Skip to main content
Log in

Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Metal oxide nanoparticles (MONPs) have enormous applications such as in optical devices, purification systems, biomedical systems, photocatalysis, photovoltaics etc. In this review, we have explored a stable and efficient synthesis protocol of particularly four MONPs: titanium dioxide (TiO2), tin oxide (SnO2), tungsten oxide (WO3) and zinc oxide (ZnO) for getting desired chemical composition, nanostructure, and surface properties. The selection of an efficient synthesis process is a key factor that significantly influences the efficacy of the MONPs. The chemical synthesis of nanoparticles (NPs) via sol–gel route is an effective method to produce high-quality MONPs in comparison to other physical and chemical methods. Sol–gel synthesis is one of the simple, fastest and economically less expensive method, and has its own advantages like low processing temperature, homogeneity of the produced material and formation of the complex structures or composite materials. We believe that this detailed review will provide an insight into sol–gel synthesis of MONPs along with their characterization and diverse applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. X. Chen, A. Selloni, Chem. Rev. 114, 9281–9282 (2014)

    CAS  Google Scholar 

  2. S. Akin, S. Sonmezoglu, Chapter 2—metal oxide nanoparticles as electron transport layer for highly efficient dye-sensitized solar cells, in Emerging materials for energy conversion and storage, ed. by K.Y. Cheong, G. Impellizzeri, M.A. Fraga (Elsevier, Amsterdam, 2018), pp. 39–79

    Google Scholar 

  3. B.G. Rao, D. Mukherjee, B.M. Reddy, Chapter 1—novel approaches for preparation of nanoparticles, in Nanostructures for novel therapy, ed. by D. Ficai, A.M. Grumezescu (Elsevier, Amsterdam, 2017), pp. 1–36

    Google Scholar 

  4. B.R. Cuenya, Thin Solid Films 518, 3127–3150 (2010)

    CAS  Google Scholar 

  5. M. Haruta, J. New. Mat. Electrochem. Syst. 7, 163–172 (2004)

    CAS  Google Scholar 

  6. N. Tian, Z.-Y. Zhou, S.-G. Sun, Y. Ding, Z.L. Wang, Science 316, 732–735 (2007)

    CAS  Google Scholar 

  7. R. Xu, D. Wang, J. Zhang, Y. Li, Chemistry 1, 888–893 (2006)

    CAS  Google Scholar 

  8. I.A. Rahman, V. Padavettan, J. Nanomater. 2012, 15 (2012)

    Google Scholar 

  9. F. Adam, C. Thiam-Seng, J. Andas, J. Sol-Gel. Sci. Technol. 59, 580–583 (2011)

    CAS  Google Scholar 

  10. M. Catauro, E. Tranquillo, G. Dal Poggetto, M. Pasquali, A. Dell’Era, S. Ciprioti, Materials 11, 2364 (2018)

    Google Scholar 

  11. S.M. Gupta, M. Tripathi, Cent. Eur. J. Chem. 10, 279–294 (2012)

    CAS  Google Scholar 

  12. B.E. Yoldas, J. Mater. Sci. 14, 1843–1849 (1979)

    CAS  Google Scholar 

  13. G.W. Scherer, J. Non-Cryst. Solids 100, 77–92 (1988)

    CAS  Google Scholar 

  14. S.L. Isley, R.L. Penn, J. Phys. Chem. C 112, 4469–4474 (2008)

    CAS  Google Scholar 

  15. C. de Coelho Escobar, J.H.Z. dos Santos, J. Sep. Sci. 37, 868–875 (2014)

    Google Scholar 

  16. K. Kajihara, J. Asian Ceram. Soc. 1, 121–133 (2013)

    Google Scholar 

  17. L.L. Hench, J.K. West, Chem. Rev. 90, 33–72 (1990)

    CAS  Google Scholar 

  18. M. Niederberger, N. Pinna, Metal oxide nanoparticles in organic solvents: synthesis, formation, assembly and application (Springer, New York, 2009)

