.org/10.1016/j.pnsc.2020.10.011.

    Article  CAS  Google Scholar 

  151. Basiuk VA, Rybak-Akimova EV, Basiuk EV. Graphene oxide and nanodiamond: same carboxylic groups, different complexation properties. Rsc Adv. 2017;7(28):17442. https://doi.org/10.1039/c7ra01685a.

    Article  CAS  Google Scholar 

  152. Ginés L, Mandal S, Ashek-I-Ahmed A, Cheng C, Sow M, Williams OA. Positive zeta potential of nanodiamonds. Nanoscale. 2017;9(34):12549. https://doi.org/10.1039/C7NR03200E.

    Article  PubMed  Google Scholar 

  153. Shenderova O, Hens S, McGuire G. Seeding slurries based on detonation nanodiamond in dmso. Diam Relat Mater. 2010;19(2–3):260. https://doi.org/10.1016/j.diamond.2009.10.008.

    Article  CAS  Google Scholar 

  154. Qin L, Wang L, Wang C, Yang X, Lv B. Enhanced role of graphitic-nonnitrogen-doped porous carbon ball for direct dehydrogenation of ethylbenzene. Mol Catal. 2019;462:61. https://doi.org/10.1016/j.mcat.2018.10.021.

    Article  CAS  Google Scholar 

  155. Etemadi H, Yegani R, Seyfollahi M. The effect of amino functionalized and polyethylene glycol grafted nanodiamond on anti-biofouling properties of cellulose acetate membrane in membrane bioreactor systems. Sep Purif Technol. 2017;177:350. https://doi.org/10.1016/j.seppur.2017.01.013.

    Article  CAS  Google Scholar 

  156. Betz P, Krueger A. Surface modification of nanodiamond under bingel-hirsch conditions. ChemPhysChem. 2012;13(10):2578. https://doi.org/10.1002/cphc.201101050.

    Article  CAS  PubMed  Google Scholar 

  157. Liu Z, Huang F, Peng M, Chen Y, Cai X, Wang L, Ma D. Tuning the selectivity of catalytic nitriles hydrogenation by structure regulation in atomically dispersed Pd catalysts. Nat Commun. 2021. https://doi.org/10.1038/s41467-021-26542-y.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ramos E, Sansores LE, Mar N, García-Cruz I, Medel VM, Salcedo R. Diamondoids in octahedral iron complexes: a DFT study. Comput Theor Chem. 2016;1078:30. https://doi.org/10.1016/j.comptc.2015.12.021.

    Article  CAS  Google Scholar 

  159. Li C, Zhang X, Oliveira EF, Puthirath AB, Neupane MR, Weil JD, Ajayan PM. Systematic comparison of various oxidation treatments on diamond surface. Carbon. 2021;182:725. https://doi.org/10.1016/j.carbon.2021.06.050.

    Article  CAS  Google Scholar 

  160. Zhang Y, Park S. Enhanced interfacial interaction by grafting carboxylated-macromolecular chains on nanodiamond surfaces for epoxy-based thermosets. J Polym Sci B Polym Phys. 2017;55(24):1890. https://doi.org/10.1002/polb.24522.

    Article  CAS  Google Scholar 

  161. Mochalin VN, Neitzel I, Etzold BJM, Peterson A, Palmese G, Gogotsi Y. Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano. 2011;5(9):7494. https://doi.org/10.1021/nn2024539.

    Article  CAS  PubMed  Google Scholar 

  162. Luo D, Nakata K, Fujishima A, Liu S. Photochemistry and photo-electrochemistry on synthetic semiconducting diamond. J Photochem. 2017;31:139. https://doi.org/10.1016/j.jphotochemrev.2017.05.001.

    Article  CAS  Google Scholar 

  163. Ekimov EA, Sidorov VA, Bauer ED, Mel’Nik NN, Curro NJ, Thompson JD. Superconductivity in diamond. Nautre. 2004;428:542. https://doi.org/10.1038/nature02449.

    Article  CAS  Google Scholar 

  164. Bhardwaj K, Parvis F, Wang Y, Blanchard GJ, Swain GM. Effect of surface oxygen on the wettability and electrochemical properties of boron-doped nanocrystalline diamond electrodes in room-temperature ionic liquids. Langmuir. 2020;36(21):5717. https://doi.org/10.1021/acs.langmuir.0c00294.

    Article  CAS  PubMed  Google Scholar 

  165. Hung TV, Karunagaran R, Tung TT, Dang NN, Nguyen SX, Losic D. Nitrogen-doped carbon-coated nanodiamonds for electrocatalytic applications. J Phys D, Appl Phys. 2020;54(8):85303. https://doi.org/10.1088/1361-6463/abc6d6.

  166. Guo T, Yang N, Yang B, Schulte A, Jin Q, Koch U, Jiang X. Electrochemistry of nitrogen and boron bi-element incorporated diamond films. Carbon. 2021;178:19. https://doi.org/10.1016/j.carbon.2021.02.062.

    Article  CAS  Google Scholar 

  167. Tang L, Yue R, Wang Y. N-type b-s co-doping and s doping in diamond from first principles. Carbon. 2018;130:458. https://doi.org/10.1016/j.carbon.2018.01.028.

    Article  CAS  Google Scholar 

  168. Liu DY, Hao LC, Chen ZA, Zhao WK, Shen Y, Bian Y, Gu SL. Sulfur regulation of boron doping and growth behavior for high-quality diamond in microwave plasma chemical vapor deposition. Appl Phys Lett. 2020;117(2):022101. https://doi.org/10.1063/5.0009615.

    Article  CAS  Google Scholar 

  169. Li H, Xu S, Yan H, Yang L, Xu S. Cobalt phosphide composite encapsulated within N, P-doped carbon nanotubes for synergistic oxygen evolution. Small. 2018;14(19):1800367. https://doi.org/10.1002/smll.201800367.

    Article  CAS  Google Scholar 

  170. Gao H, Li J, Xia J. Origins of ferromagnetism in transition metal doped diamond. Physica B Condens. 2012;407(12):2347. https://doi.org/10.1016/j.physb.2012.03.035.

    Article  CAS  Google Scholar 

  171. Chen C, Cho IC, Jian H, Niu H. Fe doped magnetic nanodiamonds made by ion implantation. Sci Rep-Uk. 2017. https://doi.org/10.1038/srep41938.

    Article  Google Scholar 

  172. Liao X, Zhang X, Takai K, Enoki T. Electric field induced sp3-to-sp2 conversion and nonlinear electron transport in iron-doped diamond-like carbon thin film. J Appl Phys. 2010;107(1):013709. https://doi.org/10.1063/1.3280037.

    Article  CAS  Google Scholar 

  173. Yang L, Shui J, Du L, Shao Y, Liu J, Dai L, Hu Z. Carbon-based metal-free orr electrocatalysts for fuel cells: past, present, and future. Adv Mater. 2019;31(13):1804799. https://doi.org/10.1002/adma.201804799.

    Article  CAS  Google Scholar 

  174. Li K, Wang X, Zhang F, Xue D. Electronegativity identification of novel super hard materials. Phys Rev Lett. 2008;100(23):235504. https://doi.org/10.1103/PhysRevLett.100.235504.

    Article  CAS  PubMed  Google Scholar 

  175. Praus P. On electronegativity of graphitic carbon nitride. Carbon. 2021;172:729. https://doi.org/10.1016/j.carbon.2020.10.074.

    Article  CAS  Google Scholar 

  176. Barnard AS, Sternberg M. Substitutional nitrogen in nanodiamond and bucky-diamond particles. J Phys Chem B. 2005;109(36):17107. https://doi.org/10.1021/jp0524126.

