Skip to main content
Log in

Solidification microstructure of directionally solidified superalloy under high temperature gradient

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The effect of solidification rate on the microstructure development of nickel-based superalloy under the temperature gradient of 500 K·cm−1 was studied. The results show that, with the increase of directional solidification rate from 50 to 800 μm·s−1, both the primary and the secondary dendrite arm spacings of the alloy decrease gradually, and the dendrite morphologies transform from coarse dendrite to superfine dendrite. The sizes of all precipitates in the superalloy decrease gradually. The morphology of γ′ precipitate changes from cube to sphere shape and distributes uniformly in both dendrite core and interdendritic regions. MC carbide morphology changes from coarse block to fine-strip and then to Chinese-script and mainly consists of Ta, W, and Hf elements. The γ-γ′ eutectic fraction increases firstly and then decreases, and similar regularity is also found for the variation of segregation ratio of elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pollock T.M., and Tin S., Nickel-based superalloy for advanced turbine engines: chemistry, microstructure, and properties, J. Propul. Power, 2006, 22(2): 361.

    Article  CAS  Google Scholar 

  2. Clemens M.L., Price A., and Bellows R.S., Advanced solidification processing of an industrial gas turbine engine component, JOM, 2003, 55(3): 27.

    Article  CAS  Google Scholar 

  3. Liu L., Huang T.W., Zhang J., and Fu H.Z., Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification, Mater. Lett., 2007, 61: 227.

    Article  CAS  Google Scholar 

  4. Giamei A.F., and Tschinkel J.G., Liquid metal cooling: a new solidification technique, Metall. Trans. A, 1976, 7(9): 1427.

    Article  Google Scholar 

  5. Bondarenko Yu A., and Kablov E.N., Directional crystallization of high-temperature alloys with elevated temperature gradient, Metal. Sci. Heat Treat., 2002, 44(7–8): 288.

    Article  CAS  Google Scholar 

  6. Elliott A.J., Tin S., King W.T., Huang S.C., Gigliotti M.F.X., and Pollock T.M., Directional solidification of large superalloy castings with radiation and liquid-metal cooling: a comparative assessment, Metall. Mater. Trans. A, 2004, 35(10): 3221.

    Article  Google Scholar 

  7. Kermanpur A., Varahraam N., Engilehei E., Mohammadzadeh M., and Davami P., Directional solidification of Ni base superalloy IN738LC to improve creep properties, Mater. Sci. Technol., 2000, 16(5): 579.

    CAS  Google Scholar 

  8. Pollock T.M., and Murphy W.H., The breakdown of singlecrystal solidification in high refractory nickel-base alloys, Metall. Mater. Trans. A, 1996, 27(4): 1081.

    Article  Google Scholar 

  9. Liu G., Liu L., Cheng A., Ge B.M., Zhang J., and Fu H.Z., Influence of withdrawal rate on the microstructure of Ni-base single-crystal superalloys containing Re and Ru, J. Alloys Compd., 2011, 509(19): 5866.

    Article  CAS  Google Scholar 

  10. Wills V.A., and McCartney D.G., A comparative study of solidification features in nickel-base superalloy: microstructural evolution and microsegregation, Mater. Sci. Eng. A, 1991, 145(2): 223.

    Article  Google Scholar 

  11. Sun W.R., Influence of solidification rate on precipitation and microstructure of directional solidification IN792+Hf super-alloy, J. Mater. Res., 1999, 14(10): 3873.

    Article  CAS  Google Scholar 

  12. Song J.X., Tang D.Z., Xiao C.B., Wang D.G., and Yu Q. Effect of heat treatment on microstructure and mechanical properties of directionally solidified superalloy DZ12, Rare Met., 2011, 30(2): 383.

    Article  CAS  Google Scholar 

  13. Zhang W.G., Liu L., Zhao X.B., Huang T.W., Yu Z.H., Qu M., and Fu H.Z., Effect of directional solidification cooling rates on dendrite spacings of DZ125 alloy under high thermal gradient, Rare Met., 2009, 28(6): 633.

    Article  CAS  Google Scholar 

  14. Liu F., Yang G.C., and Guo X.F., γ′ formation and morphology evolution in the undercooled structure of DD3 single crystal superalloy, J. Mater. Sci., 2001, 36(15): 3623.

    Article  CAS  Google Scholar 

  15. Xiao J.M., Alloy Phase and Its Transformation, The Chinese Metallurgical Publishing House, Beijing, 1987: 233.

    Google Scholar 

  16. Chen J., Lee J.H., Jo C.Y., Choe S.J., and Lee Y.T., MC carbide formation in directionally solidified MAR-M247 LC superalloy, Mater. Sci. Eng. A, 1998, 247(1–2): 113.

    Google Scholar 

  17. Fernandes R., Lecomte J.C., and Kattamis T.Z., Effect of solidification parameters on growth geometry of MC carbide in IN-100 dendritic mono-crystals, Metall. Trans. A, 1978, 10(4): 1381.

    Google Scholar 

  18. Baldan A., Effect of growth rate on carbides and microporosity in DS200+Hf superalloy, J. Mater. Sci., 1991, 26(14): 3879.

    Article  CAS  Google Scholar 

  19. Liu L., Sommer F., and Fu H.Z., Effect of solidification conditions on MC carbides in a nickel-base superalloy IN738 LC, Scripta Metall. Mater., 1994, 30(5): 587.

    Article  CAS  Google Scholar 

  20. Liu L., Fu H.Z., and Shi Z.X., Relationship between primary morphology and crystal structure of MC carbides precipitated in superalloys, Acta Metall. Sin., 1989, 25(8): 282.

    Google Scholar 

  21. Fegan S.C., Kattamis T.Z., Morral J.E., and Bhambri A.K., Variation of MC carbide geometry with local solidification time in cast Inconel 713C alloy, J. Mater. Sci. 1975, 10(7): 1266.

    Article  CAS  Google Scholar 

  22. Chen Q.Z., Jones N., and Knowles D.M., The microstructures of base/modified RR2072 SX superalloys and their effects on creep properties at elevated temperature, Acta Mater., 2002, 50(5): 1095.

    Article  CAS  Google Scholar 

  23. Charre-Durand M., The Microstructure of superalloys. Gordon and Breach Science Publishers, Amsterdam, 1997: 29.

    Google Scholar 

  24. Hilpert K., Kobertz D., Venugopal V., Miller M., Gerads H., Bremer F.J., and Nickel H., Phase diagram studies of the Al-Ni system, Z. Naturforsch A., 1987, 42: 1327.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiguo Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Liu, L. Solidification microstructure of directionally solidified superalloy under high temperature gradient. Rare Met. 31, 541–546 (2012). https://doi.org/10.1007/s12598-012-0554-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-012-0554-z

Keywords

Navigation