    Google Scholar 

  19. M.M. Collinson, H. Wang, R. Makote, A. Khramov, J. Electroanal. Chem. 519, 65–71 (2002)

    CAS  Google Scholar 

  20. T. White, Y. Li, S.H. Lim, Rev. Adv. Mater. Sci. 5, 211–215 (2003)

    Google Scholar 

  21. B. Li, X. Wang, M. Yan, L. Li, Mater. Chem. Phys. 78, 184–188 (2003)

    Google Scholar 

  22. R. Vijayalakshmi, V. Rajendran, Synthesis and characterization of nano-TiO2 via different methods. Arch. Appl. Sci. Res. 4, 1183–1190 (2012)

    CAS  Google Scholar 

  23. W. Jaroenworaluck, N. Sunsaneeyametha, R. Kosachan, Stevens. Surf. Interface Anal. 38, 473–477 (2006)

    CAS  Google Scholar 

  24. R. Verma, B. Mantri, A.K.S. Ramphal, Adv. Mater. Lett. 6, 324–333 (2015)

    CAS  Google Scholar 

  25. R. Verma, A. Awasthi, P. Singh, R. Srivastava, H. Sheng, J. Wen, D.J. Miller, A.K. Srivastava, J. Colloid Interface Sci. 475, 82–95 (2016)

    CAS  Google Scholar 

  26. H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc. 129, 8406–8407 (2007)

    CAS  Google Scholar 

  27. T.A. Kandiel, L. Robben, A. Alkaim, D. Bahnemann, Photochem. Photobiol. Sci. 12, 602–609 (2013)

    CAS  Google Scholar 

  28. L. Zhang, V.M. Menendez-Flores, N. Murakami, T. Ohno, Appl. Surf. Sci. 258, 5803–5809 (2012)

    CAS  Google Scholar 

  29. D. Sarkar, C.K. Ghosh, K.K. Chattopadhyay, CrystEngComm 14, 2683–2690 (2012)

    CAS  Google Scholar 

  30. H. Bai, Z. Liu, D.D. Sun, J. Mater. Chem. 22, 18801–18807 (2012)

    CAS  Google Scholar 

  31. D. Reyes-Coronado, G. Rodríguez-Gattorno, M. Espinosa-Pesqueira, C. Cab, R.D. de Coss, G. Oskam, Nanotechnology 19, 145605 (2008)

    CAS  Google Scholar 

  32. R. Verma, J. Gangwar, A.K. Srivastava, RSC Adv. 7, 44199–44224 (2017)

    CAS  Google Scholar 

  33. B. Singh, Birajdar. RSC Adv. 7, 54053–54062 (2017)

    CAS  Google Scholar 

  34. G.W. Simmons, B.C. Beard, J. Phys. Chem. 91, 1143–1148 (1987)

    CAS  Google Scholar 

  35. C. Su, L. Liu, M. Zhang, Y. Zhang, C. Shao, CrystEngComm 14, 3989–3999 (2012)

    CAS  Google Scholar 

  36. M. Mahlambi, A. Mishra, S.B. Mishra, R. Krause, B. Mamba, A. Raichur, Comparison of rhodamine B degradation under UV irradiation by two phases of titania nano-photocatalyst. J. Thermal Anal. Calorim. 110(2), 847–855 (2011)

    Google Scholar 

  37. Y.-H. Shih, C.-H. Lin, Environ. Sci. Pollut. Res. 19, 1652–1658 (2012)

    CAS  Google Scholar 

  38. Ö. Kerkez, E. Kibar, K. Dayıoğlu, F. Gedik, A. Akin, A.P.Ş. Özkara-Aydınoğlu, A comparative study for removal of different dyes over M/TiO2 (M = Cu, Ni, Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. J. Photochem. Photobiol. A 311, 176–185 (2015)

    Google Scholar 

  39. S. Yadav, G. Jaiswar, J. Chin. Chem. Soc. 64, 103–116 (2017)

    CAS  Google Scholar 

  40. P. Peerakiatkhajohn, W. Onreabroy, C. Chawengkijwanich, S. Chiarakorn, Preparation of visible-light-responsive TiO2 doped Ag thin film on PET plastic for BTEX treatment. J. Sustain. Energy Environ. 2, 121–125 (2011)

    Google Scholar 

  41. H. Pan, X.D. Wang, S.S. Xiao, L.G. Yu, Z.J. Zhang, Preparation and characterization of TiO2 nanoparticles surface-modified by octadecyltrimethoxysilane. Indian J. Eng. Mater. Sci. 20(6), 561–567 (2013)