    Article  CAS  PubMed  Google Scholar 

  177. Wu K, Liu Y, Luo J, Wang B, Xu J, Pham-Huu C, Su D. The coulombic nature of active nitrogen sites in n-doped nanodiamond revealed in situ by ionic surfactants. Acs Catal. 2017;7(5):3295. https://doi.org/10.1021/acscatal.7b00579.

    Article  CAS  Google Scholar 

  178. Dong L, Zang J, Su J, Jia Y, Wang Y, Lu J, Xu X. Nanodiamond/nitrogen-doped graphene (core/shell) as an effective and stable metal-free electrocatalyst for oxygen reduction reaction. Electrochim Acta. 2015;174:1017. https://doi.org/10.1016/j.electacta.2015.06.057.

    Article  CAS  Google Scholar 

  179. Liu Y, Ba H, Luo J, Wu K, Nhut J, Su DS, Pham-Huu C. Structure-performance relationship of nanodiamonds @ nitrogen-doped mesoporous carbon in the direct dehydrogenation of ethylbenzene. Catal Today. 2018;301:38. https://doi.org/10.1016/j.cattod.2017.05.010.

    Article  CAS  Google Scholar 

  180. Narayan J, Bhaumik A. Novel synthesis and properties of pure and NV-doped nanodiamonds and other nanostructures. Mater Res Lett. 2017;5(4):242. https://doi.org/10.1080/21663831.2016.1249805.

    Article  CAS  Google Scholar 

  181. Xu Z, Wang L, Huan X, Lee H, Yang J, Zhou Z, Kim JT. On-demand, direct printing of nanodiamonds at the quantum level. Adv Sci. 2022;9(5):2103598. https://doi.org/10.1002/advs.202103598.

    Article  Google Scholar 

  182. Lin Y, Feng Z, Yu L, Gu Q, Wu S, Su D. Insights into the surface chemistry and electronic properties of sp2 and sp3-hybridized nanocarbon materials for catalysis. Chem Commun. 2017;53(35):4834. https://doi.org/10.1039/C7CC02354E.

    Article  CAS  Google Scholar 

  183. Aprà P, Mino L, Battiato A, Olivero P, Sturari S, Valsania MC, Picollo F. Interaction of nanodiamonds with water: impact of surface chemistry on hydrophilicity, aggregation and electrical properties. Nanomaterials-Basel. 2021;11(10):2740. https://doi.org/10.3390/nano11102740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Liu Y, Chen S, Quan X, Yu H. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc. 2015;137(36):11631. https://doi.org/10.1021/jacs.5b02975.

    Article  CAS  PubMed  Google Scholar 

  185. Choi EY, Kim CK. Fabrication of nitrogen-doped nano-onions and their electrocatalytic activity toward the oxygen reduction reaction. Sci Rep-Uk. 2017. https://doi.org/10.1038/s41598-017-04597-6.

    Article  Google Scholar 

  186. Chen X, Xu H, Zhang Y, Tao L, Yuan L, Meng F, Zhou Z. Carbonized polyaniline bridging nanodiamond-graphene hybrids for enhanced microwave absorptions with ultrathin thickness. Nanotechnology. 2020;31(41):415701. https://doi.org/10.1088/1361-6528/ab9ed9.

    Article  CAS  PubMed  Google Scholar 

  187. Liu X, Wang Y, Dong L, Chen X, Xin G, Zhang Y, Zang J. One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Electrochim Acta. 2016;194:161. https://doi.org/10.1016/j.electacta.2016.02.002.

    Article  CAS  Google Scholar 

  188. Blase X, Adessi C, Connetable D. Role of the dopant in the superconductivity of diamond. Phys Rev Lett. 2004;93(23):237004. https://doi.org/10.1103/PhysRevLett.93.237004.

    Article  CAS  PubMed  Google Scholar 

  189. Costa FJR, de Almeida JS. Theoretical investigation of superconductivity in diamond: effects of doping and pressure. J Appl Phys. 2021;129(4):043903. https://doi.org/10.1063/5.0038667.

    Article  CAS  Google Scholar 

  190. Yokoya T, Nakamura T, Matsushita T, Muro T, Takano Y, Nagao M, Oguchi T. Origin of the metallic properties of heavily boron-doped superconducting diamond. Nature. 2005;438(7068):647. https://doi.org/10.1038/nature04278.

    Article  CAS  PubMed  Google Scholar 

  191. Craciun M, Saby C, Muret P, Deneuville A. A 3.4 ev potential barrier height in schottky diodes on boron-doped diamond thin films. Diam Relat Mater. 2004;13(2):292. https://doi.org/10.1016/j.diamond.2003.10.012.

    Article  CAS  Google Scholar 

  192. Choudhury S, Kiendl B, Ren J, Gao F, Knittel P, Nebel C, Petit T. Combining nanostructuration with boron doping to alter sub band gap acceptor states in diamond materials. J Mater Chem A. 2018;6(34):16645. https://doi.org/10.1039/C8TA05594G.

    Article  CAS  Google Scholar 

  193. Nakamura J, Kabasawa E, Yamada N, Einaga Y, Saito D, Isshiki H, Perera RC. Electronic structures of B 2p and C 2p levels in boron-doped diamond films studied using soft x-ray absorption and emission spectroscopy. Physical review B doi. 2004;70(24):245111.

    Article  Google Scholar 

  194. Palmas S, Polcaro AM, Vacca A, Mascia M, Ferrara F. Characterization of boron doped diamond during oxidation processes: relationship between electronic structure and electrochemical activity. J Appl Electrochem. 2006;37(1):63. https://doi.org/10.1007/s10800-006-9210-3.

    Article  CAS  Google Scholar 

  195. Pakpour-Tabrizi AC, Schenk AK, Holt AJU, Mahatha SK, Arnold F, Bianchi M, Mazzola F. The occupied electronic structure of ultrathin boron doped diamond. Nanoscale Adv. 2020;2(3):1358. https://doi.org/10.1039/C9NA00593E.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Oguchi T. Electronic structure of b-doped diamond: a first-principles study. Sci Technol Adv Mat. 2006;7:S67. https://doi.org/10.1016/j.stam.2006.02.011.

    Article  CAS  Google Scholar 

  197. Xu J, Yokota Y, Wong RA, Kim Y, Einaga Y. Unusual electrochemical properties of low-doped boron-doped diamond electrodes containing sp2 carbon. J Am Chem Soc. 2020;142(5):2310–6. https://doi.org/10.1021/jacs.9b11183.

    Article  CAS  PubMed  Google Scholar 

  198. Smirnov W, Kriele A, Hoffmann R, Sillero E, Hees J, Williams OA, Nebel CE. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes. Anal Chem. 2011;83(12):4936. https://doi.org/10.1021/ac200659e.

    Article  CAS  PubMed  Google Scholar 

  199. Holt KB, Hu J, Foord JS. Fabrication of boron-doped diamond ultramicroelectrodes for use in scanning electrochemical microscopy experiments. Anal Chem. 2007;79(6):2556–61. https://doi.org/10.1021/ac061995s.

    Article  CAS  PubMed  Google Scholar 

  200. Xu J, Einaga Y. Effect of sp2 species in a boron-doped diamond electrode on the electrochemical reduction of CO2. Electrochem Commun. 2020;115:106731. https://doi.org/10.1016/j.elecom.2020.106731.

    Article  CAS  Google Scholar 

  201. Brito CDN, de Araújo DM, Martínez-Huitle CA, Rodrigo MA. Understanding active chlorine species production using boron doped diamond films with lower and higher sp3/sp2 ratio. Electrochem Commun. 2015;55:34. https://doi.org/10.1016/j.elecom.2015.03.013.

