Skip to main content

Advertisement

Log in

Progress in pulsed laser ablation in liquid (PLAL) technique for the synthesis of carbon nanomaterials: a review

  • Invited Review
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pulsed laser ablation in liquid technique (PLAL) had started getting attention in late 1990, particularly for the production of the nanomaterials due to its easy handling and room-temperature synthesis process. Soon after the initial demonstration of nanomaterials generation from the PLAL technique, PLAL gradually becomes a green, facile and inexpensive method for the generation of ultrapure carbon nanomaterials (CNMs). In the past two decades, different allotropic forms of CNMs have been fabricated by using PLAL techniques such as graphene/graphene oxide nanosheet, carbon nanotubes, graphene oxide quantum dots, nanodiamonds, carbogenic nanoparticles, polyynes and carbon-encapsulated metal-based nanoparticles. In this review article, we offer a comprehensive discussion on the progress achieved in the design and development of the PLAL method for the production of CNMs only (the year 1998–2020). Firstly, we have introduced the different types of PLAL methods widely used for CNMs fabrication. Secondly, the different types of factors affecting the physicochemical (structural, morphological, optical) properties of CNMs and the efficiency of CNMs production from PLAL method have been summarized in detail. The laser parameters and experimental conditions of the PLAL method, that affecting the physicochemical properties and efficiency of CNMs production are laser wavelengths, pulse duration and repetition rate, ablation duration, per-pulse energy density (fluence), PLAL setup design and nature of solvents. The results from different spectroscopic techniques for each kind of CNMs have been discussed thoroughly, to unambiguously differentiate the structural integrity of  the CNMs from one another. Finally, the uses of CNMs for different applications in the present time, existing challenges in the PLAL methods and the future outlook of laser-assisted synthesized CNMs for novel applications were also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source and d ultrasonication bath treatment

Fig. 3
Fig. 4
Fig. 5
Fig. 6

Reproduced with permission from Elsevier, License No. 5026361316347) [115]

Fig. 7

Reproduced with permission from Elsevier, License No. 5026370382265) [114]

Fig. 8

Reproduced with permission from Elsevier, License No. 5026370731138) [117]

Fig. 9

Reproduced with permission from Elsevier, License No. 5025200839979) [30], c, d MWCNTs with small amount of CNPs under synthesized under two different laser wavelength (532 and 1064 nm) (Reproduced with permission from Elsevier, License No. 5025201008282) [19]

Fig. 10
Fig. 11
Fig. 12

Reproduced with permission from John Wiley and Sons, License No. 5025220294764) [96] and b cubic diamond (Reproduced with permission from Elsevier, License No. 5026381106288) [21]

Fig. 13
Fig. 14

Reproduced with permission from Elsevier, License No. 5025230038905) [27] and b human cardiomyocytes (AC16) cells (Reproduced with permission from Elsevier, License No. 5025230198860) [108]

Similar content being viewed by others

References

  1. V. Georgakilas, J.A. Perman, J. Tucek, R. Zboril, Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 115, 4744–4822 (2015). https://doi.org/10.1021/cr500304f

    Article  Google Scholar 

  2. I.V. Grigorieva, A.A. Firsov, K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Electric field effect in atomically thin carbon films. Nat. Mater. 306, 666–669 (2004). https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  3. S. Lijima, Helical microtubles of graphitic carbon. Nature 354, 56–58 (1991). https://doi.org/10.1038/354056a0

    Article  ADS  Google Scholar 

  4. S. Iijima, T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603–605 (1993). https://doi.org/10.1038/363603a0

    Article  ADS  Google Scholar 

  5. R.F. Curl, R.E. Smalley, H.W. Kroto, J.R. Heath, S.C. O’Brien, C60: Buckminsterfullerene. Nature 318, 162–163 (1985)

    Article  ADS  Google Scholar 

  6. W. Krätschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Solid C60: a new form of carbon. Nature 347, 354–358 (1990). https://doi.org/10.1038/347354a0

    Article  ADS  Google Scholar 

  7. X. Xu, R. Ray, Y. Gu, H.J. Ploehn, L. Gearheart, K. Raker, W.A. Scrivens, Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736–12737 (2004). https://doi.org/10.1021/ja040082h

    Article  Google Scholar 

  8. C. Doñate-Buendía, M. Fernández-Alonso, Pulsed laser ablation in liquids for the production of gold nanoparticles and carbon quantum dots : From plasmonic to fluorescence and cell labelling Pulsed laser ablation in liquids for the production of gold nanoparticles and carbon quantum dots : from. J. Phys. Conf. Ser. 1537, 012013–012018 (2020). https://doi.org/10.1088/1742-6596/1537/1/012013

    Article  Google Scholar 

  9. D. Zhang, C. Zhang, J. Liu, Q. Chen, X. Zhu, C. Liang, Carbon-encapsulated metal/metal carbide/metal oxide core-shell nanostructures generated by laser ablation of metals in organic solvents. ACS Appl. Nano Mater. 2, 28–39 (2019). https://doi.org/10.1021/acsanm.8b01541

    Article  Google Scholar 

  10. R.L. Calabro, D.S. Yang, D.Y. Kim, Liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: Comparison with chemical oxidation. J. Colloid Interface Sci. 527, 132–140 (2018). https://doi.org/10.1016/j.jcis.2018.04.113

    Article  ADS  Google Scholar 

  11. E.A. Ganash, G.A. Al-Jabarti, R.M. Altuwirqi, The synthesis of carbon-based nanomaterials by pulsed laser ablation in water. Mater. Res. Express. 7, 015002–015012 (2020). https://doi.org/10.1088/2053-1591/ab572b

    Article  ADS  Google Scholar 

  12. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large Area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008)

    Article  ADS  Google Scholar 

  13. R.B. Kaner, L.M. Viculis, J.J. Mack, A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)

    Article  Google Scholar 

  14. Y. Ando, X. Zhao, Synthesis of carbon nanotubes by arc-discharge method. New Diam. Front. Carbon Technol. 16, 123–137 (2006)

    Google Scholar 

  15. J. Prasek, J. Drbohlavova, J. Chomoucka, J. Hubalek, O. Jasek, V. Adam, R. Kizek, Methods for carbon nanotubes synthesis: Review. J. Mater. Chem. 21, 15872–15884 (2011). https://doi.org/10.1039/c1jm12254a

    Article  Google Scholar 

  16. A.M. Cassell, J.A. Raymakers, J. Kong, H. Dai, Large scale CVD synthesis of single-walled carbon nanotubes. J. Phys. Chem. B. 103, 6484–6492 (1999). https://doi.org/10.1021/jp990957s

    Article  Google Scholar 

  17. M. Escobar, M.S. Moreno, R.J. Candal, M.C. Marchi, A. Caso, P.I. Polosecki, G.H. Rubiolo, S. Goyanes, Synthesis of carbon nanotubes by CVD: Effect of acetylene pressure on nanotubes characteristics. Appl. Surf. Sci. 254, 251–256 (2007). https://doi.org/10.1016/j.apsusc.2007.07.044

    Article  ADS  Google Scholar 

  18. J. Chrzanowska, J. Hoffman, A. Małolepszy, M. Mazurkiewicz, T.A. Kowalewski, Z. Szymanski, L. Stobinski, Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys. Status Solidi. 252, 1860–1867 (2015). https://doi.org/10.1002/pssb.201451614