    CAS  Google Scholar 

  42. B.B. Lakshmi, P.K. Dorhout, C.R. Martin, Chem. Mater. 9, 857–862 (1997)

    CAS  Google Scholar 

  43. Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, Nanotechnology 22, 275502 (2011)

    Google Scholar 

  44. X.-G. Hou, M.-D. Huang, X.-L. Wu, A.-D. Liu, Chem. Eng. J. 146, 42–48 (2009)

    CAS  Google Scholar 

  45. R. Dubey, Mater. Lett. 215, 312–317 (2018)

    CAS  Google Scholar 

  46. A.O. Araoyinbo, M.M.A.B. Abdullah, M.A.A.M. Salleh, N.N.A. Aziz, A.I. Azmi, IOP Conference Series: Materials Science and Engineering (IOP Publishing, Bristol, 2018), p. 012011

    Google Scholar 

  47. T.H. Mahato, G.K. Prasad, B. Singh, J. Acharya, A.R. Srivastava, R. Vijayaraghavan, J. Hazard. Mater. 165, 928–932 (2009)

    CAS  Google Scholar 

  48. C. Hariharan, Appl. Catal. A 304, 55–61 (2006)

    CAS  Google Scholar 

  49. M. Ristić, S. Musić, M. Ivanda, S. Popović, J. Alloy. Compd. 397, L1–L4 (2005)

    Google Scholar 

  50. S. Yue, Z. Yan, Y. Shi, G. Ran, Mater. Lett. 98, 246–249 (2013)

    CAS  Google Scholar 

  51. V. Mayekar, S. Dhar, Radha, To study the role of temperature and sodium hydroxide concentration in the synthesis of zinc oxide nanoparticles. J. Sci. Res. Publ. 3(11), 2250–3153 (2013)

    Google Scholar 

  52. S. Zavar, Arab. J. Chem. 10, S67–S70 (2017)

    CAS  Google Scholar 

  53. N. Hassan, M. Hashim, M. Bououdina, Ceram. Int. 39, 7439–7444 (2013)

    CAS  Google Scholar 

  54. D. Ju, H. Xu, J. Zhang, J. Guo, B. Cao, Sensors Actuators B 201, 444–451 (2014)

    CAS  Google Scholar 

  55. S. Yue, J. Lu, J. Zhang, Mater. Chem. Phys. 117, 4–8 (2009)

    CAS  Google Scholar 

  56. N. Sagasti, D. Bouropoulos, A. Kouzoudis, E. Panagiotopoulos, J. Topoglidis, Gutiérrez. Materials 10, 849 (2017)

    Google Scholar 

  57. P. Samanta, A. Saha, T. Kamilya, (2014)

  58. Y. Zhang, E. Xie, Appl. Phys. A 99, 955–960 (2010)

    CAS  Google Scholar 

  59. M. Navaneethan, G.K. Mani, S. Ponnusamy, K. Tsuchiya, C. Muthamizhchelvan, S. Kawasaki, Y. Hayakawa, J. Alloy. Compd. 698, 555–564 (2017)

    Google Scholar 

  60. J.T. Chen, J. Wang, R.F. Zhuo, D. Yan, J. Feng, F. Zhang, P. Yan, Appl. Surf. Sci. 255, 3959–3964 (2009)

    CAS  Google Scholar 

  61. J. Wang, Y. Li, Y. Kong, J. Zhou, J. Wu, X. Wu, W. Qin, Z. Jiao, L. Jiang, RSC Adv. 5, 81024–81029 (2015)

    CAS  Google Scholar 

  62. S.S. Shinde, P.S. Shinde, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Appl. Surf. Sci. 258, 9969–9976 (2012)

    CAS  Google Scholar 

  63. S.K. Patil, S.S. Shinde, K.Y. Rajpure, Ceram. Int. 39, 3901–3907 (2013)

    CAS  Google Scholar 

  64. S.S. Shinde, A.P. Korade, C.H. Bhosale, K.Y. Rajpure, J. Alloy. Compd. 551, 688–693 (2013)

    CAS  Google Scholar 

  65. S.S. Shinde, P.S. Patil, R.S. Gaikwad, R.S. Mane, B.N. Pawar, K.Y. Rajpure, J. Alloy. Compd. 503, 416–421 (2010)

    CAS  Google Scholar 

  66. M.A. Mahadik, S.S. Shinde, Y.M. Hunge, V.S. Mohite, S.S. Kumbhar, A.V. Moholkar, K.Y. Rajpure, C.H. Bhosale, J. Alloy. Compd. 611, 446–451 (2014)