    Article  CAS  Google Scholar 

  202. Koizumi S, Teraji T, Kanda H. Phosphorus-doped chemical vapor deposition of diamond. Diam Relat Mater. 2000;9(3):935. https://doi.org/10.1016/S0925-9635(00)00217-X.

    Article  CAS  Google Scholar 

  203. Stenger I, Pinault-Thaury MA, Temahuki N, Gillet R, Temgoua S, Bensalah H, Barjon J. Electron mobility in (100) homoepitaxial layers of phosphorus-doped diamond. J Appl Phys. 2021;129(10):105701. https://doi.org/10.1063/5.0044326.

    Article  CAS  Google Scholar 

  204. Naragino H, Saitoh Y, Honda K. Electrochemical reduction of carbon dioxide in an aqueous solution using phosphorus-doped polycrystalline diamond electrodes. Electrochem Commun. 2022;134:107164. https://doi.org/10.1016/j.elecom.2021.107164.

    Article  CAS  Google Scholar 

  205. Xia L, Yang J, Wang H, Zhao R, Chen H, Fang W, Sun X. Sulfur-doped graphene for efficient electrocatalytic N2-to-NH3 fixation. Chem Commun. 2019;55(23):3371. https://doi.org/10.1039/C9CC00602H.

    Article  CAS  Google Scholar 

  206. Yang J, Guo D, Zhao S, Lin Y, Yang R, Xu D, Han M. Cobalt phosphides nanocrystals encapsulated by P-doped carbon and married with P-doped graphene for overall water splitting. Small. 2019;15(10):1804546. https://doi.org/10.1002/smll.201804546.

    Article  CAS  Google Scholar 

  207. Xing X, Liu R, Anjass M, Cao K, Kaiser U, Zhang G, Streb C. Bimetallic manganese-vanadium functionalized n, s-doped carbon nanotubes as efficient oxygen evolution and oxygen reduction electrocatalysts. Appl Catal. 2020;277:119195. https://doi.org/10.1016/j.apcatb.2020.119195.

    Article  CAS  Google Scholar 

  208. Benecha EM, Lombardi EB. Clustering and spin interactions in fe-doped diamond. J Phys Conf Ser. 2017;905(1):12033. https://doi.org/10.1088/1742-6596/905/1/012033.

    Article  CAS  Google Scholar 

  209. Zhai W, Srikanth N, Kong LB, Zhou K. Carbon nanomaterials in tribology. Carbon. 2017;119:150. https://doi.org/10.1016/j.carbon.2017.04.027.

    Article  CAS  Google Scholar 

  210. Bogdanowicz R, Ry IJ. Structural and electrochemical heterogeneities of boron-doped diamond surfaces. Curr Opin Electroche. 2022;31:100876.

    Article  CAS  Google Scholar 

  211. Lu M, Liu D, Zhang C, Sun F. DFT calculations and experiments of oxidation resistance research on b, n, and simulti-doped diamond films. Appl Surf Sci. 2023;612:155865. https://doi.org/10.1016/j.apsusc.2022.155865.

    Article  CAS  Google Scholar 

  212. Solano JR, Baños AT, Durán ÁM, Quiroz EC, Irisson MC. DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center. J Mol Model. 2017. https://doi.org/10.1007/s00894-017-3462-1.

    Article  PubMed  Google Scholar 

  213. Lim Y, Song M, Lim D. Non-enzymatic glucose detection using free standing hollow boron-doped diamond nanorod electrodes. J Electrochem Soc. 2019;166(8):B576. https://doi.org/10.1149/2.0041908jes.

    Article  CAS  Google Scholar 

  214. Peng X, Li Y, Duan S, Chu J, Feng P. Precise ultrananocrystalline diamond nanowire arrays for high performance gas sensing application. Mater Lett. 2020;265:127404. https://doi.org/10.1016/j.matlet.2020.127404.

    Article  CAS  Google Scholar 

  215. Bogdanowicz R, Ficek M, Malinowska N, Gupta S, Meek R, Niedziałkowski P, Ossowski T. Electrochemical performance of thin free-standing boron-doped diamond nanosheet electrodes. J Electroanal Chem. 2020;862:114016. https://doi.org/10.1016/j.jelechem.2020.114016.

    Article  CAS  Google Scholar 

  216. Yano K, Matsumoto T, Okamoto Y, Bito K, Kurokawa N, Hasebe T, Hotta A. Gadolinium-complexed carboxylated nanodiamond particles for magnetic resonance imaging of the lymphatic system. ACS Appl Nano Mater. 2021;4(2):1702. https://doi.org/10.1021/acsanm.0c03165.

    Article  CAS  Google Scholar 

  217. Wang Q, Plylahan N, Shelke MV, Devarapalli RR, Li M, Subramanian P, Szunerits S. Nanodiamond particles/reduced graphene oxide composites as efficient supercapacitor electrodes. Carbon. 2014;68:175. https://doi.org/10.1016/j.carbon.2013.10.077.

    Article  CAS  Google Scholar 

  218. Bray K, Sandstrom R, Elbadawi C, Fischer M, Schreck M, Shimoni O, Aharonovich I. Localization of narrowband single photon emitters in nanodiamonds. ACS Appl Mater Inter. 2016;8(11):7590. https://doi.org/10.1021/acsami.6b00466.

    Article  CAS  Google Scholar 

  219. Yuan X, Jiang Z, Wang Q, Gao N, Li H, Ma Y. Polychlorinated biphenyl electrochemical aptasensor based on a diamond–gold nanocomposite to realize a sub-femtomolar detection limit. ACS Omega. 2020;5(35):22402. https://doi.org/10.1021/acsomega.0c02846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Zhang L, Hamers RJ. Photocatalytic reduction of CO2 to CO by diamond nanoparticles. Diam Relat Mater. 2017;78:24. https://doi.org/10.1016/j.diamond.2017.07.005.

    Article  CAS  Google Scholar 

  221. Wang L, Diao J, Peng M, Chen Y, Cai X, Deng Y, Ma D. Cooperative sites in fully exposed pd clusters for low-temperature direct dehydrogenation reaction. ACS Catal. 2021;11(18):11469. https://doi.org/10.1021/acscatal.1c01503.

    Article  CAS  Google Scholar 

  222. Wang L, Yin P, Zeng W, Xu S, Chen P, Liang H. Bulky nanodiamond-confined synthesis of sub-5 nanometer ordered intermetallic Pd3-Pb catalysts. Nano Res. 2022. https://doi.org/10.1007/s12274-022-4138-4.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Su S, Wang J, Wei J, Qiu J, Wang S. Thermal conductivity studies of electrophoretically deposited nanodiamond arrays. Mater Sci Eng B. 2017;225:54. https://doi.org/10.1016/j.mseb.2017.08.010.

    Article  CAS  Google Scholar 

  224. Shang N, Papakonstantinou P, Wang P, Zakharov A, Palnitkar U, Lin I, Stamboulis A. Self-assembled growth, microstructure, and field-emission high-performance of ultrathin diamond nanorods. ACS Nano. 2009;3(4):1032. https://doi.org/10.1021/nn900167p.

    Article  CAS  PubMed  Google Scholar 

  225. Volkova K, Heupel J, Trofimov S, Betz F, Colom R, MacQueen RW, Naydenov B. Optical and spin properties of NV center ensembles in diamond nano-pillars. Nanomaterials-Basel. 2022;12(9):1516. https://doi.org/10.3390/nano12091516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Zhou AF, Velázquez R, Wang X, Feng PX. Nanoplasmonic 1D diamond UV photodetectors with high performance. ACS Appl Mater Inter. 2019;11(41):38068. https://doi.org/10.1021/acsami.9b13321.

