Skip to main content
Log in

A model for simulation of recrystallization microstructure in single-crystal superalloy

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In the present investigation, a coupled crystal plasticity finite-element (CPFE) and cellular automaton (CA) model was developed to predict the microstructure of recrystallization in single-crystal (SX) Ni-based superalloy. The quasi-static compressive tests of [001] orientated SX DD6 superalloy were conducted on Gleeble3500 tester to calibrate the CPFE model based on crystal slip kinematics. The simulated stress–strain curve agrees well with the experimental results. Quantitative deformation amount was introduced in the deformed samples of simulation and experiment, and these samples were subsequently subjected to the standard solution heat treatment (SSHT). Results of CA simulation show that the recrystallization (RX) nucleation tends to occur at the third stage of SSHT process due to the high critical temperature of RX nucleation for the samples deformed at room temperature. The inhomogeneous RX grains gradually coarsen and compete to reach more stable status by reducing the system energy. Simulated RX grain density decreases from 7.500 to 1.875 mm−1, agreeing well with the value of 1.920 mm−1 from electron backscattered diffraction (EBSD) detection of the experimental sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reed RC. The superalloys fundamentals and applications. New York: Cambridge University Press; 2006. 1.

    Book  Google Scholar 

  2. Perepezko JH. The hotter the engine, the better. Science. 2009;326(5956):1068.

    Article  CAS  Google Scholar 

  3. Meng XB, Li JG, Chen ZQ, Wang YH, Zhu SZ, Bai XF, Wang F, Zhang J, Jin T, Sun XF, Hu ZQ. Effect of platform dimension on the dendrite growth and stray grain formation in a Ni-base single-crystal superalloy. Metall Mater Trans A. 2012;44(4):1955.

    Article  Google Scholar 

  4. Meng XB, Li JG, Zhu SZ, Du HQ, Yuan ZH, Wang J, Jin T, Sun XF, Hu ZQ. Method of stray grain inhibition in the platforms with different dimensions during directional solidification of a Ni-base superalloy. Metall Mater Trans A. 2013;45(3):1230.

    Article  Google Scholar 

  5. Aveson JW, Tennant PA, Foss BJ, Shollock BA, Stone HJ, Souza ND. On the origin of sliver defects in single crystal investment castings. Acta Mater. 2013;61(14):5162.

    Article  CAS  Google Scholar 

  6. Meng J, Jin T, Sun X, Hu Z. Effect of surface recrystallization on the creep rupture properties of a nickel-base single crystal superalloy. Mater Sci Eng A. 2010;527(23):6119.

    Article  Google Scholar 

  7. Zhang B, Lu X, Liu D, Tao C. Influence of recrystallization on high-temperature stress rupture property and fracture behavior of single crystal superalloy. Mater Sci Eng A. 2012;551:149.

    Article  CAS  Google Scholar 

  8. He YH, Hou XQ, Tao CH, Han FK. Recrystallization and fatigue fracture of single crystal turbine blades. Eng Fail Anal. 2011;18(3):944.

    Article  Google Scholar 

  9. Wang DL, Jin T, Yang SQ, Wei Z, Li JB, Hu ZQ. Surface recrystallization and its effect on rupture life of SRR99 single crystal superalloy. Mater Sci Forum. 2007;546–549:1229.

    Article  Google Scholar 

  10. Zhang B, Liu C, Lu X, Tao C, Jiang T. Effect of surface recrystallization on the creep rupture property of a single-crystal superalloy. Rare Met. 2010;29(4):413.

    Article  CAS  Google Scholar 

  11. Zhuo L, Liang S, Wang F, Xu T, Wang Y, Yuan Z, Xiong J, Li J, Zhu J. Kinetics and microstructural evolution during recrystallization of a single crystal superalloy. Mater Charact. 2015;108:16.

    Article  CAS  Google Scholar 

  12. Wang L, Xie G, Zhang J, Lou LH. On the role of carbides during the recrystallization of a directionally solidified nickel-base superalloy. Scr Mater. 2006;55(5):457.

    Article  CAS  Google Scholar 

  13. Wang L, Pyczak F, Zhang J, Lou LH, Singer RF. Effect of eutectics on plastic deformation and subsequent recrystallization in the single crystal nickel base superalloy CMSX-4. Mater Sci Eng A. 2012;532:487.

    Article  CAS  Google Scholar 

  14. Wu Y, Yang R, Li S, Ma Y, Gong S, Han Y. Surface recrystallization of a Ni3Al based single crystal superalloy at different annealing temperature and blasting pressure. Rare Met. 2012;31(3):209.

    Article  CAS  Google Scholar 

  15. Cox DC, Roebuck B, Rae C, Reed RC. Recrystallisation of single crystal superalloy CMSX-4. Mater Sci Technol. 2003;19(4):440.