    CAS  Google Scholar 

  67. S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Phys. D 41, 105109 (2008)

    Google Scholar 

  68. S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Photochem. Photobiol. B 113, 70–77 (2012)

    CAS  Google Scholar 

  69. S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Photochem. Photobiol. B 120, 1–9 (2013)

    CAS  Google Scholar 

  70. S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, J. Photochem. Photobiol. B 104, 425–433 (2011)

    CAS  Google Scholar 

  71. S.S. Shinde, K.Y. Rajpure, Mater. Res. Bull. 46, 1734–1737 (2011)

    CAS  Google Scholar 

  72. R. Ullah, J. Dutta, J. Hazard. Mater. 156, 194–200 (2008)

    CAS  Google Scholar 

  73. S.C. Hossain, Y. Ghosh, C. Boontongkong, J.Dutta Thanachayanont, Growth of zinc oxide nanowires and nanobelts for gas sensing applications. J. Metastab. Nanocryst. Mater. 23, 27–30 (2005)

    CAS  Google Scholar 

  74. Y. Natsume, H. Sakata, Thin Solid Films 372, 30–36 (2000)

    CAS  Google Scholar 

  75. T. Nagase, T. Ooie, J. Sakakibara, Thin Solid Films 357, 151–158 (1999)

    CAS  Google Scholar 

  76. F. Gu, S. Fen Wang, C. Feng Song, M. Kai Lü, Y. Xin Qi, G. Jun Zhou, D. Xu, D. Rong Yuan, Chem. Phys. Lett. 372, 451–454 (2003)

    CAS  Google Scholar 

  77. R. Adnan, N.A. Razana, I.A. Rahman, M.A. Farrukh, J. Chin. Chem. Soc. 57, 222–229 (2010)

    CAS  Google Scholar 

  78. J. Zhang, L. Gao, J. Solid State Chem. 177, 1425–1430 (2004)

    CAS  Google Scholar 

  79. S. de Monredon, A. Cellot, F. Ribot, C. Sanchez, L. Armelao, L. Gueneau, L. Delattre, J. Mater. Chem. 12, 2396–2400 (2002)

    Google Scholar 

  80. M. Ristić, S. Ivanda, S. Popović, S. Musić, J. Non-Cryst. Solids 303, 270–280 (2002)

    Google Scholar 

  81. M. Aziz, S.S. Abbas, W.R. Baharom, Mater. Lett. 91, 31–34 (2013)

    CAS  Google Scholar 

  82. S. Gnanam, V. Rajendran, J. Sol-Gel. Sci. Technol. 53, 555–559 (2010)

    CAS  Google Scholar 

  83. M.N. Al-Hada, M.H. Kamari, A.A. Baqer, H.A. Shaari, E. Saion, Nanomaterials 8, 250 (2018)

    CAS  Google Scholar 

  84. F. Li, J. Song, H. Yang, S. Gan, Q. Zhang, D. Han, A. Ivaska, L. Niu, Nanotechnology 20, 455602 (2009)

    Google Scholar 

  85. Z. Wang, H.A. Al-Jawhari, P.K. Nayak, J. Caraveo-Frescas, N. Wei, M.N. Hedhili, H.N. Alshareef, Sci. Rep. 5, 9617 (2015)

    CAS  Google Scholar 

  86. T. Moon, S.-T. Hwang, D.-R. Jung, D. Son, C. Kim, J. Kim, M. Kang, B. Park, J. Phys. Chem. C 111, 4164–4167 (2007)

    CAS  Google Scholar 

  87. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, J. Mater. Chem. 16, 155–158 (2006)

    CAS  Google Scholar 

  88. S. Das, D.-Y. Kim, C.-M. Choi, Y.B. Hahn, J. Cryst. Growth 314, 171–179 (2011)

    CAS  Google Scholar 

  89. J.C. Bessière, M.C. Badot, J. Certiat, V. Livage, N. Lucas, Baffier. Electrochim. Acta 46, 2251–2256 (2001)

    Google Scholar 

  90. M. Breedon, P. Spizzirri, M. Taylor, J. du Plessis, D. McCulloch, J. Zhu, L. Yu, Z. Hu, C. Rix, W. Wlodarski, K. Kalantar-zadeh, Cryst. Growth Des. 10, 430–439 (2010)