    Article  CAS  Google Scholar 

  227. Zhou AF, Wang X, Pacheco E, Feng PX. Ultrananocrystalline diamond nanowires: fabrication, characterization, and sensor applications. Materials. 2021;14(3):661. https://doi.org/10.3390/ma14030661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Szunerits S, Coffinier Y, Galopin E, Brenner J, Boukherroub R. Preparation of boron-doped diamond nanowires and their application for sensitive electrochemical detection of tryptophan. Electrochem Commun. 2010;12(3):438. https://doi.org/10.1016/j.elecom.2010.01.014.

    Article  CAS  Google Scholar 

  229. Liu K, Jin H, Huang L, Luo Y, Zhu Z, Dai S, Zhou J. Puffing ultrathin oxides with nonlayered structures. Sci Adv. 2022;8(20):eabn2030. https://doi.org/10.1126/sciadv.abn2030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bogdanowicz R, Ficek M, Sobaszek M, Nosek A, Gołuński Ł, Karczewski JOssowski T. Growth and isolation of large area boron-doped nanocrystalline diamond sheets: a route toward diamond-on-graphene heterojunction. Adv Funct Mater. 2019;29(3):1805242. https://doi.org/10.1002/adfm.201805242.

    Article  CAS  Google Scholar 

  231. Chen H, Chang L, Cho S, Yan J, Lu C. Growth of diamond nanoplatelets by CVD. Chem Vap Deposition. 2008;14(7–8):247. https://doi.org/10.1002/cvde.200706655.

    Article  CAS  Google Scholar 

  232. Li X, Li H, Li M, Li C, Sun D, Lei Y, Yang B. Preparation of a porous boron-doped diamond/ta electrode for the electrocatalytic degradation of organic pollutants. Carbon. 2018;129:543. https://doi.org/10.1016/j.carbon.2017.12.052.

    Article  CAS  Google Scholar 

  233. Wang S, Ji X, Ao Y, Yu J. Vertically aligned n-doped diamond/graphite hybrid nanosheets epitaxially grown on b-doped diamond films as electrocatalysts for oxygen reduction reaction in an alkaline medium. Acs Appl Mater Inter. 2018;10(35):29866. https://doi.org/10.1021/acsami.8b06101.

    Article  CAS  Google Scholar 

  234. Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem Rev. 2019;119(6):3962. https://doi.org/10.1021/acs.chemrev.8b00400.

    Article  CAS  PubMed  Google Scholar 

  235. Xu S, Carter EA. Theoretical insights into heterogeneous (photo)electrochemical CO2 reduction. Chem Rev. 2019;119(11):6631. https://doi.org/10.1021/acs.chemrev.8b00481.

    Article  CAS  PubMed  Google Scholar 

  236. Obrien CP, Watson MJ, Dowling AW. Challenges and opportunities in converting CO2 to carbohydrates. ACS Energy Lett. 2022;7(10):3509. https://doi.org/10.1021/acsenergylett.2c01550.

    Article  CAS  Google Scholar 

  237. Albero J, Peng Y, García H. Photocatalytic CO2 reduction to C2+ products. ACS Catal. 2020;10(10):5734. https://doi.org/10.1021/acscatal.0c00478.

    Article  CAS  Google Scholar 

  238. Wang XT, Lin XF, Yu DS. Metal-containing covalent organic framework: a new type of photo/electrocatalyst. Rare Met. 2022;41(4):1160. https://doi.org/10.1007/s12598-021-01873-3.

  239. Saha P, Amanullah S, Dey A. Selectivity in electrochemical CO2 reduction. Accounts Chem Res. 2022;55(2):134. https://doi.org/10.1021/acs.accounts.1c00678.

  240. Li L, Shi YX, Hou M, Zhang ZC. Research progress of copper-based materials for electrocatalytic CO2 reduction reaction. Chin J Rare Met. 2022;315(46): 681. https://doi.org/10.13373/j.cnki.cjrm.XY21120017.

  241. Dattila F, Seemakurthi RR, Zhou Y, López N. Modeling operando electrochemical CO2 reduction. Chem Rev. 2022;122(12):11085. https://doi.org/10.1021/acs.chemrev.1c00690.

    Article  CAS  PubMed  Google Scholar 

  242. Vasileff A, Zheng Y, Qiao SZ. Carbon solving carbon’s problems: recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv Energy Mater. 2017;7(21):1700759. https://doi.org/10.1002/aenm.201700759.

    Article  CAS  Google Scholar 

  243. Li L, Huang Y, Li Y. Carbonaceous materials for electrochemical CO2 reduction. Energychem. 2020;2(1):100024. https://doi.org/10.1016/j.enchem.2019.100024.

    Article  Google Scholar 

  244. Huang F, Peng M, Chen Y, Cai X, Qin X, Wang N, Ma D. Low-temperature acetylene semi-hydrogenation over the Pd1–Cu1 dual-atom catalyst. J Am Chem Soc. 2022;144(40):18485. https://doi.org/10.1021/jacs.2c07208.

    Article  CAS  PubMed  Google Scholar 

  245. Liu Y, Zhang Y, Cheng K, Quan X, Fan X, Su Y, Hoffmann MR. Selective electrochemical reduction of carbon dioxide to ethanol on a boron- and nitrogen-co-doped nanodiamond. Angew Chem Int Ed. 2017;56(49):15607. https://doi.org/10.1002/anie.201706311.

    Article  CAS  Google Scholar 

  246. Wanninayake N, Ai Q, Zhou R, Hoque MA, Herrell S, Guzman MI, Kim DY. Understanding the effect of host structure of nitrogen doped ultrananocrystalline diamond electrode on electrochemical carbon dioxide reduction. Carbon. 2020;157:408. https://doi.org/10.1016/j.carbon.2019.10.022.

    Article  CAS  Google Scholar 

  247. Wang JJ, Li XP, Cui BF, Zhang Z, Hu XF, Ding J, Deng YD, Han XP, Hu WB. A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Met. 2021;40(11):3019. https://doi.org/10.1007/s12598-021-01736-x.

  248. Li L, YongX S, Man H, Zhang Zhic Z. Research progress of copper-based materials for electrocatalytic CO2 reduction reaction. Chinese J Rare Metals. 2022;46(6):681. https://doi.org/10.13373/j.cnki.cjrm.XY21120017.

    Article  Google Scholar 

  249. Nakata K, Ozaki T, Terashima C, Fujishima A, Einaga Y. High-yield electrochemical production of formaldehyde from CO2 and seawater. Angew Chem Int Ed. 2014;53(3):871. https://doi.org/10.1002/anie.201308657.

    Article  CAS  Google Scholar 

  250. Wang H, Tzeng Y, Ji Y, Li Y, Li J, Zheng X, Cui Y. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/cu interface. Nat Nanotechnol. 2020;15(2):131. https://doi.org/10.1038/s41565-019-0603-y.

    Article  CAS  PubMed  Google Scholar 

  251. Li X, Li S, Xu J, Wang L, Liang K, Zhang H, Liu Z. Synergy of nitrogen vacancies and nanodiamond decoration in g-C3N4 for boosting CO2 photoreduction. Appl Surf Sci. 2022;600:154199. https://doi.org/10.1016/j.apsusc.2022.154199.