    Article  Google Scholar 

  19. R.A. Ismail, M.H. Mohsin, A.K. Ali, K.I. Hassoon, S. Erten-Ela, Preparation and characterization of carbon nanotubes by pulsed laser ablation in water for optoelectronic application. Phys. E Low-Dimensional Syst. Nanostructures. 119, 113997–114004 (2020). https://doi.org/10.1016/j.physe.2020.113997

    Article  Google Scholar 

  20. D.P. Yu, X.S. Sun, C.S. Lee, I. Bello, S.T. Lee, H.D. Gu, K.M. Leung, G.W. Zhou, Z.F. Dong, Z. Zhang, Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 72, 1966–1968 (1998). https://doi.org/10.1063/1.121236

    Article  ADS  Google Scholar 

  21. D. Amans, A.C. Chenus, G. Ledoux, C. Dujardin, C. Reynaud, O. Sublemontier, K. Masenelli-Varlot, O. Guillois, Nanodiamond synthesis by pulsed laser ablation in liquids. Diam. Relat. Mater. 18, 177–180 (2009). https://doi.org/10.1016/j.diamond.2008.10.035

    Article  ADS  Google Scholar 

  22. E.A. Ekimov, K.M. Kondrina, N.E. Mordvinova, O.I. Lebedev, D.G. Pasternak, I.I. Vlasov, High-pressure, high-temperature synthesis of nanodiamond from adamantane. Inorg. Mater. 55, 437–442 (2019). https://doi.org/10.1134/S0020168519050042

    Article  Google Scholar 

  23. S. Gottlieb, N. Wöhrl, S. Schulz, V. Buck, Simultaneous synthesis of nanodiamonds and graphene via plasma enhanced chemical vapor deposition (MW PE-CVD) on copper. Springerplus 5, 568–584 (2016). https://doi.org/10.1186/s40064-016-2201-x

    Article  Google Scholar 

  24. B.P. Tolochko, V.M. Titov, A.P. Chernyshev, K.A. Ten, E.R. Pruuel, I.L. Zhogin, P.I. Zubkov, N.Z. Lyakhov, L.A. Lukyanchikov, M.A. Sheromov, Physical-chemical model of processes at detonation synthesis of nanodiamonds. Diam. Relat. Mater. 16, 2014–2017 (2007). https://doi.org/10.1016/j.diamond.2007.09.002

    Article  ADS  Google Scholar 

  25. G.N. Churilov, Synthesis of fullerenes and other nanomaterials in arc discharge. Fullerenes Nanotub. Carbon Nanostructures. 16, 395–403 (2008). https://doi.org/10.1080/15363830802281641

    Article  ADS  Google Scholar 

  26. J. Guo, X. Wang, Y. Yao, X. Yang, X. Liu, B. Xu, Structure of nanocarbons prepared by arc discharge in water. Mater. Chem. Phys. 105, 175–178 (2007). https://doi.org/10.1016/j.matchemphys.2007.04.022

    Article  Google Scholar 

  27. G.K. Yogesh, E.P. Shuaib, P. Roopmani, M.B. Gumpu, U.M. Krishnan, D. Sastikumar, Synthesis, characterization and bioimaging application of laser-ablated graphene-oxide nanoparticles (nGOs). Diam. Relat. Mater. 104, 107733–107746 (2020). https://doi.org/10.1016/j.diamond.2020.107733

    Article  ADS  Google Scholar 

  28. P. Russo, R. Liang, E. Jabari, E. Marzbanrad, E. Toyserkani, Y.N. Zhou, Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions. Nanoscale 8, 8863–8877 (2016). https://doi.org/10.1039/c6nr01148a

    Article  ADS  Google Scholar 

  29. S.Z. Mortazavi, P. Parvin, A. Reyhani, Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen. Laser Phys. Lett. 9, 547–552 (2012). https://doi.org/10.7452/lapl.201210033

    Article  ADS  Google Scholar 

  30. A. Al-Hamaoy, E. Chikarakara, H. Jawad, K. Gupta, D. Kumar, M.S.R. Rao, S. Krishnamurthy, M. Morshed, E. Fox, D. Brougham, X. He, M. Vázquez, D. Brabazon, Liquid phase - pulsed laser ablation: A route to fabricate different carbon nanostructures. Appl. Surf. Sci. 302, 141–144 (2014). https://doi.org/10.1016/j.apsusc.2013.09.102

    Article  ADS  Google Scholar 

  31. J. Sun, S.L. Hu, X.W. Du, Y.W. Lei, L. Jiang, Ultrafine diamond synthesized by long-pulse-width laser. Appl. Phys. Lett. 89, 1–4 (2006). https://doi.org/10.1063/1.2385210

    Article  Google Scholar 

  32. J.R. Heath, Q. Zhang, S.C. O’brien, R.F. Curl, H.W. Kroto, R.E. Smalley, The formation of long carbon chain molecules during laser vaporization of graphite. J. Am. Chem. Soc. 109, 359–363 (1987). https://doi.org/10.1021/ja00236a012

    Article  Google Scholar 

  33. M. Tsuji, S. Kuboyama, T. Matsuzaki, T. Tsuji, Formation of hydrogen-capped polyynes by laser ablation of C60 particles suspended in solution. Carbon N. Y. 41, 2141–2148 (2003). https://doi.org/10.1016/S0008-6223(03)00241-0

    Article  Google Scholar 

  34. S.B. Ogale, P.P. Patil, D.M. Phase, Y.V. Bhandarkar, S.K. Kulkarni, S. Kulkarni, S.V. Ghaisas, S.M. Kanetkar, V.G. Bhide, S. Guha, Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces. Phys. Rev. B. 36, 8237–8250 (1987). https://doi.org/10.1103/PhysRevB.36.8237

    Article  ADS  Google Scholar 

  35. S.B.O.P.P. Patil, D.M. Phase, S.A. Kulkarni, S.V. Ghaisas, S.K. Kulkarni, S.M. Kanetkar, Pulsed-laser-induced reactive quenching at a liquid-solid interface: Aqueous oxidation of iron. Phys. Rev. Lett. 58, 237–241 (1987). https://doi.org/10.1103/PhysRevLett.58.238

    Article  ADS  Google Scholar 

  36. A. Fojtik, A. Henglein, Laser ablation of films and suspended particles in a solvent: Formation of cluster and colloid solutions. Berichte Der Bunsen-Gesellschaft. 97, 252–254 (1993). https://doi.org/10.1109/TMAG.2013.2259225

    Article  Google Scholar 

  37. Y. Guo-Wei, W. Jin-Bin, L. Qui-Xiang, Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching. J. Phys. Condens. Matter. 10, 7923–7927 (1998). https://doi.org/10.1088/0953-8984/10/35/024

    Article  ADS  Google Scholar 

  38. D. Amans, W. Cai, S. Barcikowski, Status and demand of research to bring laser generation of nanoparticles in liquids to maturity. Appl. Surf. Sci. 488, 445–454 (2019). https://doi.org/10.1016/j.apsusc.2019.05.117

    Article  ADS  Google Scholar 

  39. D. Amans, M. Diouf, J. Lam, G. Ledoux, C. Dujardin, Origin of the nano-carbon allotropes in pulsed laser ablation in liquids synthesis. J. Colloid Interface Sci. 489, 114–125 (2017). https://doi.org/10.1016/j.jcis.2016.08.017