    CAS  Google Scholar 

  91. X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, J. Photochem. Photobiol. A 141, 209–217 (2001)

    CAS  Google Scholar 

  92. J. Shi, G. Hu, Y. Sun, M. Geng, J. Wu, Y. Liu, M. Ge, J. Tao, M. Cao, N. Dai, Sensors Actuators B 156, 820–824 (2011)

    CAS  Google Scholar 

  93. D. Susanti, A.A.G.P. Diputra, L. Tananta, H. Purwaningsih, G.E. Kusuma, C. Wang, S. Shih, Y. Huang, Front. Chem. Sci. Eng. 8, 179–187 (2014)

    CAS  Google Scholar 

  94. C. Santato, M. Odziemkowski, M. Ulmann, J. Augustynski, J. Am. Chem. Soc. 123, 10639–10649 (2001)

    CAS  Google Scholar 

  95. X. Duan, S. Xiao, L. Wang, H. Huang, Y. Liu, Q. Li, T. Wang, Nanoscale 7, 2230–2234 (2015)

    CAS  Google Scholar 

  96. C. Chacón, M. Rodríguez-Pérez, G. Oskam, G. Rodríguez-Gattorno, J. Mater. Sci. 26, 5526–5531 (2015)

    Google Scholar 

  97. L. Wang, H. Hu, J. Xu, S. Zhu, A. Ding, C. Deng, Journal of Materials Research, (2019) 1-9

  98. A. Shpak, M. Korduban, V. Medvedskij, Kandyba. J. Electron Spectrosc. Relat. Phenom. 156, 172–175 (2007)

    Google Scholar 

  99. T. He, Y. Ma, Y. Cao, X. Hu, H. Liu, G. Zhang, W. Yang, J. Yao, J. Phys. Chem. B 106, 12670–12676 (2002)

    CAS  Google Scholar 

  100. I. Benoit, Y.C. Paramasivam, P. Nah, P. Roy, Schmuki. Electrochem. Commun. 11, 728–732 (2009)

    CAS  Google Scholar 

  101. L. Wang, A. Teleki, S.E. Pratsinis, P.I. Gouma, Chem. Mater. 20, 4794–4796 (2008)

    CAS  Google Scholar 

  102. C.B. Ong, L.Y. Ng, A.W. Mohammad, Renew. Sustain. Energy Rev. 81, 536–551 (2018)

    CAS  Google Scholar 

  103. X. Chen, S.S. Mao, Chem. Rev. 107, 2891–2959 (2007)

    CAS  Google Scholar 

  104. M.M. Khan, S.F. Adil, A. Al-Mayouf, J. Saudi Chem. Soc. 19, 462–464 (2015)

    Google Scholar 

  105. K. Mondal, A. Sharma, RSC Adv. 6, 83589–83612 (2016)

    CAS  Google Scholar 

  106. H.M. Yadav, J.-S. Kim, S.H. Pawar, Korean J. Chem. Eng. 33, 1989–1998 (2016)

    CAS  Google Scholar 

  107. R. Khanom, S. Parveen, M. Hasan, Am. Sci. Res. J. Eng. Technol. Sci. 46, 111–121 (2018)

    Google Scholar 

  108. K. Gold, B. Slay, M. Knackstedt, A.K. Gaharwar, Adv. Therap. 1, 1700033 (2018)

    Google Scholar 

  109. G. Duan, L. Chen, Z. Jing, P. De Luna, L. Wen, L. Zhang, L. Zhao, J. Xu, Z. Li, Z. Yang, R. Zhou, Chem. Res. Toxicol. 32, 1357–1366 (2019)

    CAS  Google Scholar 

  110. A. Perez-Tomas, D. Mingorance, M. Tanenbaum, Lira-Cantu, Metal Oxides in Photovoltaics: All-Oxide, Ferroic, and Perovskite Solar Cells (Elsevier, Amsterdam, 2017)