    Article  CAS  Google Scholar 

  252. Nakabayashi Y, Hirano Y, Sakurai Y, Okazaki A, Kuriyama H, Roy N, Terashima C. Positive shift in the potential of photo-electrochemical CO2 reduction to CO on Ag-loaded boron-doped diamond electrode by an electrochemical pre-treatment. J Appl Electrochem. 2018;48(1):61. https://doi.org/10.1007/s10800-017-1132-8.

    Article  CAS  Google Scholar 

  253. Son H, Pac C, Kang SO. Inorganometallic photocatalyst for CO2 reduction. Accounts Chem Res. 2021;54(24):4530. https://doi.org/10.1021/acs.accounts.1c00579.

    Article  CAS  Google Scholar 

  254. Dutta S, Patil R, Chongdar S, Bhaumik A. Dehydrogenase-functionalized interfaced materials in electroenzymatic and photoelectroenzymatic CO2 reduction. Acs Sustain Chem Eng. 2022;10(19):6141. https://doi.org/10.1021/acssuschemeng.2c00201.

    Article  CAS  Google Scholar 

  255. Kumaravel V, Bartlett J, Pillai SC. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. Acs Energy Lett. 2020;5(2):486. https://doi.org/10.1021/acsenergylett.9b02585.

    Article  CAS  Google Scholar 

  256. Yusaf T, Fernandes L, Abu Talib AR, Altarazi YSM, Alrefae W, Kadirgama K, Laimon M. Sustainable aviation—hydrogen is the future. Sustainability-Basel. 2022;14(1):548. https://doi.org/10.3390/su14010548.

    Article  CAS  Google Scholar 

  257. Pan B, Yin X, Ju Y, Iglauer S. Underground hydrogen storage: influencing parameters and future outlook. Adv Colloid Interfac. 2021;294:102473. https://doi.org/10.1016/j.cis.2021.102473.

    Article  CAS  Google Scholar 

  258. Yu M, Wang K, Vredenburg H. Insights into low-carbon hydrogen production methods: green, blue and aqua hydrogen. Int J Hydrogen Energ. 2021;46(41):21261. https://doi.org/10.1016/j.ijhydene.2021.04.016.

    Article  CAS  Google Scholar 

  259. Wang C, Astruc D. Recent developments of nanocatalyzed liquid-phase hydrogen generation. Chem Soc Rev. 2021;50(5):3437. https://doi.org/10.1039/d0cs00515k.

    Article  CAS  PubMed  Google Scholar 

  260. Liu JB, Gong HS, Ye GL, Fei HL. Graphene oxide-derived single-atom catalysts for electrochemical energy conversion. Rare Met. 2022;41(5):1703. https://doi.org/10.1007/s12598-021-01904-z.

  261. Anantharaj S, Noda S, Jothi VR, Yi S, Driess M, Menezes PW. Strategies and perspectives to catch the missing pieces in energy-efficient hydrogen evolution reaction in alkaline media. Angew Chem Int Ed. 2021;60(35):18981. https://doi.org/10.1002/anie.202015738.

  262. Wu H, Feng C, Zhang L, Zhang J, Wilkinson DP. Non-noble metal electrocatalysts for the hydrogen evolution reaction in water electrolysis. Electrochem Energy R. 2021;4(3):473. https://doi.org/10.1007/s41918-020-00086-z.

    Article  CAS  Google Scholar 

  263. Sun LJ, Su HW, Xu DF, Wang LL, Tang H, Liu QQ. Carbon hollow spheres as cocatalyst of Cu-doped TiO2 nanoparticles for improved photocatalytic H2 generation. Rare Met. 2022;41(6):2063. https://doi.org/10.1007/s12598-021-01936-5.

  264. Reineck P, Lau DWM, Wilson ER, Fox K, Field MR, Gibson BC. Effect of surface chemistry on the fluorescence of detonation nanodiamonds. ACS Nano. 2017;11(11):10924. https://doi.org/10.1021/acsnano.7b04647.

    Article  CAS  PubMed  Google Scholar 

  265. Shenderova O, Koscheev A, Zaripov N, Petrov I, Skryabin Y, Detkov P, Van Tendeloo G. Surface chemistry and properties of ozone-purified detonation nanodiamonds. The Journal of Physical Chemistry C. 2011;115(20):9827. https://doi.org/10.1021/jp1102466.

    Article  CAS  Google Scholar 

  266. Ando T, Asai K, Macpherson J, Einaga Y, Fukuma T, Takahashi Y. Nanoscale reactivity mapping of a single-crystal boron-doped diamond particle. Anal Chem. 2021;93(14):5831. https://doi.org/10.1021/acs.analchem.1c00053.

    Article  CAS  PubMed  Google Scholar 

  267. Yang N, Foord JS, Jiang X. Diamond electrochemistry at the nanoscale: a review. Carbon. 2016;99:90. https://doi.org/10.1016/j.carbon.2015.11.061.

    Article  CAS  Google Scholar 

  268. Wang M, Zhu H. Machine learning for transition-metal-based hydrogen generation electrocatalysts. Acs Catal. 2021;11(7):3930. https://doi.org/10.1021/acscatal.1c00178.

    Article  CAS  Google Scholar 

  269. Bae S, Mahmood J, Jeon I, Baek J. Recent advances in ruthenium-based electrocatalysts for the hydrogen evolution reaction. Nanoscale Horiz. 2019;5(1):43. https://doi.org/10.1039/c9nh00485h.

    Article  CAS  Google Scholar 

  270. Yang N, Smirnov W, Nebel CE. Three-dimensional electrochemical reactions on tip-coated diamond nanowires with nickel nanoparticles. Electrochem Commun. 2013;27:89. https://doi.org/10.1016/j.elecom.2012.10.044.

    Article  CAS  Google Scholar 

  271. Al-Abdallat Y, Jumah I, Jumah R, Ghanem H, Telfah A. Catalytic electrochemical water splitting using boron doped diamond (BDD) electrodes as a promising energy resource and storage solution. Energies. 2020;13(20):5265. https://doi.org/10.3390/en13205265.

    Article  CAS  Google Scholar 

  272. Chen S, Takata T, Domen K. Particulate photocatalysts for overall water splitting. Nat Rev Mater. 2017. https://doi.org/10.1038/natrevmats.2017.50.

    Article  PubMed  PubMed Central  Google Scholar 

  273. Hisatomi T, Kubota J, Domen K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev. 2014;43(22):7520. https://doi.org/10.1039/c3cs60378d.

    Article  CAS  PubMed  Google Scholar 

  274. Fujishuima A, Honda K. electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;5358(238):37. https://doi.org/10.1038/238037a0.

    Article  Google Scholar 

  275. Ng KH, Lai SY, Cheng CK, Cheng YW, Chong CC. Photocatalytic water splitting for solving energy crisis: myth, fact or busted? Chem Eng J. 2021;417:128847. https://doi.org/10.1016/j.cej.2021.128847.

    Article  CAS  Google Scholar 

  276. Kim HI, Kim H, Weon S, Moon G, Kim J, Choi W. Robust co-catalytic performance of nanodiamonds loaded on WO3 for the decomposition of volatile organic compounds under visible light. Acs Catal. 2016;6(12):8350. https://doi.org/10.1021/acscatal.6b02726.

    Article  CAS  Google Scholar 

  277. Lin Z, Xiao J, Li L, Liu P, Wang C, Yang G. Nanodiamond-embedded p-type copper(i) oxide nanocrystals for broad-spectrum photocatalytic hydrogen evolution. Adv Energy Mater. 2016;6(4):1501865. https://doi.org/10.1002/aenm.201501865.