    Article  ADS  Google Scholar 

  40. C. Liang, Y. Shimizu, T. Sasaki, N. Koshizaki, Synthesis, characterization, and phase stability of ultrafine TiO2 nanoparticles by pulsed laser ablation in liquid media. J. Mater. Res. 19, 1551–1557 (2004). https://doi.org/10.1557/JMR.2004.0208

    Article  ADS  Google Scholar 

  41. V. Amendola, M. Meneghetti, What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys. Chem. Chem. Phys. 15, 3027–3046 (2013). https://doi.org/10.1039/c2cp42895d

    Article  Google Scholar 

  42. V. Amendola, P. Riello, M. Meneghetti, Magnetic nanoparticles of iron carbide, iron oxide, iron@iron oxide, and metal iron synthesized by laser ablation in organic solvents. J. Phys. Chem. C. 115, 5140–5146 (2011). https://doi.org/10.1021/jp109371m

    Article  Google Scholar 

  43. V. Amendola, I.D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini, S. Reichenberger, Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells and doped oxide nanoparticles. Chemistry 26, 9206–9242 (2020). https://doi.org/10.1002/chem.202000686

    Article  Google Scholar 

  44. S. Kang, K.H. Jung, S. Mhin, Y. Son, K. Lee, W.R. Kim, H. Choi, J.H. Ryu, H. Han, K.M. Kim, Fundamental understanding of the formation mechanism for graphene quantum dots fabricated by pulsed laser fragmentation in liquid: Experimental and theoretical insight. Small 16, 1–9 (2020). https://doi.org/10.1002/smll.202003538

    Article  Google Scholar 

  45. S.C. Ray, A. Saha, N.R. Jana, R. Sarkar, Fluorescent carbon nanoparticles: Synthesis, characterization, and bioimaging application. J. Phys. Chem. C 113, 18546–18551 (2009). https://doi.org/10.1021/jp905912n

    Article  Google Scholar 

  46. L. Han, D. Ghosh, W. Chen, S. Pradhan, X. Chang, S. Chen, Nanosized carbon particles from natural gas soot. Chem. Mater. 21, 2803–2809 (2009). https://doi.org/10.1021/cm900709w

    Article  Google Scholar 

  47. Z.-A. Qiao, Y. Wang, Y. Gao, H. Li, T. Dai, Y. Liu, Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem. Commun. 46, 8812–8814 (2010). https://doi.org/10.1039/c0cc02724c

    Article  Google Scholar 

  48. Y. Dong, N. Zhou, X. Lin, J. Lin, Y. Chi, G. Chen, Extraction of electrochemiluminescent oxidized carbon quantum dots from activated carbon. Chem. Mater. 22, 5895–5899 (2010). https://doi.org/10.1021/cm1018844

    Article  Google Scholar 

  49. H. Peng, J. Travas-Sejdic, Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21, 5563–5565 (2009). https://doi.org/10.1021/cm901593y

    Article  Google Scholar 

  50. L. Shen, L. Zhang, M. Chen, X. Chen, J. Wang, The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon N. Y. 55, 343–349 (2013). https://doi.org/10.1016/j.carbon.2012.12.074

    Article  Google Scholar 

  51. M. Qian, Y.S. Zhou, Y. Gao, J.B. Park, T. Feng, S.M. Huang, Z. Sun, L. Jiang, Y.F. Lu, Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Appl. Phys. Lett. 98, 173108–173011 (2011). https://doi.org/10.1063/1.3584021

    Article  ADS  Google Scholar 

  52. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Catalytic growth of single-walled manotubes by laser vaporization. Chem. Phys. Lett. 243, 49–54 (1995). https://doi.org/10.1016/0009-2614(95)00825-O

    Article  ADS  Google Scholar 

  53. J. Zhou, C. Booker, R. Li, X. Zhou, T.K. Sham, X. Sun, Z. Ding, An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129, 744–745 (2007). https://doi.org/10.1021/ja0669070

    Article  Google Scholar 

  54. D.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes. Chem. A Eur. J. 18, 12522–12528 (2012). https://doi.org/10.1002/chem.201201043

    Article  Google Scholar 

  55. L. Bao, Z.L. Zhang, Z.Q. Tian, L. Zhang, C. Liu, Y. Lin, B. Qi, D.W. Pang, Electrochemical tuning of luminescent carbon nanodots: From preparation to luminescence mechanism. Adv. Mater. 23, 5801–5806 (2011). https://doi.org/10.1002/adma.201102866

    Article  Google Scholar 

  56. S. Chandra, P. Das, S. Bag, D. Laha, P. Pramanik, Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 3, 1533–1540 (2011). https://doi.org/10.1039/c0nr00735h

    Article  ADS  Google Scholar 

  57. T.N.J.I. Edison, R. Atchudan, M.G. Sethuraman, J.J. Shim, Y.R. Lee, Microwave assisted green synthesis of fluorescent N-doped carbon dots: Cytotoxicity and bio-imaging applications. J. Photochem. Photobiol. B Biol. 161, 154–161 (2016). https://doi.org/10.1016/j.jphotobiol.2016.05.017

    Article  Google Scholar 

  58. H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang, X. Yang, Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 34, 5118–5120 (2009). https://doi.org/10.1039/b907612c

    Article  Google Scholar 

  59. L. Zhu, Y. Yin, C.F. Wang, S. Chen, Plant leaf-derived fluorescent carbon dots for sensing, patterning and coding. J. Mater. Chem. C. 1, 4925–4932 (2013). https://doi.org/10.1039/c3tc30701h

    Article  Google Scholar 

  60. R. Atchudan, T.N.J.I. Edison, M.G. Sethuraman, Y.R. Lee, Efficient synthesis of highly fluorescent nitrogen-doped carbon dots for cell imaging using unripe fruit extract of Prunus mume. Appl. Surf. Sci. 384, 432–441 (2016). https://doi.org/10.1016/j.apsusc.2016.05.054

    Article  ADS  Google Scholar 

  61. W. Lu, X. Qin, S. Liu, G. Chang, Y. Zhang, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal. Chem. 84, 5351–5357 (2012). https://doi.org/10.1021/ac3007939

    Article  Google Scholar 

  62. N. Papaioannou, A. Marinovic, N. Yoshizawa, A.E. Goode, M. Fay, A. Khlobystov, M.M. Titirici, A. Sapelkin, Structure and solvents effects on the optical properties of sugar-derived carbon nanodots. Sci. Rep. 8, 1–10 (2018). https://doi.org/10.1038/s41598-018-25012-8

    Article  Google Scholar 

  63. J. Yu, N. Song, Y.K. Zhang, S.X. Zhong, A.J. Wang, J. Chen, Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensors Actuators B Chem. 214, 29–35 (2015). https://doi.org/10.1016/j.snb.2015.03.006

    Article  Google Scholar 

  64. X. Zheng, H. Wang, Q. Gong, L. Zhang, G. Cui, Q. Li, L. Chen, F. Wu, S. Wang, Highly luminescent carbon nanoparticles as yellow emission conversion phosphors. Mater. Lett. 143, 290–293 (2015). https://doi.org/10.1016/j.matlet.2014.12.138

    Article  Google Scholar 

  65. H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.T. Lee, Z. Kang, One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon N. Y. 49, 605–609 (2011). https://doi.org/10.1016/j.carbon.2010.10.004

    Article  Google Scholar 

  66. Z. Ma, H. Ming, H. Huang, Y. Liu, Z. Kang, One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J. Chem. 36, 861–864 (2012). https://doi.org/10.1039/c2nj20942j