    Google Scholar 

  111. R. Singh, I. Ryu, H. Yadav, J. Park, J.W. Jo, S. Yim, J.-J. Lee, Sol. Energy 185, 307–314 (2019)

    CAS  Google Scholar 

  112. H. Xie, X. Yin, P. Chen, J. Liu, C. Yang, W. Que, G. Wang, Mater. Lett. 234, 311–314 (2019)

    CAS  Google Scholar 

  113. C.-C. Chueh, C.-Z. Li, A.K.-Y. Jen, Energy Environ. Sci. 8, 1160–1189 (2015)

    CAS  Google Scholar 

  114. H.P. Hussain, J. Tran, J. Jaksik, N. Moore, M.J. Islam, Uddin Emerg. Mater. 1, 133–154 (2018)

    CAS  Google Scholar 

  115. T. Gershon, Mater. Sci. Technol. 27, 1357–1371 (2011)

    CAS  Google Scholar 

  116. M.S. Chavali, M.P. Nikolova, SN Appl. Sci. 1, 607 (2019)

    Google Scholar 

  117. J. Wei, G. Ji, C. Zhang, L. Yan, Q. Luo, C. Wang, Q. Chen, J. Yang, L. Chen, C.-Q. Ma, ACS Nano 12, 5518–5529 (2018)

    CAS  Google Scholar 

  118. Z. Zheng, S. Zhang, J. Wang, J. Zhang, D. Zhang, Y. Zhang, Z. Wei, Z. Tang, J. Hou, H. Zhou, J. Mater. Chem. A 7, 3570–3576 (2019)

    CAS  Google Scholar 

  119. K. Al-Attafi, A. Nattestad, Y. Yamauchi, S.X. Dou, J.H. Kim, Sci. Rep. 7, 10341 (2017)

    Google Scholar 

  120. K. Mahmood, S. Sarwar, M.T. Mehran, RSC Adv. 7, 17044–17062 (2017)

    CAS  Google Scholar 

  121. H.S. Jung, N.G. Park, Small 11, 10–25 (2015)

    CAS  Google Scholar 

  122. B. Tan, Y. Wu, J. Phys. Chem. B 110, 15932–15938 (2006)

    CAS  Google Scholar 

  123. D. Liu, T.L. Kelly, Nat. Photon. 8, 133 (2014)

    CAS  Google Scholar 

  124. Y. Li, J. Zhu, Y. Huang, F. Liu, M. Lv, S. Chen, L. Hu, J. Tang, J. Yao, S. Dai, RSC Adv. 5, 28424–28429 (2015)

    CAS  Google Scholar 

  125. K. Mahmood, B.S. Swain, A.R. Kirmani, A. Amassian, J. Mater. Chem. A 3, 9051–9057 (2015)

    CAS  Google Scholar 

  126. Materials Dey, Sci. Eng. B 229, 206–217 (2018)

    CAS  Google Scholar 

  127. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088–2106 (2010)

    CAS  Google Scholar 

  128. H. Meixner, U. Lampe, Sensors Actuators B 33, 198–202 (1996)

    CAS  Google Scholar 

  129. H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar-zadeh, Adv. Func. Mater. 21, 2175–2196 (2011)

    CAS  Google Scholar 

  130. Y. Kudo, Miseki. Chem. Soc. Rev. 38, 253–278 (2009)

    CAS  Google Scholar 

  131. R. van de Krol, Y. Liang, J. Schoonman, J. Mater. Chem. 18, 2311–2320 (2008)

    Google Scholar 

  132. C. Jorand Sartoretti, B.D. Alexander, R. Solarska, I.A. Rutkowska, J. Augustynski, R. Cerny, J. Phys. Chem. B 109, 13685–13692 (2005)

    Google Scholar 

  133. C. Santato, M. Ulmann, J. Augustynski, J. Phys. Chem. B 105, 936–940 (2001)

    CAS  Google Scholar 

  134. Z. Sadowski, A. Pawlowska, Synthesis of Metal Oxide Nanoparticles and Its Biomedical Applications, in Nanotechnology Applied To Pharmaceutical Technology, ed. by M. Rai, C. Alves dos Santos (Springer International Publishing, Cham, 2017), pp. 91–111