    Article  CAS  Google Scholar 

  278. Su L, Huang Q, Lou Q, Liu Z, Sun J, Zhang Z, Shan C. Effective light scattering and charge separation in nanodiamond@g-C3N4 for enhanced visible-light hydrogen evolution. Carbon. 2018;139:164. https://doi.org/10.1016/j.carbon.2018.06.048.

    Article  CAS  Google Scholar 

  279. Yao Y, Sang D, Duan S, Wang Q, Liu C. Review on the properties of boron-doped diamond and one-dimensional-metal-oxide based p-n heterojunction. Molecules. 2021;26(1):71. https://doi.org/10.3390/molecules26010071.

    Article  CAS  Google Scholar 

  280. Su L, Liu Z, Ye Y, Shen C, Lou Q, Shan C. Heterostructured boron doped nanodiamonds@g-C3N4 nanocomposites with enhanced photocatalytic capability under visible light irradiation. Int J Hydrogen Energ. 2019;44(36):19805. https://doi.org/10.1016/j.ijhydene.2019.05.135.

    Article  CAS  Google Scholar 

  281. Khan M, Hayat A, Baburao Mane SK, Li T, Shaishta N, Alei D, Khan WU. Functionalized nano diamond composites for photocatalytic hydrogen evolution and effective pollutant degradation. Int J Hydrogen Energ. 2020;45(53):29070. https://doi.org/10.1016/j.ijhydene.2020.07.274.

    Article  CAS  Google Scholar 

  282. Jang DM, Myung Y, Im HS, Seo YS, Cho YJ, Lee CW, Lee M. Nanodiamonds as photocatalysts for reduction of water and graphene oxide. Chem Commun. 2012;48(5):696. https://doi.org/10.1039/C1CC16210A.

    Article  CAS  Google Scholar 

  283. Su L, Lou Q, Shan C, Chen D, Zang J, Liu L. Ag/nanodiamond/g-C3N4 heterostructures with enhanced visible-light photocatalytic performance. Appl Surf Sci. 2020;525:146576. https://doi.org/10.1016/j.apsusc.2020.146576/.

    Article  CAS  Google Scholar 

  284. Haider RS, Wang S, Gao Y, Malik AS, Ta N, Li H, Li C. Boosting photocatalytic water oxidation by surface plasmon resonance of AgxAu1−x alloy nanoparticles. Nano Energy. 2021;87:106189. https://doi.org/10.1016/j.nanoen.2021.106189.

    Article  CAS  Google Scholar 

  285. Liu M, Xiao X, Li Q, Luo L, Ding M, Zhang B, Jiang B. Recent progress of electrocatalysts for oxygen reduction in fuel cells. J Colloid Interf Sci. 2022;607:791. https://doi.org/10.1016/j.jcis.2021.09.008.

    Article  CAS  Google Scholar 

  286. Rashidi S, Karimi N, Sunden B, Kim KC, Olabi AG, Mahian O. Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: fuel cells, electrolysers, and supercapacitors. Prog Energ Combust. 2022;88: 100966. https://doi.org/10.1016/j.pecs.2021.100966.

    Article  Google Scholar 

  287. Liu M, Zhao Z, Duan X, Huang Y. Nanoscale structure design for high-performance Pt-based ORR catalysts. Adv Mater. 2019;31(6):1802234. https://doi.org/10.1002/adma.201802234.

    Article  CAS  Google Scholar 

  288. Zhang J, Yuan Y, Gao L, Zeng G, Li M, Huang H. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: fundamental understanding and design strategies. Adv Mater. 2021;33(20):2006494. https://doi.org/10.1002/adma.202006494.

    Article  CAS  Google Scholar 

  289. Singh SK, Takeyasu K, Nakamura J. Active sites and mechanism of oxygen reduction reaction electrocatalysis on nitrogen-doped carbon materials. Adv Mater. 2019;31(13):1804297. https://doi.org/10.1002/adma.201804297.

    Article  CAS  Google Scholar 

  290. Lv Q, Si W, He J, Sun L, Zhang C, Wang N, Li Y. Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-05878-y.

    Article  PubMed  PubMed Central  Google Scholar 

  291. Kulkarni A, Siahrostami S, Patel A, Nørskov JK. Understanding catalytic activity trends in the oxygen reduction reaction. Chem Rev. 2018;118(5):2302. https://doi.org/10.1021/acs.chemrev.7b00488.

    Article  CAS  PubMed  Google Scholar 

  292. Yang X, Zeng Y, Alnoush W, Hou Y, Higgins D, Wu G. Tuning two-electron oxygen-reduction pathways for H2O2 electrosynthesis via engineering atomically dispersed single metal site catalysts. Adv Mater. 2022;34(23):2107954. https://doi.org/10.1002/adma.202107954.

    Article  CAS  Google Scholar 

  293. Gong HY, Liang X, Sun GL, Li DW, Zheng XJ, Shi H, Zeng K, Xu GC, Li Y, Yang RZ, Yuan CZ. Insight into role of Ni/Fe existing forms in reversible oxygen catalysis based on Ni-Fe single-atom/nanoparticles and N-doped carbon. Rare Met. 2022;41(12):4034. https://doi.org/10.1007/s12598-022-02078-y.

  294. Wu Z, Song M, Wang J, Liu X. Recent progress in nitrogen-doped metal-free electrocatalysts for oxygen reduction reaction. Catalysts. 2018;8(5):196. https://doi.org/10.3390/catal8050196.

    Article  CAS  Google Scholar 

  295. Jang DM, Im HS, Back SH, Park K, Lim YR, Jung CS, Lee M. Laser-induced graphitization of colloidal nanodiamonds for excellent oxygen reduction reaction. Phys Chem Chem Phys. 2014;16(6):2411. https://doi.org/10.1039/C3CP54039A.

    Article  CAS  PubMed  Google Scholar 

  296. Li Q, Zhang K, Wang H, Zhang J, Shao G, Zhu J, Wang Z. A highly durable coox/n-doped graphitized-nano-diamond electrocatalyst for oxygen reduction reaction. Nanotechnology. 2021. https://doi.org/10.1088/1361-6528/ac00e1.

    Article  PubMed  Google Scholar 

  297. Zhang C, Huang N, Zhai Z, Liu L, Chen B, Lu Z, Jiang X. Nitrogen-doped carbon nanowalls/diamond films as efficient electrocatalysts toward oxygen reduction reaction. Nanotechnology. 2021. https://doi.org/10.1088/1361-6528/ac2a84.

    Article  PubMed  Google Scholar 

  298. Luan M, Jing G, Piao Y, Liu D, Jin L. Treatment of refractory organic pollutants in industrial wastewater by wet air oxidation. Arab J Chem. 2017;10:S769. https://doi.org/10.1016/j.arabjc.2012.12.003.

    Article  CAS  Google Scholar 

  299. Li X, Yang B, Xiao K, Duan H, Wan J, Zhao H. Targeted degradation of refractory organic compounds in wastewaters based on molecular imprinting catalysts. Water Res. 2021;203:117541. https://doi.org/10.1016/j.watres.2021.117541.

    Article  CAS  PubMed  Google Scholar 

  300. Manna M, Sen S. Advanced oxidation process: a sustainable technology for treating refractory organic compounds present in industrial wastewater. Environ Sci Pollut R. 2022. https://doi.org/10.1007/s11356-022-19435-0.

    Article  Google Scholar 

  301. Chen L, He XX, Gong ZH, Li JL, Liao Y, Li XT, Ma J. Significantly improved photocatalysis-self-Fenton degradation performance over g-C3N4 via promoting Fe(III)/Fe(II) cycle. Rare Met. 2022; 41:2429. https://doi.org/10.1007/s12598-022-01963-w.