    Article  Google Scholar 

  67. E. Fazio, B. Gökce, A. De Giacomo, M. Meneghetti, G. Compagnini, M. Tommasini, F. Waag, A. Lucotti, C.G. Zanchi, P.M. Ossi, M. Dell’aglio, L. D’urso, M. Condorelli, V. Scardaci, F. Biscaglia, L. Litti, M. Gobbo, G. Gallo, M. Santoro, S. Trusso, F. Neri, Nanoparticles engineering by pulsed laser ablation in liquids: Concepts and applications. Nanomaterials 10, 1–50 (2020). https://doi.org/10.3390/nano10112317

    Article  Google Scholar 

  68. J. Xiao, P. Liu, C.X. Wang, G.W. Yang, External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog. Mater. Sci. 87, 140–220 (2017). https://doi.org/10.1016/j.pmatsci.2017.02.004

    Article  Google Scholar 

  69. D. Zhang, B. Gökce, S. Barcikowski, Laser synthesis and processing of colloids: Fundamentals and applications. Chem. Rev. 117, 3990–4103 (2017). https://doi.org/10.1021/acs.chemrev.6b00468

    Article  Google Scholar 

  70. D. Zhang, Z. Li, K. Sugioka, Laser ablation in liquids for nanomaterial synthesis: diversities of targets and liquids. J. Phys. Photonics. 3, 042002–104072 (2021). https://doi.org/10.1088/2515-7647/ac0bfd

    Article  ADS  Google Scholar 

  71. Z. Yan, D.B. Chrisey, Pulsed laser ablation in liquid for micro-/nanostructure generation. J. Photochem. Photobiol. C Photochem. Rev. 13, 204–223 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.04.004

    Article  Google Scholar 

  72. R.C. Forsythe, C.P. Cox, M.K. Wilsey, A.M. Müller, Pulsed laser in liquids made nanomaterials for catalysis. Chem. Rev. 121, 7568–7637 (2021). https://doi.org/10.1021/acs.chemrev.0c01069

    Article  Google Scholar 

  73. H. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai, Nanomaterials via laser ablation/irradiation in liquid: A review. Adv. Funct. Mater. 22, 1333–1353 (2012). https://doi.org/10.1002/adfm.201102295

    Article  Google Scholar 

  74. G.W. Yang, Laser ablation in liquids : Applications in the synthesis of nanocrystals. Prog. Matter. Sci. 52, 648–698 (2007). https://doi.org/10.1016/j.pmatsci.2006.10.016

    Article  Google Scholar 

  75. A. Pyatenko, H. Wang, N. Koshizaki, T. Tsuji, Mechanism of pulse laser interaction with colloidal nanoparticles. Laser Photon. Rev. 7, 596–604 (2013). https://doi.org/10.1002/lpor.201300013

    Article  ADS  Google Scholar 

  76. V. Amendola, D. Amans, Y. Ishikawa, N. Koshizaki, S. Scirè, G. Compagnini, S. Reichenberger, S. Barcikowski, Room-temperature laser synthesis in liquid of oxide, metal-oxide core-shells and doped oxide nanoparticles. Chem. A Eur. J. 26, 9206–9242 (2020). https://doi.org/10.1002/chem.202000686

    Article  Google Scholar 

  77. S.R.J. Pearce, S.J. Henley, F. Claeyssens, P.W. May, K.R. Hallam, J.A. Smith, K.N. Rosser, Production of nanocrystalline diamond by laser ablation at the solid/liquid interface. Diam. Relat. Mater. 13, 661–665 (2004). https://doi.org/10.1016/j.diamond.2003.08.027

    Article  ADS  Google Scholar 

  78. L. Yang, P.W. May, L. Yin, J.A. Smith, K.N. Rosser, Growth of diamond nanocrystals by pulsed laser ablation of graphite in liquid. Diam. Relat. Mater. 16, 725–729 (2007). https://doi.org/10.1016/j.diamond.2006.11.010

    Article  ADS  Google Scholar 

  79. Y.P. Sun, B. Zhou, Y. Lin, W. Wang, K.A.S. Fernando, P. Pathak, M.J. Meziani, B.A. Harruff, X. Wang, H. Wang, P.G. Luo, H. Yang, M.E. Kose, B. Chen, L.M. Veca, S.Y. Xie, Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756–7757 (2006). https://doi.org/10.1021/ja062677d

    Article  Google Scholar 

  80. I.M. Masaharu Tsuji, T. Tsuji, S. Kuboyama, S.-H. Yoon, Y. Korai, T. Tsujimoto, K. Kubo, A. Mori, Formation of hydrogen-capped polyynes by laser ablation of graphite particles suspended in solution. Chem. Phys. Lett. 355, 101–108 (2002). https://doi.org/10.1016/S0008-6223(03)00241-0

    Article  ADS  Google Scholar 

  81. A. Małolepszy, S. Błonski, J. Chrzanowska-Giżyńska, M. Wojasiński, T. Płocinski, L. Stobinski, Z. Szymanski, Fluorescent carbon and graphene oxide nanoparticles synthesized by the laser ablation in liquid. Appl. Phys. A Mater. Sci. Process. 124, 1–7 (2018). https://doi.org/10.1007/s00339-018-1711-5

    Article  Google Scholar 

  82. J. Zhang, Z. Gan, G. Hu, Y. Tang, L. Zhou, Q. Jiang, Y. Cui, The luminescent carbon nanoparticles with controllable oxygen-related functional groups prepared by pulsed laser ablation in water. Mod. Phys. Lett. B. 30, 3–6 (2016). https://doi.org/10.1142/S0217984916503206

    Article  Google Scholar 

  83. C. Doñate-Buendia, R. Torres-Mendieta, A. Pyatenko, E. Falomir, M. Fernández-Alonso, G. Mínguez-Vega, Fabrication by laser irradiation in a continuous flow jet of carbon quantum dots for fluorescence imaging. ACS Omega 3, 2735–2742 (2018). https://doi.org/10.1021/acsomega.7b02082

    Article  Google Scholar 

  84. L. Franzel, M.F. Bertino, Z.J. Huba, E.E. Carpenter, Synthesis of magnetic nanoparticles by pulsed laser ablation. Appl. Surf. Sci. 261, 332–336 (2012). https://doi.org/10.1016/j.apsusc.2012.08.010

    Article  ADS  Google Scholar 

  85. T.N. Lin, K.H. Chih, C.T. Yuan, J.L. Shen, C.A.J. Lin, W.R. Liu, Laser-ablation production of graphene oxide nanostructures: From ribbons to quantum dots. Nanoscale 7, 2708–2715 (2015). https://doi.org/10.1039/c4nr05737f

    Article  ADS  Google Scholar 

  86. S.L. Hu, K.Y. Niu, J. Sun, J. Yang, N.Q. Zhao, X.W. Du, One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19, 484–488 (2009). https://doi.org/10.1039/b812943f

    Article  Google Scholar 

  87. H. Yu, X. Li, X. Zeng, Y. Lu, Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chem. Commun. 52, 819–822 (2016). https://doi.org/10.1039/c5cc08384b

    Article  Google Scholar 

  88. C. Doñate-Buendía, M. Fernández-Alonso, J. Lancis, G. Mínguez-Vega, Overcoming the barrier of nanoparticle production by femtosecond laser ablation in liquids using simultaneous spatial and temporal focusing. Photonics Res. 7, 1249 (2019). https://doi.org/10.1364/prj.7.001249