    Google Scholar 

  135. R. Augustine, A.P. Mathew, A. Sosnik, Appl. Mater. Today 7, 91–103 (2017)

    Google Scholar 

  136. H.M. Yadav, N.D. Thorat, M.M. Yallapu, S.A.M. Tofail, J.-S. Kim, J. Mater. Chem. B 5, 1461–1470 (2017)

    CAS  Google Scholar 

  137. J. Jiang, J. Pi, J. Cai, The advancing of zinc oxide nanoparticles for biomedical applications. Bioinorg. Chem. Appl. (2018). https://doi.org/10.1155/2018/1062562

    Article  Google Scholar 

  138. Y. Zhang, T.R. Nayak, H. Hong, W. Cai, Curr. Mol. Med. 13, 1633–1645 (2013)

    CAS  Google Scholar 

  139. A.K. Nayak, R. Ghosh, S. Santra, P.K. Guha, D. Pradhan, Nanoscale 7, 12460–12473 (2015)

    CAS  Google Scholar 

  140. L. Santos, C.M. Silveira, E. Elangovan, J.P. Neto, D. Nunes, L. Pereira, R. Martins, J. Viegas, J.J.G. Moura, S. Todorovic, M.G. Almeida, E. Fortunato, Sensors Actuators B 223, 186–194 (2016)

    CAS  Google Scholar 

  141. P. Kumar, P.K. Sarswat, M.L. Free, Sci. Rep. 8, 3348 (2018)

    Google Scholar 

  142. A. Ray, S. Roy, S. Saha, Das, Transition Metal Oxide-Based Nano-materials for Energy Storage Application. Science Technology and Advanced Application of Supercapacitors (INTECHOPEN, London, 2019)

    Google Scholar 

  143. S. Sasirekha, G. Arumugam, Muralidharan. Appl. Surf. Sci. 449, 521–527 (2018)

    CAS  Google Scholar 

  144. V. Bonu, B. Gupta, S. Chandra, A. Das, S. Dhara, A.K. Tyagi, Electrochimica Acta 203, 230–237 (2016)

    CAS  Google Scholar 

  145. C. He, Y. Xiao, H. Dong, Y. Liu, M. Zheng, K. Xiao, X. Liu, H. Zhang, B. Lei, Electrochim. Acta 142, 157–166 (2014)

    CAS  Google Scholar 

  146. N.S. Lewis, Nat. Nanotechnol. 11, 1010–1019 (2016)

    CAS  Google Scholar 

  147. Q. Zhang, X. Xu, S. Chen, G.B. Bodedla, M. Sun, Q. Hu, Q. Peng, B. Huang, H. Ke, F. Liu, T.P. Russell, Sustain. Energy Fuels 2, 2616–2624 (2018)

    CAS  Google Scholar 

  148. X. Chen, L. Liu, P.Y. Yu, S.S. Mao, Science 331, 746–750 (2011)

    CAS  Google Scholar 

  149. W. Cheng, J. He, Z. Sun, Y. Peng, T. Yao, Q. Liu, Y. Jiang, F. Hu, Z. Xie, B. He, S. Wei, J. Phys. Chem. C 116, 24060–24067 (2012)

    CAS  Google Scholar 

  150. H. Qi, J. Wolfe, D. Fichou, Z. Chen, Sci. Rep. 6, 30882 (2016)

    CAS  Google Scholar 

  151. Y.W. Chen, J.D. Prange, S. Dühnen, Y. Park, M. Gunji, C.E.D. Chidsey, P.C. McIntyre, Nat. Mater. 10, 539–544 (2011)

    CAS  Google Scholar 

  152. A.G. Scheuermann, J.P. Lawrence, K.W. Kemp, T. Ito, A. Walsh, C.E.D. Chidsey, P.K. Hurley, P.C. McIntyre, Nat. Mater. 15, 99–105 (2016)

    CAS  Google Scholar 

  153. K. Sun, M.T. McDowell, A.C. Nielander, S. Hu, M.R. Shaner, F. Yang, B.S. Brunschwig, N.S. Lewis, J. Phys. Chem. Lett. 6, 592–598 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the researchers from Gautam Buddha University, Greater Noida, UP, India and Dongguk University, Seoul, South Korea for fruitful discussion.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Vivek Kumar Shukla or Ranbir Singh.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parashar, M., Shukla, V.K. & Singh, R. Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. J Mater Sci: Mater Electron 31, 3729–3749 (2020). https://doi.org/10.1007/s10854-020-02994-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02994-8

Navigation