Skip to main content
Log in

Phase-field–lattice Boltzmann simulation of dendrite growth under natural convection in multicomponent superalloy solidification

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The thermosolutal convection can alter segregation pattern, change dendrite morphology and even cause freckles formation in alloy solidification. In this work, the multiphase-field model was coupled with lattice Boltzmann method to simulate the dendrite growth under melt convection in superalloy solidification. In the isothermal solidification simulations, zero and normal gravitational accelerations were applied to investigate the effects of gravity on the dendrite morphology and the magnitude of melt flow. The solute distribution of each alloy component along with the dendrite tip velocity during solidification was obtained, and the natural convection has been confirmed to affect the microsegregation pattern and the dendrite growth velocity. In the directional solidification simulations, two typical temperature gradients were applied, and the dendrite morphology and fluid velocity in the mushy zone during solidification were analyzed. It is found that the freckles will form when the average fluid velocity in the mushy zone exceeds the withdraw velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu G, Liu L, Han ZH, Zhang GJ, Zhang J. Solidification behavior of Re-and Ru-containing Ni-based single-crystal superalloys with thermal and metallographic analysis. Rare Met. 2017;36(10):792.

    Article  CAS  Google Scholar 

  2. Yue XD, Li JR, Wang XG. The microstructure of a single crystal superalloy after different aging heat treatments. Rare Met. 2018;37(3):210.

    Article  CAS  Google Scholar 

  3. Wang RN, Xu QY, Liu BC. A model for simulation of recrystallization microstructure in single-crystal superalloy. Rare Met. 2018;37(12):1027.

    Article  CAS  Google Scholar 

  4. Bogno A, Nguyen-Thi H, Buffet A, Reinhart G, Billia B, Mangelinck-Noël N, Bergeon N, Baruchel J, Schenk T. Analysis by synchrotron X-ray radiography of convection effects on the dynamic evolution of the solid–liquid interface and on solute distribution during the initial transient of solidification. Acta Mater. 2011;59(11):4356.

    Article  CAS  Google Scholar 

  5. Spinelli JE, Rosa DM, Ferreira IL, Garcia A. Influence of melt convection on dendritic spacings of downward unsteady-state directionally solidified Al–Cu alloys. Mater Sci Eng A. 2004;383(2):271.

    Article  Google Scholar 

  6. Pollock TM, Murphy WH. The breakdown of single-crystal solidification in high refractory nickel-base alloys. Metall Mater Trans A. 1996;27(4):1081.

    Article  Google Scholar 

  7. Wu XC, Li YS, Liu W, Hou ZY, Huang MQ. Dynamics evolution of γ′ precipitates size and composition interface between γ/γ′ phases in Ni–Al alloy at different aging temperatures. Rare Met. 2016. https://doi.org/10.1007/s12598-016-0700-0.

    Article  Google Scholar 

  8. Zhang W, Liu L. Solidification microstructure of directionally solidified superalloy under high temperature gradient. Rare Met. 2012;31(6):541.

    Article  CAS  Google Scholar 

  9. Shevchenko N, Boden S, Gerbeth G, Eckert S. Chimney formation in solidifying Ga-25wt pct in alloys under the influence of thermosolutal melt convection. Metall Mater Trans A. 2013;44(8):3897.

    Article  Google Scholar 

  10. Clarke AJ, Tourret D, Song Y, Imhoff SD, Gibbs PJ, Gibbs JW, Fezzaa K, Karma A. Microstructure selection in thin-sample directional solidification of an Al–Cu alloy: in situ X-ray imaging and phase-field simulations. Acta Mater. 2017;129:203.

    Article  CAS  Google Scholar 

  11. Eiken J, Böttger B, Steinbach I. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys Rev E. 2006;73(6):066122.

    Article  CAS  Google Scholar 

  12. Steinbach I, Böttger B, Eiken J, Warnken N, Fries S. CALPHAD and phase-field modeling: a successful liaison. J Phase Equilib Diffus. 2007;28(1):101.