    Article  Google Scholar 

  89. J.S. Hoppius, S. Maragkaki, A. Kanitz, P. Gregorčič, E.L. Gurevich, Optimization of femtosecond laser processing in liquids. Appl. Surf. Sci. 467–468, 255–260 (2019). https://doi.org/10.1016/j.apsusc.2018.10.121

    Article  ADS  Google Scholar 

  90. A. Menéndez-Manjón, P. Wagener, S. Barcikowski, Transfer-matrix method for efficient ablation by pulsed laser ablation and nanoparticle generation in liquids. J. Phys. Chem. C. 115, 5108–5114 (2011). https://doi.org/10.1021/jp109370q

    Article  Google Scholar 

  91. C.D.-B. Tim Hupfeld, A. Sommereyns, F. Riahi, B. Gokce, S.B. Stan Gann, Michael schmidt, analysis of the nanoparticle dispersion and its E ect on the crystalline microstructure in carbon-additivated PA12 feedstock material for laser powder bed fusion. Materials (Basel) 13, 3312–3329 (2020). https://doi.org/10.3390/ma13153312

    Article  ADS  Google Scholar 

  92. S.Z. Mortazavi, P. Parvin, A. Reyhani, S. Mirershadi, R. Sadighi-Bonabi, Generation of various carbon nanostructures in water using IR/UV laser ablation. J. Phys. D. Appl. Phys. 46, 165303–165311 (2013). https://doi.org/10.1088/0022-3727/46/16/165303

    Article  ADS  Google Scholar 

  93. P. Russo, A. Hu, G. Compagnini, W.W. Duley, N.Y. Zhou, Femtosecond laser ablation of highly oriented pyrolytic graphite: A green route for large-scale production of porous graphene and graphene quantum dots. Nanoscale 6, 2381–2389 (2014). https://doi.org/10.1039/c3nr05572h

    Article  ADS  Google Scholar 

  94. E. Perevedentseva, D. Peer, V. Uvarov, B. Zousman, O. Levinson, Nanodiamonds of laser synthesis for biomedical applications. J. Nanosci. Nanotechnol. 15, 1045–1052 (2015). https://doi.org/10.1166/jnn.2015.9747

    Article  Google Scholar 

  95. D. Reyes-Contreras, M. Camacho-López, M.A. Camacho-López, S. Camacho-López, R.I. Rodríguez-Beltrán, M. Mayorga-Rojas, Influence of the per pulse laser fluence on the optical properties of carbon nanoparticles synthesized by laser ablation of solids in liquids. Opt. Laser Technol. 74, 48–52 (2015). https://doi.org/10.1016/j.optlastec.2015.05.010

    Article  ADS  Google Scholar 

  96. N. Tarasenka, A. Stupak, N. Tarasenko, S. Chakrabarti, D. Mariotti, Structure and optical properties of carbon nanoparticles generated by laser treatment of graphite in liquids. ChemPhysChem 18, 1074–1083 (2017). https://doi.org/10.1002/cphc.201601182

    Article  Google Scholar 

  97. A.K. Narasimhan, S.B. Lakshmi, T.S. Santra, M.S.R. Rao, G. Krishnamurthi, Oxygenated graphene quantum dots (GQDs) synthesized using laser ablation for long-term real-time tracking and imaging. RSC Adv. 7, 53822–53829 (2017). https://doi.org/10.1039/c7ra10702a

    Article  ADS  Google Scholar 

  98. L. Escobar-Alarcón, M.E. Espinosa-Pesqueira, D.A. Solis-Casados, J. Gonzalo, J. Solis, M. Martinez-Orts, E. Haro-Poniatowski, Two-dimensional carbon nanostructures obtained by laser ablation in liquid: effect of an ultrasonic field. Appl. Phys. A. 124, 141–148 (2018). https://doi.org/10.1007/s00339-018-1559-8

    Article  ADS  Google Scholar 

  99. G.R. Kiran, B. Chandu, S.G. Acharyya, S.V. Rao, V.V.S.S. Srikanth, One-step synthesis of bulk quantities of graphene from graphite by femtosecond laser ablation under ambient conditions. Philos. Mag. Lett. 97, 229–234 (2017). https://doi.org/10.1080/09500839.2017.1320437

    Article  ADS  Google Scholar 

  100. L. Basso, F. Gorrini, N. Bazzanella, M. Cazzanelli, C. Dorigoni, A. Bifone, A. Miotello, The modeling and synthesis of nanodiamonds by laser ablation of graphite and diamond-like carbon in liquid-confined ambient. Appl. Phys. A Mater. Sci. Process. 124, 72–78 (2018). https://doi.org/10.1007/s00339-017-1491-3

    Article  ADS  Google Scholar 

  101. E. Perevedentseva, Y. Lin, C. Song, Z. Lin, C. Chang, C. Cheng, E. Perevedentseva, A. Karmenyan, Y. Lin, C. Song, Z. Lin, C. Chang, S. Norina, V. Bessalova, N. Perov, O. Levinson, B. Zousman, Multifunctional biomedical applications of magnetic nanodiamond. J. Biomed. Opt. 23, 091404–091413 (2018). https://doi.org/10.1117/1.jbo.23.9.091404

    Article  ADS  Google Scholar 

  102. L. Basso, N. Bazzanella, M. Cazzanelli, A. Miotello, On the route towards a facile fluorescent nanodiamonds laser-synthesis. Carbon N. Y. 153, 148–155 (2019). https://doi.org/10.1016/j.carbon.2019.07.025

    Article  Google Scholar 

  103. L. Basso, M. Sacco, N. Bazzanella, M. Cazzanelli, A. Barge, M. Orlandi, A. Bifone, A. Miotello, Laser-synthesis of NV-centers-enriched nanodiamonds: Effect of different nitrogen sources. Micromachines 11, 1–13 (2020). https://doi.org/10.3390/MI11060579

    Article  Google Scholar 

  104. S. Hu, F. Tian, P. Bai, S. Cao, J. Sun, J. Yang, Synthesis and luminescence of nanodiamonds from carbon black. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 157, 11–14 (2009). https://doi.org/10.1016/j.mseb.2008.12.001

    Article  Google Scholar 

  105. D. Tan, S. Zhou, B. Xu, P. Chen, Y. Shimotsuma, K. Miura, J. Qiu, Simple synthesis of ultra-small nanodiamonds with tunable size and photoluminescence. Carbon N. Y. 62, 374–381 (2013). https://doi.org/10.1016/j.carbon.2013.06.019

    Article  Google Scholar 

  106. C.H. Nee, S.L. Yap, T.Y. Tou, H.C. Chang, S.S. Yap, Direct synthesis of nanodiamonds by femtosecond laser irradiation of ethanol. Sci. Rep. 6, 1–8 (2016). https://doi.org/10.1038/srep33966

    Article  Google Scholar 

  107. V. Nguyen, J. Si, L. Yan, X. Hou, Direct demonstration of photoluminescence originated from surface functional groups in carbon nanodots. Carbon N. Y. 108, 268–273 (2016). https://doi.org/10.1016/j.carbon.2016.07.019