  302. Li S, Yang Y, Zheng H, Zheng Y, Jing T, Ma J, Chang JS. Advanced oxidation process based on hydroxyl and sulfate radicals to degrade refractory organic pollutants in landfill leachate. Chemosphere. 2022;297:134214. https://doi.org/10.1016/j.chemosphere.2022.134214.

    Article  CAS  PubMed  Google Scholar 

  303. Ganiyu SO, Martínez Huitle CA. Nature, mechanisms and reactivity of electrogenerated reactive species at thin-film boron-doped diamond (BDD) electrodes during electrochemical wastewater treatment. ChemElectroChem. 2019;6(9):2379. https://doi.org/10.1002/celc.201900159.

    Article  CAS  Google Scholar 

  304. De Luna Y, Bensalah N. Review on the electrochemical oxidation of endocrine-disrupting chemicals using BDD anodes. Curr Opin Electroche. 2022;32:100900. https://doi.org/10.1016/j.coelec.2021.100900.

    Article  CAS  Google Scholar 

  305. He Y, Haibo L, Zhongcheng G, Wenli Z, Hongdong L, Weimin H. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants. Sep Purif Technol. 2019;212:802. https://doi.org/10.1016/j.seppur.2018.11.056.

    Article  CAS  Google Scholar 

  306. Chen P, Mu Y, Chen Y, Tian L, Jiang X, Zou J, Luo S. Shifts of surface-bound OH to homogeneous OH in BDD electrochemical system via UV irradiation for enhanced degradation of hydrophilic aromatic compounds. Chemosphere. 2022;291:132817. https://doi.org/10.1016/j.chemosphere.2021.132817.

    Article  CAS  PubMed  Google Scholar 

  307. Ammar HB, Brahim MB, Abdelhédi R, Samet Y. Green electrochemical process for metronidazole degradation at BDD anode in aqueous solutions via direct and indirect oxidation. Sep Purif Technol. 2016;157:9. https://doi.org/10.1016/j.seppur.2015.11.027.

    Article  CAS  Google Scholar 

  308. Duan X, Ao Z, Zhang H, Saunders M, Sun H, Shao Z, Wang S. Nanodiamonds in sp2/sp3 configuration for radical to nonradical oxidation: core-shell layer dependence. Appl Catal B. 2018;222:176. https://doi.org/10.1016/j.apcatb.2017.10.007.

    Article  CAS  Google Scholar 

  309. Sun M, Zhang Y, Kong S, Zhai L, Wang S. Excellent performance of electro-assisted catalytic wet air oxidation of refractory organic pollutants. Water Res. 2019;158:313. https://doi.org/10.1016/j.watres.2019.04.040.

    Article  CAS  PubMed  Google Scholar 

  310. Chen L, Lei C, Li Z, Yang B, Zhang X, Lei L. Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants. Chemosphere. 2018;210:516. https://doi.org/10.1016/j.chemosphere.2018.07.043.

    Article  CAS  PubMed  Google Scholar 

  311. Zhang Z, Yi G, Li P, Wang X, Wang X, Zhang C, Zhang Y. Recent progress in engineering approach towards the design of pbo2-based electrodes for the anodic oxidation of organic pollutants. J Water Process Eng. 2021;42:102173. https://doi.org/10.1016/j.jwpe.2021.102173.

    Article  Google Scholar 

  312. Ma J, Trellu C, Skolotneva E, Oturan N, Oturan MA, Mareev S. Investigating the reactivity of tiox and BDD anodes for electro-oxidation of organic pollutants by experimental and modeling approaches. Electrochim Acta. 2023;439:141513. https://doi.org/10.1016/j.electacta.2022.141513.

    Article  CAS  Google Scholar 

  313. Jiang Y, Zhao H, Liang J, Yue L, Li T, Luo Y, Sun X. Anodic oxidation for the degradation of organic pollutants: anode materials, operating conditions and mechanisms. A mini review Electrochem Commun. 2021;123:106912. https://doi.org/10.1016/j.elecom.2020.106912.

    Article  CAS  Google Scholar 

  314. Li G, Zhou S, Shi Z, Meng X, Li L, Liu B. Electrochemical degradation of ciprofloxacin on BDD anode using a differential column batch reactor: mechanisms, kinetics and pathways. Environ Sci Pollut R. 2019;26(17):17740. https://doi.org/10.1007/s11356-019-04900-0.

    Article  CAS  Google Scholar 

  315. Danyelle MA, Pablo C, Carlos A. Martínez H, Manuel AR,. Electrochemical conversion/combustion of a model organic pollutant on BDD anode: role of sp3/sp2 ratio. Chemosphere. 2022;291:132817. https://doi.org/10.1016/j.elecom.2014.07.017.

  316. Liu Y, Fan X, Quan X, Fan Y, Chen S, Zhao X. Enhanced perfluorooctanoic acid degradation by electrochemical activation of sulfate solution on B/N codoped diamond. Environ Sci Technol. 2019;53(9):5195. https://doi.org/10.1021/acs.est.8b06130.

    Article  CAS  PubMed  Google Scholar 

  317. Duan X, Ao Z, Li D, Sun H, Zhou L, Suvorova A, Wang S. Surface-tailored nanodiamonds as excellent metal-free catalysts for organic oxidation. Carbon. 2016;103:404. https://doi.org/10.1016/j.carbon.2016.03.034.

    Article  CAS  Google Scholar 

  318. Bogdanowicz R. Functionalized nanodiamonds as a perspective green carbo-catalyst for removal of emerging organic pollutants. Curr Opin Solid State Mater Sci. 2022;26(3):100991. https://doi.org/10.1016/j.cossms.2022.100991.

    Article  CAS  Google Scholar 

  319. de Freitas-Araújo KC, Dos Santos EV, Pierpaoli M, Ficek M, Santos JEL, Martínez-Huitle C, Bogdanowicz R. Diamondized carbon nanoarchitectures as electrocatalytic material for sulfate-based oxidizing species electrogeneration. Electrochim Acta. 2022;430:141069. https://doi.org/10.1016/j.electacta.2022.141069.

    Article  CAS  Google Scholar 

  320. Liu Y, Sun T, Su Q, Tang Y, Xu X, Akram M, Jiang B. Highly efficient and mild electrochemical degradation of bentazon by nano-diamond doped PbO2 anode with reduced Ti nanotube as the interlayer. J Colloid Interf Sci. 2020;575:254. https://doi.org/10.1016/j.jcis.2020.04.092.

    Article  CAS  Google Scholar 

  321. Lee C, Lee E, Lim Y, Park K, Park H, Lim D. Enhanced electrochemical oxidation of phenol by boron-doped diamond nanowire electrode. Rsc Adv. 2017;7(11):6229. https://doi.org/10.1039/c6ra26287b.

    Article  CAS  Google Scholar 

  322. Ajeel MA, Mahdi RI, Aroua MKT, Abd Majid WH. Preparation and characterization of electrode from annealed nano-diamond particles with boric acid for anodic oxidation process. Electrochim Acta. 2020;362:137221. https://doi.org/10.1016/j.electacta.2020.137221.

    Article  CAS  Google Scholar 

  323. Song H, Yan L, Jiang J, Ma J, Zhang Z, Zhang J, Yang T. Electrochemical activation of persulfates at BDD anode: radical or nonradical oxidation? Water Res. 2018;128:393. https://doi.org/10.1016/j.watres.2017.10.018.

    Article  CAS  PubMed  Google Scholar 

  324. Lee H, Kim H, Weon S, Choi W, Hwang YS, Seo J, Kim J. Activation of persulfates by graphitized nanodiamonds for removal of organic compounds. Environ Sci Technol. 2016;50(18):10134. https://doi.org/10.1021/acs.est.6b02079.