    Article  CAS  Google Scholar 

  13. Kim SG. A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties. Acta Mater. 2007;55(13):4391.

    Article  CAS  Google Scholar 

  14. Warnken N, Ma D, Drevermann A, Reed RC, Fries SG, Steinbach I. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys. Acta Mater. 2009;57(19):5862.

    Article  CAS  Google Scholar 

  15. Yang C, Xu QY, Liu BC. Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: multiphase-field study. J Mater Sci. 2018;53(13):9755.

    Article  CAS  Google Scholar 

  16. Sun DK, Zhu MF, Pan SY, Yang CR, Raabe D. Lattice Boltzmann modeling of dendritic growth in forced and natural convection. Comput Math Appl. 2011;61(12):3585.

    Article  Google Scholar 

  17. Sun DK, Zhu MF, Wang J, Sun BD. Lattice Boltzmann modeling of bubble formation and dendritic growth in solidification of binary alloys. Int J Heat Mass Transf. 2016;94:474.

    Article  CAS  Google Scholar 

  18. Sun DK, Pan SY, Han QY, Sun BD. Numerical simulation of dendritic growth in directional solidification of binary alloys using a lattice Boltzmann scheme. Int J Heat Mass Transf. 2016;103:821.

    Article  Google Scholar 

  19. Rojas R, Takaki T, Ohno M. A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection. J Comput Phys. 2015;298:29.

    Article  CAS  Google Scholar 

  20. Takaki T, Rojas R, Sakane S, Ohno M, Shibuta Y, Shimokawabe T, Aoki T. Phase-field-lattice Boltzmann studies for dendritic growth with natural convection. J Cryst Growth. 2017;474:146.

    Article  CAS  Google Scholar 

  21. Yang C, Xu QY, Liu BC. GPU-accelerated three-dimensional phase-field simulation of dendrite growth in a nickel-based superalloy. Comput Mater Sci. 2017;136:133.

    Article  CAS  Google Scholar 

  22. Qian YH, Humières DD, Lallemand P. Lattice BGK models for Navier–Stokes equation. Europhys Lett. 1992;17(6):479.

    Article  Google Scholar 

  23. Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM. The Lattice Boltzmann Method. Basel: Springer; 2017. 61.

    Book  Google Scholar 

  24. Beckermann C, Diepers HJ, Steinbach I, Karma A, Tong X. Modeling melt convection in phase-field simulations of solidification. J Comput Phys. 1999;154(2):468.

    Article  CAS  Google Scholar 

  25. Seo S, Lee J, Yoo Y, Jo C, Miyahara H, Ogi K. A comparative study of the γ/γ′ eutectic evolution during the solidification of Ni-base superalloys. Metall Mater Trans A. 2011;42(10):3150.

    Article  CAS  Google Scholar 

  26. Schneider MC, Gu JP, Beckermann C, Boettinger WJ, Kattner UR. Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification. Metall Mater Trans A. 1997;28(7):1517.

    Article  Google Scholar 

  27. Higuchi K, Fecht HJ, Wunderlich RK. Surface tension and viscosity of the Ni-based superalloy CMSX-4 measured by the oscillating drop method in parabolic flight experiments. Adv Eng Mater. 2010;9(5):349.

    Article  Google Scholar 

  28. Iida T, Guthrie RIL. The Physical Properties of Liquid Metals. Oxford: Clarendon Press; 1988. 1.

    Google Scholar 

  29. Ganesan M, Dye D, Lee P. A technique for characterizing microsegregation in multicomponent alloys and its application to single-crystal superalloy castings. Metall Mater Trans A. 2005;36(8):2191.

    Article  Google Scholar 

  30. Mehrabian R, Keane MA, Flemings MC. Experiments on macrosegregation and freckle formation. Metall Trans. 1970;1(11):3238.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2017YFB0701503), the National Science and Technology Major Project (No. 2017ZX04014001) and the National Natural Science Foundation of China (No. 51374137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Xu, QY. & Liu, BC. Phase-field–lattice Boltzmann simulation of dendrite growth under natural convection in multicomponent superalloy solidification. Rare Met. 39, 147–155 (2020). https://doi.org/10.1007/s12598-019-01292-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01292-5

Keywords

Navigation