    Article  Google Scholar 

  108. G.K. Yogesh, E.P. Shuaib, A. Kalai Priya, P. Rohini, S.V. Anandhan, U.M. Krishnan, V. Kalyanavalli, S. Shukla, D. Sastikumar, Synthesis of water-soluble fluorescent carbon nanoparticles (CNPs) from nanosecond pulsed laser ablation in ethanol. Opt. Laser Technol. 135, 106717–106726 (2021). https://doi.org/10.1016/j.optlastec.2020.106717

    Article  Google Scholar 

  109. A. Thomas, M.S. Parvathy, K.B. Jinesh, Synthesis of nanodiamonds using liquid-phase laser ablataion of graphene and its application in resistive random access memory. Carbon Trends. 3, 100023–110029 (2021). https://doi.org/10.1016/j.cartre.2020.100023

    Article  Google Scholar 

  110. X.D. Ren, R. Liu, L.M. Zheng, Y.P. Ren, Z.Z. Hu, H. He, Morphology selective preparation and formation mechanism of graphene nanoribbons from graphite by liquid-phase pulsed laser ablation. Appl. Phys. Lett. 108(2016), 071904–071907 (1908). https://doi.org/10.1063/1.4941801

    Article  ADS  Google Scholar 

  111. M. Barberio, P. Antici, Laser-plasma driven synthesis of carbon-based nanomaterials. Sci. Rep. 7, 1–8 (2017). https://doi.org/10.1038/s41598-017-12243-4

    Article  Google Scholar 

  112. H. Sadeghi, E. Solati, D. Dorranian, Producing graphene nanosheets by pulsed laser ablation: Effects of liquid environment. J. Laser Appl. 31, 042003–0420013 (2019). https://doi.org/10.2351/1.5109424

    Article  ADS  Google Scholar 

  113. E. Ghavidel, A.H. Sari, D. Dorranian, Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method. Opt. Laser Technol. 103, 155–162 (2018). https://doi.org/10.1016/j.optlastec.2018.01.034

    Article  ADS  Google Scholar 

  114. E. Vaghri, D. Dorranian, M. Ghoranneviss, Effects of CTAB concentration on the quality of graphene oxide nanosheets produced by green laser ablation. Mater. Chem. Phys. 203, 235–242 (2018). https://doi.org/10.1016/j.matchemphys.2017.10.010

    Article  Google Scholar 

  115. E. Vaghri, Z. Khalaj, D. Dorranian, Investigating the effects of different liquid environments on the characteristics of multilayer graphene and graphene oxide nanosheets synthesized by green laser ablation method. Diam. Relat. Mater. 103, 107697–107710 (2020). https://doi.org/10.1016/j.diamond.2020.107697

    Article  ADS  Google Scholar 

  116. E. Solati, E. Vaghri, D. Dorranian, Effects of wavelength and fluence on the graphene nanosheets produced by pulsed laser ablation. Appl. Phys. A Mater. Sci. Process. 124, 1–9 (2018). https://doi.org/10.1007/s00339-018-2176-2

    Article  Google Scholar 

  117. R. Hameed, K.S. Khashan, G.M. Sulaiman, Preparation and characterization of graphene sheet prepared by laser ablation in liquid. Mater. Today Proc. 20, 535–539 (2020). https://doi.org/10.1016/j.matpr.2019.09.185

    Article  Google Scholar 

  118. A. Pramanik, S. Karmakar, P. Kumbhakar, S. Biswas, R. Sarkar, P. Kumbhakar, Synthesis of bilayer graphene nanosheets by pulsed laser ablation in liquid and observation of its tunable nonlinearity. Appl. Surf. Sci. 499, 143902–143910 (2020). https://doi.org/10.1016/j.apsusc.2019.143902

    Article  Google Scholar 

  119. P.M. Bota, D. Dorobantu, I. Boerasu, D. Bojin, M. Enachescu, Synthesis of single-wall carbon nanotubes by excimer laser ablation. Surf. Eng. Appl. Electrochem. 50, 294–299 (2014). https://doi.org/10.3103/S106837551404005X

    Article  Google Scholar 

  120. K. Habiba, V.I. Makarov, J. Avalos, M.J.F. Guinel, B.R. Weiner, G. Morell, Luminescent graphene quantum dots fabricated by pulsed laser synthesis. Carbon N. Y. 64, 341–350 (2013). https://doi.org/10.1016/j.carbon.2013.07.084

    Article  Google Scholar 

  121. S. Kang, J.H. Ryu, B. Lee, K.H. Jung, K.B. Shim, H. Han, K.M. Kim, Laser wavelength modulated pulsed laser ablation for selective and efficient production of graphene quantum dots. RSC Adv. 9, 13658–13663 (2019). https://doi.org/10.1039/c9ra02087j

    Article  ADS  Google Scholar 

  122. I.C. Novoa-De León, J. Johny, S. Vázquez-Rodríguez, N. García-Gómez, S. Carranza-Bernal, I. Mendivil, S. Shaji, S. Sepúlveda-Guzmán, Tuning the luminescence of nitrogen-doped graphene quantum dots synthesized by pulsed laser ablation in liquid and their use as a selective photoluminescence on-off-on probe for ascorbic acid detection. Carbon N. Y. 150, 455–464 (2019). https://doi.org/10.1016/j.carbon.2019.05.057

    Article  Google Scholar 

  123. G.K. Yogesh, M.B. Gumpu, D. Sastikumar, Laser-induced transformation of graphene into graphene oxide nanospheres (GONs). Mater. Res. Bull. 115, 227–234 (2019). https://doi.org/10.1016/j.materresbull.2019.03.030

    Article  Google Scholar 

  124. B.I. Kharisov, O.V. Kharissova, L. Chávez-Guerrero, Synthesis techniques, properties, and applications of nanodiamonds. Synth. React. Inorganic Met. Nano-Metal Chem. 40, 84–101 (2010). https://doi.org/10.3109/10799890903555665

    Article  Google Scholar 

  125. J. Wells, O. Kazakova, O. Posth, U. Steinhoff, S. Petronis, L.K. Bogart, P. Southern, Q. Pankhurst, C. Johansson, Standardisation of magnetic nanoparticles in liquid suspension. J. Phys. D. Appl. Phys. 50, 383003–383027 (2017). https://doi.org/10.1088/1361-6463/aa7fa5

    Article  ADS  Google Scholar 

  126. J.B. Wang, C.Y. Zhang, X.L. Zhong, G.W. Yang, Cubic and hexagonal structures of diamond nanocrystals formed upon pulsed laser induced liquid-solid interfacial reaction. Chem. Phys. Lett. 361, 86–90 (2002). https://doi.org/10.1016/S0009-2614(02)00871-0

    Article  ADS  Google Scholar 

  127. J. Xiao, G. Ouyang, P. Liu, C.X. Wang, G.W. Yang, Reversible nanodiamond-carbon onion phase transformations. Nano Lett. 14, 3645–3652 (2014). https://doi.org/10.1021/nl5014234

    Article  ADS  Google Scholar 

  128. B. Zousman, O. Levinson, Pure nanodiamonds produced by laser-assisted technique. RSC Nanosci. Nanotechnol. 2014, 112–127 (2014)

    Article  Google Scholar 

  129. P. Nemeth, L.A.J. Garvie, T. Aoki, N. Dubrovinskaia, L. Dubrovinsky, P.R. Buseck, Lonsdaleite is faulted and twinned cubic diamond and does not exist as a discrete material. Nat. Commun. 5, 1–5 (2014). https://doi.org/10.1038/ncomms6447