    Article  CAS  PubMed  Google Scholar 

  325. Hunge YM, Yadav AA, Khan S, Takagi K, Suzuki N, Teshima K, Fujishima A. Photocatalytic degradation of bisphenol a using titanium dioxide@nanodiamond composites under UV light illumination. J Colloid Interf Sci. 2021;582:1058. https://doi.org/10.1016/j.jcis.2020.08.102.

    Article  CAS  Google Scholar 

  326. Pan J, Guo F, Sun H, Li M, Zhu X, Gao L, Shi W. Nanodiamond decorated 2D hexagonal Fe2O3 nanosheets with a Z-scheme photogenerated electron transfer path for enhanced photocatalytic activity. J Mater Sci. 2021;56(11):6663. https://doi.org/10.1007/s10853-020-05700-5.

    Article  CAS  Google Scholar 

  327. Kim S, Park S. Interfacial interaction of graphitic carbon nitride/nanodiamond nanocomposites toward synergistic enhancement of photocatalytic degradation of organic contaminants. J Colloid Interf Sci. 2022;608:2257. https://doi.org/10.1016/j.jcis.2021.10.116.

    Article  CAS  Google Scholar 

  328. Pan J, Wang L, Shi Y, Li L, Xu Z, Sun H, Shi W. Construction of nanodiamonds/UIO-66-NH2 heterojunction for boosted visible-light photocatalytic degradation of antibiotics. Sep Purif Technol. 2022;284:120270. https://doi.org/10.1016/j.seppur.2021.120270.

    Article  CAS  Google Scholar 

  329. Liu L, Li S, An Y, Sun X, Wu H, Li J, Li H. Hybridization of nanodiamond and CuFe-LDH as heterogeneous photoactivator for visible-light driven photo-fenton reaction: photocatalytic activity and mechanism. Catalysts. 2019;9(2):118. https://doi.org/10.3390/catal9020118.

    Article  CAS  Google Scholar 

  330. Pan J, Guo F, Sun H, Shi Y, Shi W. Nanodiamonds anchored on porous ZnSnO3 cubes as an efficient composite photocatalyst with improved visible-light photocatalytic degradation of tetracycline. Sep Purif Technol. 2021;263:118398. https://doi.org/10.1016/j.seppur.2021.118398.

    Article  CAS  Google Scholar 

  331. Yang B, Kang H, Ko Y, Woo H, Gim G, Choi J, Lee J. Persulfate activation by nanodiamond-derived carbon onions: effect of phase transformation of the inner diamond core on reaction kinetics and mechanisms. Appl Catal B. 2021;293:120205. https://doi.org/10.1016/j.apcatb.2021.120205.

    Article  CAS  Google Scholar 

  332. Akerdi AG, Bahrami SH. Application of heterogeneous nano-semiconductors for photocatalytic advanced oxidation of organic compounds: a review. J Environ Chem Eng. 2019;7(5):103283. https://doi.org/10.1016/j.jece.2019.103283.

    Article  CAS  Google Scholar 

  333. Liu H, Wang C, Wang G. Photocatalytic advanced oxidation processes for water treatment: recent advances and perspective. Chem Asian J. 2020;15(20):3239. https://doi.org/10.1002/asia.202000895.

    Article  CAS  PubMed  Google Scholar 

  334. Li Y, Dong H, Li L, Tang L, Tian R, Li R, Zeng G. Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. Water Res. 2021;192:116850. https://doi.org/10.1016/j.watres.2021.116850.

    Article  CAS  PubMed  Google Scholar 

  335. Yang Y, Li X, Zhou C, Xiong W, Zeng G, Huang D, Guo H. Recent advances in application of graphitic carbon nitride-based catalysts for degrading organic contaminants in water through advanced oxidation processes beyond photocatalysis: a critical review. Water Res. 2020;184:116200. https://doi.org/10.1016/j.watres.2020.116200.

    Article  CAS  PubMed  Google Scholar 

  336. Zu M, Zhou X, Zhang S, Qian S, Li D, Liu X, Zhang S. Sustainable engineering of TiO2-based advanced oxidation technologies: from photocatalyst to application devices. J Mater Sci Technol. 2021;78:202. https://doi.org/10.1016/j.jmst.2020.10.061.

    Article  CAS  Google Scholar 

  337. Kublik N, Gomes LE, Plaça LF, Lima THN, Abelha TF, Ferencz JA, Wender H. Metal-free g-C3N4/nanodiamond heterostructures for enhanced photocatalytic pollutant removal and bacteria photoinactivation. Photochem. 2021;1(2):302. https://doi.org/10.3390/photochem1020019.

    Article  Google Scholar 

  338. Xia T, Lin Y, Li W, Ju M. Photocatalytic degradation of organic pollutants by mofs based materials: a review. Chinese Chem Lett. 2021;32(10):2975. https://doi.org/10.1016/j.cclet.2021.02.058.

    Article  CAS  Google Scholar 

  339. Shen JX, Wang YJ, Chen C, Wei ZH, Song PF, Shen MG. Reduced graphene oxide grafted on p-Si photocathode as a multifunctional interlayer for enhanced solar hydrogen production. Appl Phys Lett. 2022;121:21390. https://doi.org/10.1063/5.0121678.

    Article  CAS  Google Scholar 

  340. Xu SS, Chen C, Shen JX, Xu ZH, Lu Y, Song PF, Shen MG. The bifunctional 3D-on-2D FeCo/Ni(OH)2 hierarchical nanocatalyst for industrial-level electrocatalytic water splitting. Int J Hydrogen Energ. 2023;0360:3199. https://doi.org/10.1016/j.ijhydene.2023.01.289.

    Article  CAS  Google Scholar 

  341. Yang B, Li YT. Preface to the special issue on energy conversion and storage materials. Tungsten. 2022;4(4):261. https://doi.org/10.1007/s42864-022-00184-z.

  342. Zhao C, Kang J, Li Y, Wang Y, Tang X, Jiang Z. Carbon-based stimuli-responsive nanomaterials: classification and application. Cyborg and Bionic Systems. 2023. https://doi.org/10.34133/cbsystems.00223.

    Article  PubMed  PubMed Central  Google Scholar 

  343. Wang HQ. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022;15:2834. https://doi.org/10.1007/s12274-021-3984-9.

    Article  CAS  Google Scholar 

  344. Zang DJ, Gao JX, Li LY, Wei YG, Wang HQ. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022;15:8872. https://doi.org/10.1007/s12274-022-4698-3.

    Article  CAS  Google Scholar 

  345. Sun CY, Zhao ZW, Liu H, Wang HQ. Core–shell nanostructure for supra-photothermal CO2 catalysis. Rare Met. 2022;41(5):1403. https://doi.org/10.1007/s12598-021-01906-x.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by National Natural Science Foundation of China (Nos. 52102162 and 11975205), Guangdong Basic and Applied Basic Research Foundation (Nos. 2022A1515011794 and 2020B1515120048) and the Young Talents in Higher Education of Guangdong (No. 2021KQNCX273). The author also acknowledge the support from Jiangsu Science and Technology Programme - YoungScholar (BK20200251).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhun Hu, Zhong-Jie Jiang, Yong-Jie Wang or Jia-Qi Zhu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, XW., Zhao, ZW., He, Y. et al. Nanodiamond: a promising metal-free nanoscale material in photocatalysis and electrocatalysis. Rare Met. (2024). https://doi.org/10.1007/s12598-023-02513-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-023-02513-8

Keywords

Navigation