    Article  CAS  Google Scholar 

  16. Mathur HN, Panwisawas C, Jones CN, Reed RC, Rae CMF. Nucleation of recrystallisation in castings of single crystal Ni-based superalloys. Acta Mater. 2017;129:112.

    Article  CAS  Google Scholar 

  17. Zhuo L, Xu T, Wang F, Xiong J, Zhu J. Microstructural evolution on the initiation of sub-solvus recrystallization of a grit-blasted single-crystal superalloy. Mater Lett. 2015;148:159.

    Article  CAS  Google Scholar 

  18. Zhang H, Xu Q. Multi-scale simulation of directional dendrites growth in superalloys. J Mater Process Technol. 2016;238:132.

    Article  CAS  Google Scholar 

  19. Tang N, Wang YL, Xu QY, Zhao XH, Liu BC. Numerical simulation of directional solidified microstructure of wide-chord aero blade by Bridgeman process. Acta Metal Sin. 2015;51(4):499.

    CAS  Google Scholar 

  20. Wang R, Yan X, Li Z, Xu Q, Liu B. Effect of construction manner of mould cluster on stray grain formation in dummy blade of DD6 superalloy. High Temp Mater Process. 2017;36(4):399.

    Article  CAS  Google Scholar 

  21. Zhang W, Liu L. Solidification microstructure of directionally solidified superalloy under high temperature gradient. Rare Met. 2012;31(6):541.

    Article  CAS  Google Scholar 

  22. Liu G, Liu L, Han Z, Zhang G, Zhang J. Solidification behavior of Re- and Ru-containing Ni-based single-crystal superalloys with thermal and metallographic analysis. Rare Met. 2017;36(10):792.

    Article  CAS  Google Scholar 

  23. Chun YB, Hwang SK. Monte carlo modeling of microstructure evolution during the static recrystallization of cold-rolled, commercial-purity titanium. Acta Mater. 2006;54(14):3673.

    Article  CAS  Google Scholar 

  24. Crumbach M, Gottstein G. Modelling of recrystallisation textures in aluminium alloys: i. Model set-up and integration. Acta Mater. 2006;54(12):3275.

    Article  CAS  Google Scholar 

  25. Crumbach M, Gottstein G. Modelling of recrystallisation textures in aluminium alloys: ii. Model performance and experimental validation. Acta Mater. 2006;54(12):3291.

    Article  CAS  Google Scholar 

  26. Li Z, Xu Q, Liu B. Microstructure simulation on recrystallization of an as-cast nickel based single crystal superalloy. Comput Mater Sci. 2015;107:122.

    Article  CAS  Google Scholar 

  27. Zambaldi C, Roters F, Raabe D, Glatzel U. Modeling and experiments on the indentation deformation and recrystallization of a single-crystal nickel-base superalloy. Mater Sci Eng A. 2007;454:433.

    Article  Google Scholar 

  28. Taylor GI. Plastic strain in metals. J Inst Met. 1938;62:307.

    Google Scholar 

  29. Hill R. A self-consistent mechanics of composite materials. J Mech Phys Solids. 1965;13:213.

    Article  Google Scholar 

  30. Hill R, Rice JR. Constitutive analysis of elastic-plastic crystals at arbitrary strain. J Mech Phys Solids. 1972;20:401.

    Article  Google Scholar 

  31. Peirce D, Asaro RJ, Needleman A. Material rate dependence and localized deformation in crystalline solids. Acta Metall. 1983;31:1951.

    Article  CAS  Google Scholar 

  32. Zambaldi C, Zehnder C, Raabe D. Orientation dependent deformation by slip and twinning in magnesium during single crystal indentation. Acta Metall. 2015;91:267.

    CAS  Google Scholar 

  33. Eidel B. Crystal plasticity finite-element analysis versus experimental results of pyramidal indentation into (001) fcc single crystal. Acta Metall. 2011;59(4):1761.

    CAS  Google Scholar 

  34. Li Z, Xu Q, Liu B. Experimental investigation on recrystallization mechanism of a Ni-base single crystal superalloy. J Alloys Compd. 2016;672:457.

    Article  CAS  Google Scholar 

  35. Editorial committee. Engineering Materials Handbook. Beijing: Standards Press of China; 2001. 812.

    Google Scholar 

  36. Porter AJ, Ralph B. Ralph, Recrystallization of a nickel-base superalloy: kinetics and microstructural development. Mater Sci Eng. 1983;59(1):69.

    Article  CAS  Google Scholar 

  37. Li Z, Fan X, Xu Q, Liu B. Influence of deformation temperature on recrystallization in a Ni-based single crystal superalloy. Mater Lett. 2015;160:318.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2017YFB0701503) and the National Basic Research Program of China (No. 2011CB706801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yan Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, RN., Xu, QY. & Liu, BC. A model for simulation of recrystallization microstructure in single-crystal superalloy. Rare Met. 37, 1027–1034 (2018). https://doi.org/10.1007/s12598-018-1093-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1093-z

Keywords

Navigation