    Article  Google Scholar 

  130. S.N. Baker, G.A. Baker, Luminescent carbon nanodots: Emergent nanolights. Angew. Chemie Int. Ed. 49, 6726–6744 (2010). https://doi.org/10.1002/anie.200906623

    Article  Google Scholar 

  131. X. Wen, P. Yu, Y.R. Toh, Y.C. Lee, A.C. Hsu, J. Tang, Near-infrared enhanced carbon nanodots by thermally assisted growth. Appl. Phys. Lett. 101, 1–5 (2012). https://doi.org/10.1063/1.4760275

    Article  Google Scholar 

  132. X. Guo, C.F. Wang, Z.Y. Yu, L. Chen, S. Chen, Facile access to versatile fluorescent carbon dots toward light-emitting diodes. Chem. Commun. 48, 2692–2694 (2012). https://doi.org/10.1039/c2cc17769b

    Article  Google Scholar 

  133. M.J. Krysmann, A. Kelarakis, E.P. Giannelis, Photoluminescent carbogenic nanoparticles directly derived from crude biomass. Green Chem. 14, 3141–3145 (2012). https://doi.org/10.1039/c2gc35907c

    Article  Google Scholar 

  134. M.J. Krysmann, A. Kelarakis, P. Dallas, E.P. Giannelis, Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134, 747–750 (2012). https://doi.org/10.1021/ja204661r

    Article  Google Scholar 

  135. A.B. Bourlinos, A. Stassinopoulos, D. Anglos, R. Zboril, V. Georgakilas, E.P. Giannelis, Photoluminescent carbogenic dots. Chem. Mater. 20, 4539–4541 (2008). https://doi.org/10.1021/cm800506r

    Article  Google Scholar 

  136. X. Li, H. Wang, Y. Shimizu, A. Pyatenko, K. Kawaguchi, N. Koshizaki, Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. 47, 932–934 (2011). https://doi.org/10.1039/c0cc03552a

    Article  Google Scholar 

  137. V. Nguyen, J. Si, L. Yan, X. Hou, Electron-hole recombination dynamics in carbon nanodots. Carbon N. Y. 95, 659–663 (2015). https://doi.org/10.1016/j.carbon.2015.08.066

    Article  Google Scholar 

  138. G.X. Chen, M.H. Hong, T.C. Chong, H.I. Elim, G.H. Ma, W. Ji, Preparation of carbon nanoparticles with strong optical limiting properties by laser ablation in water. J. Appl. Phys. 95, 1455–1459 (2004). https://doi.org/10.1063/1.1637933

    Article  ADS  Google Scholar 

  139. S.I. Kitazawa, H. Abe, S. Yamamoto, Formation of nanostructured solid-state carbon particles by laser ablation of graphite in isopropyl alcohol. J. Phys. Chem. Solids. 66, 555–559 (2005). https://doi.org/10.1016/j.jpcs.2004.06.031

    Article  ADS  Google Scholar 

  140. Y.-P. Sun, X. Wang, F. Lu, L. Cao, M.J. Meziani, P.G. Luo, L. Gu, L.M. Veca, Doped Carbon Nanoparticles as a New Platform for Highly Photoluminescent Dots. J. Phys. Chem. C. Nanomater. Interfaces. 112, 18295–18298 (2008). https://doi.org/10.1021/jp8076485

    Article  Google Scholar 

  141. S. Hu, Y. Dong, J. Yang, J. Liu, S. Cao, Simultaneous synthesis of luminescent carbon nanoparticles and carbon nanocages by laser ablation of carbon black suspension and their optical limiting properties. J. Mater. Chem. 22, 1957–1961 (2012). https://doi.org/10.1039/c1jm14510j

    Article  Google Scholar 

  142. V. Thongpool, P. Asanithi, P. Limsuwan, Synthesis of carbon particles using laser ablation in ethanol. Procedia Eng. 32, 1054–1060 (2012). https://doi.org/10.1016/j.proeng.2012.02.054

    Article  Google Scholar 

  143. V. Thongpool, A. Phunpueok, V. Piriyawong, S. Limsuwan, P. Limsuwan, Pulsed laser ablation of graphite target in dimethyformamide. Energy Procedia. 34, 610–616 (2013). https://doi.org/10.1016/j.egypro.2013.06.792

    Article  Google Scholar 

  144. K. Bagga, R. McCann, M. Wang, A. Stalcup, M. Vázquez, D. Brabazon, Laser assisted synthesis of carbon nanoparticles with controlled viscosities for printing applications. J. Colloid Interface Sci. 447, 263–268 (2015). https://doi.org/10.1016/j.jcis.2014.10.046

    Article  ADS  Google Scholar 

  145. D. Reyes, M. Camacho, M. Camacho, M. Mayorga, D. Weathers, G. Salamo, Z. Wang, A. Neogi, Laser ablated carbon nanodots for light emission. Nanoscale Res. Lett. 11, 424–434 (2016). https://doi.org/10.1186/s11671-016-1638-8

    Article  ADS  Google Scholar 

  146. G.K. Yogesh, E.P. Shuaib, D. Sastikumar, Photoluminescence properties of carbon nanoparticles synthesized from activated carbon powder (4% ash) by laser ablation in solution. Mater. Res. Bull. 91, 220–226 (2017). https://doi.org/10.1016/j.materresbull.2017.02.038

    Article  Google Scholar 

  147. E.P. Shuaib, P.M. Shafi, G.K. Yogesh, A. Chandra Bose, D. Sastikumar, Carbon nanoparticles synthesized by laser ablation of coconut shell charcoal in liquids for glucose sensing applications. Mater. Res. Express 6, 115610–115619 (2019). https://doi.org/10.1088/2053-1591/ab49d1

    Article  ADS  Google Scholar 

  148. G.K. Yogesh, E.P. Shuaib, P. Roopmani, M.B. Gumpu, U.M. Krishnan, D. Sastikumar, Fluorescent carbon nanoparticles from laser-ablated Bougainvillea alba flower extract for bioimaging applications. Appl. Phys. A Mater. Sci. Process. 125, 379–389 (2019). https://doi.org/10.1007/s00339-019-2673-y

    Article  ADS  Google Scholar 

  149. A. Hu, J. Sanderson, A.A. Zaidi, C. Wang, T. Zhang, Y. Zhou, W.W. Duley, Direct synthesis of polyyne molecules in acetone by dissociation using femtosecond laser irradiation. Carbon N. Y. 46, 1823–1825 (2008). https://doi.org/10.1016/j.carbon.2008.07.036

    Article  Google Scholar 

  150. G. Compagnini, V. Mita, R.S. Cataliotti, L. D’Urso, O. Puglisi, Short polyyne chains produced by pulsed laser ablation of graphite in water. Carbon N. Y. 45, 2456–2458 (2007). https://doi.org/10.1016/j.carbon.2007.07.002

    Article  Google Scholar 

  151. H. Tabata, M. Fujii, S. Hayashi, Laser ablation of diamond nanoparticles suspended in solvent: Synthesis of polyynes. Chem. Phys. Lett. 395, 138–142 (2004). https://doi.org/10.1016/j.cplett.2004.07.063

    Article  ADS  Google Scholar 

  152. K.S. Khashan, Synthesis of polyynes by laser ablation of graphite in ethanol. Iraqi J. Phys. 11, 37–47 (2013). https://doi.org/10.30723/ijp.v11i21.365

    Article  Google Scholar 

  153. R. Matsutani, T. Kakimoto, H. Tanaka, K. Kojima, Preparation of polyynes by liquid-phase laser ablation using different irradiation target materials and solvents. Carbon N. Y. 49, 77–81 (2011). https://doi.org/10.1016/j.carbon.2010.08.044

    Article  Google Scholar 

  154. T. Milenov, A. Nikolov, G. Avdeev, I. Avramova, S. Russev, D. Karashanova, I. Konstadinov, B. Georgieva, J. Mladenoff, I. Balchev, N. Stankova, S. Kolev, E. Valcheva, Synthesis of graphene-like phases in a water colloid by laser ablation of graphite. Mater. Sci Eng. B Solid State Mater. Adv. Technol. 247, 114379–114185 (2019). https://doi.org/10.1016/j.mseb.2019.114379

    Article  Google Scholar 

  155. S. Kamali, E. Solati, D. Dorranian, Effect of laser fluence on the characteristics of graphene nanosheets produced by pulsed laser ablation in water. J. Appl. Spectrosc. 86, 238–243 (2019). https://doi.org/10.1007/s10812-019-00806-4

    Article  ADS  Google Scholar 

  156. G.W. Yang, J.B. Wang, Pulsed-laser-induced transformation path of graphite to diamond via an intermediate rhombohedral graphite. Appl. Phys. A Mater. Sci. Process. 72, 475–479 (2001). https://doi.org/10.1007/s003390000537

    Article  ADS  Google Scholar 

  157. J. Hao, L. Pan, S. Gao, H. Fan, B. Gao, Production of fluorescent nano-diamonds through femtosecond pulsed laser ablation. Opt. Mater. Express. 9, 4734–4741 (2019). https://doi.org/10.1364/ome.9.004734

    Article  ADS  Google Scholar 

  158. F.D. Lipsa, E.L. Ursu, C. Ursu, E. Ulea, A. Cazacu, Evaluation of the antifungal activity of gold-chitosan and carbon nanoparticles on fusarium oxysporum. Agronomy 10, 1–11 (2020). https://doi.org/10.3390/agronomy10081143

    Article  Google Scholar 

  159. R. Kaimal, G.K. Yogesh, D. Sastikumar, J.J. Wu, S. Anandan, M. Ashokkumar, Laser-assisted decoration of carbon nanotubes with palladium nanoparticles for application in electrochemical methanol oxidation. Bull. Mater. Sci. 44, 125–135 (2021). https://doi.org/10.1007/s12034-021-02428-z

    Article  Google Scholar 

  160. Q. Zou, M.Z. Wang, Y.G. Li, Analysis of the nanodiamond particle fabricated by detonation. J. Exp. Nanosci. 5, 319–328 (2010). https://doi.org/10.1080/17458080903531021

    Article  Google Scholar 

  161. S. Sahu, B. Behera, T.K. Maiti, S. Mohapatra, Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem. Commun. 48, 8835–8837 (2012). https://doi.org/10.1039/c2cc33796g

    Article  Google Scholar 

  162. C. Liu, Z. Zhao, R. Zhang, L. Yang, Z. Wang, J. Yang, H. Jiang, M.Y. Han, B. Liu, Z. Zhang, Strong infrared laser ablation produces white-light-emitting materials via the formation of silicon and carbon dots in silica nanoparticles. J. Phys. Chem. C 119, 8266–8272 (2015). https://doi.org/10.1021/jp512918h

    Article  Google Scholar 

  163. V.I. Korepanov, H.O. Hamaguchi, E. Osawa, V. Ermolenkov, I.K. Lednev, B.J.M. Etzold, O. Levinson, B. Zousman, C.P. Epperla, H.C. Chang, Carbon structure in nanodiamonds elucidated from Raman spectroscopy. Carbon N. Y. 121, 322–329 (2017). https://doi.org/10.1016/j.carbon.2017.06.012

    Article  Google Scholar 

  164. A. Ganguly, S. Sharma, P. Papakonstantinou, J. Hamilton, Probing the thermal deoxygenation of graphene oxide using. J. Phys. Chem. 115, 17009–17019 (2011)

    Google Scholar 

  165. F. Tian, J. Sun, S.L. Hu, X.W. Du, Growth dynamics of nanodiamonds synthesized by pulsed-laser ablation. J. Appl. Phys. 104, 132–135 (2008). https://doi.org/10.1063/1.2978213

    Article  Google Scholar 

  166. G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505–509 (2010). https://doi.org/10.1002/adma.200901996

    Article  Google Scholar 

  167. P. Cherukuri, S.M. Bachilo, S.H. Litovsky, R.B. Weisman, Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc. 126, 15638–15639 (2004). https://doi.org/10.1021/ja0466311

    Article  Google Scholar 

  168. Z. Gan, H. Xu, Y. Hao, Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: Consensus, debates and challenges. Nanoscale 8, 7794–7807 (2016). https://doi.org/10.1039/c6nr00605a

    Article  ADS  Google Scholar 

  169. G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H. Chen, I. Chen, C. Chen, M. Chhowalla, B.G. Eda, Y.-Y. Lin, C. Mattevi, H. Yamaguchi, H. Chen, I. Chen, C. Chen, M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 1–5 (2009). https://doi.org/10.1002/adma.200901996

    Article  Google Scholar 

  170. S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective. Nano Res. 8, 355–381 (2015). https://doi.org/10.1007/s12274-014-0644-3

    Article  Google Scholar 

  171. A. Sommereyns, T. Hupfeld, S. Gann, T. Wang, C. Wu, E. Zhuravlev, A. Lüddecke, S. Baumann, J. Rudloff, M. Lang, B. Gökce, S. Barcikowski, M. Schmidt, Influence of sub-monolayer quantities of carbon nanoparticles on the melting and crystallization behavior of polyamide 12 powders for additive manufacturing. Mater. Des. 201, 109487–109504 (2021). https://doi.org/10.1016/j.matdes.2021.109487

    Article  Google Scholar 

  172. M.S. Jabir, F.A. Abdulameer, K.S. Khashan, Carbon nanoparticles decorated with cupric oxide nanoparticles prepared by laser ablation in liquid as an antibacterial therapeutic agent. Mater. Res. Express 5, 035003–035019 (2018). https://doi.org/10.1088/2053-1591/aab0ed

    Article  ADS  Google Scholar 

  173. P. Russo, L. D’Urso, A. Hu, N. Zhou, G. Compagnini, In liquid laser treated graphene oxide for dye removal. Appl. Surf. Sci. 348, 85–91 (2015). https://doi.org/10.1016/j.apsusc.2014.12.014

    Article  Google Scholar 

  174. A. Gimeno-Furió, R. Martínez-Cuenca, R. Mondragón, A.F.V. Gasulla, C. Doñate-Buendía, G. Mínguez-Vega, L. Hernández, Optical characterisation and photothermal conversion efficiency of a water-based carbon nanofluid for direct solar absorption applications. Energy (2020). https://doi.org/10.1016/j.energy.2020.118763

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaurav Kumar Yogesh or Pankaj Koinkar.

Ethics declarations

Conflict of interest

There is no conflict of interest among the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogesh, G.K., Shukla, S., Sastikumar, D. et al. Progress in pulsed laser ablation in liquid (PLAL) technique for the synthesis of carbon nanomaterials: a review. Appl. Phys. A 127, 810 (2021). https://doi.org/10.1007/s00339-021-04951-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04951-6

Keywords

Navigation