Skip to main content
Log in

Analysis of Elements Non-Uniform Distribution of FeCoCrNi High-Entropy Alloy Coatings on Ti–6Al–4V Surface by Laser Cladding

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The evolution of element distribution during laser cladding involves two dynamic behaviors, i.e., liquid molten pool flow and FeCoCrNi high-entropy alloy (HEA) coatings solidification. However, it is quite difficult to characterize element distribution during the flow of the liquid molten pool rigorously. The current investigation conducted the optical microscopy, scanning electron microscopy, X-ray diffraction analysis and energy dispersive spectrometer to study the dilution, phase composition, microstructure of the FeCoCrNi coatings. The flow field was simulated to uncover the dynamic change mechanism of the molten pool and explain the experimental results. The results indicated that the coating is substantially composed of FCC and BCC solid solution with a typical dendrite microstructure. Gray Laves phase-(Ni, Co)2Ti and a small number of white dot particles, Fe–Cr phase, are dispersed in the inter-dendritic region. The HEA atoms (Fe, Co, Cr, Ni) gradually aggregate from the center to the side at the coating boundary region, while the Ti atom is the opposite. The Marangoni flow inflection point at the molten pool boundary will cause HEA atoms to aggregate. On the contrary, Ti atom enters the molten pool from the bottom with the heat buoyance flow and then migrates to the boundary along with the Marangoni flow. Therefore, the content of Ti in the coating boundary decreases. The Marangoni flow, heat buoyance flow, and recoil pressure flow are interwoven in the middle region of the coating, resulting in a more uniform element distribution than the boundary region.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. D. Banerjee, J.C. Williams, Acta Mater. 61, 844 (2013)

    Article  CAS  Google Scholar 

  2. C. Yang, X. Cheng, H. Tang, X. Tian, D. Liu, Surf. Coat. Technol. 337, 97 (2017)

    Article  Google Scholar 

  3. D.G. Bansal, O.L. Eryilmaz, P.J. Blau, Wear 271, 2006 (2011)

    Article  CAS  Google Scholar 

  4. P. Farahmand, R. Kovacevic, Surf. Coat. Technol. 276, 121 (2015)

    Article  CAS  Google Scholar 

  5. O.S. Adesina, A.P.I. Popoola, S.L. Pityana et al., Int. J. Adv. Manuf. Technol. 95, 1265 (2018)

    Article  Google Scholar 

  6. S.R. Al-Sayed Ali, A.H.A. Hussein, A.A.M.S. Nofal, S.E.I. Hasseb Elnaby, H.A. Elgazzar, H.A. Sabour, Materials 10, 1178 (2017)

    Article  Google Scholar 

  7. X. Luo, J. Li, G.J. Li, J. Alloy. Compd. 626, 102 (2015)

    Article  CAS  Google Scholar 

  8. J.M. Chen, C. Guo, J.S. Zhou, T. Nonferr, Metal. Soc. 22, 2171 (2012)

    CAS  Google Scholar 

  9. J.D. Majumdar, I. Manna, A. Kumar, P. Bhargava, A.K. Nath, J. Mater. Process. Tech. 209, 2237 (2009)

    Article  Google Scholar 

  10. L. Jianing, C. Chuanzhong, Z. Lei, Int. J. Refract. Met. H. 29, 49 (2011)

    Article  Google Scholar 

  11. J. Li, C. Chen, Z. Lin, T. Squartini, J. Alloy. Compd. 509, 4882 (2011)

    Article  CAS  Google Scholar 

  12. Y.Q. Yang, H.C. Man, Surf. Coat. Technol. 201, 6928 (2007)

    Article  CAS  Google Scholar 

  13. Y. Yu, J. Zhou, J. Chen, H. Zhou, C. Guo, L. Wang, L. Yang, Wear 274–275, 298 (2012)

    Article  Google Scholar 

  14. L.L. Bai, J. Li, J. Chen, R. Song, J.Z. Shao, C.C. Qu, Opt. Laser Technol. 76, 33 (2016)

    Article  CAS  Google Scholar 

  15. R. Song, J. Li, J.Z. Shao, L.L. Bai, J.L. Chen, C.C. Qu, Appl. Surf. Sci. 355, 298 (2015)

    Article  CAS  Google Scholar 

  16. J.Z. Shao, J. Li, R. Song, L.L. Bai, J.L. Chen, C.C. Qu, Rare Metals 39, 304 (2020)

    Article  CAS  Google Scholar 

  17. M.S. Selamat, L.M. Watson, T.N. Baker, J. Mater. Process. Tech. 142, 725 (2003)

    Article  CAS  Google Scholar 

  18. C.G. Li, Y. Wang, L. Guo, J. He, Z. Pan, L. Wang, J. Alloy. Compd. 506, 356 (2010)

    Article  CAS  Google Scholar 

  19. J. Li, Z. Yu, H. Wang, Thin Solid Films 519, 4804 (2011)

    Article  CAS  Google Scholar 

  20. S. Feng, H.B. Tang, S.Q. Zhang, H.M. Wang, T. Nonferr, Metal. Soc. 22, 1667 (2012)

    CAS  Google Scholar 

  21. J.‐W. Yeh, S.‐K. Chen, S.‐J. Lin, J.‐Y. Gan, T.‐S. Chin, T.‐T. Shun, C.‐H. Tsau, S.‐Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

  22. Y. Ma, Q. Wang, B.B. Jiang, C.L. Li, J.M. Hao, X.N. Li, C. Dong, T.G. Nieh, Acta Mater. 147, 213 (2018)

    Article  CAS  Google Scholar 

  23. H. Zhang, Y. Pan, Y.Z. He, Mater. Design 32, 1910 (2011)

    Article  CAS  Google Scholar 

  24. J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh, Z.P. Lu, Intermetallics 79, 41 (2016)

    Article  CAS  Google Scholar 

  25. C. Huang, Y. Zhang, R. Vilar, J. Shen, Mater. Design 41, 338 (2012)

    Article  CAS  Google Scholar 

  26. H.X. Zhang, J.J. Dai, C.X. Sun, S.Y. Li, J. Mater. Process. Tech. 282, 116671 (2020)

    Article  CAS  Google Scholar 

  27. M. Guo, S. Chen, F. Shang et al., Laser cladding novel NiCrSiFeBW–CeO2 coating with both high wear and corrosion resistance. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00756-z

    Article  Google Scholar 

  28. G.S. Ham, Y.K. Kim, Y.S. Na et al., Effect of Ti addition on the microstructure and high-temperature oxidation property of AlCoCrFeNi high-entropy alloy. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00708-7

    Article  Google Scholar 

  29. T.M. Yue, H. Xie, X. Lin, H.O. Yang, G.H. Meng, J. Alloy. Compd. 587, 588 (2014)

    Article  CAS  Google Scholar 

  30. G. Jin, Z. Cai, Y. Guan, X. Cui, Z. Liu, Y. Li, M. Dong, D. Zhang, Appl. Surf. Sci. 445, 113 (2018)

    Article  CAS  Google Scholar 

  31. W.E. King, A.T. Anderson, R.M. Ferencz, N.E. Hodge, C. Kamath, S.A. Khairallah, A.M. Rubenchik, Appl. Phys. Rev. 2, 041304 (2015)

    Article  Google Scholar 

  32. A. Sim, E.-J. Chun, D.-W. Cho, Met. Mater. Int. 26, 1207 (2020)

    Article  CAS  Google Scholar 

  33. P. Campra, D. Millstein, Environ. Sci. Technol. 47, 12284 (2013)

    Article  CAS  Google Scholar 

  34. Y.Q. Jiang, J. Li, Y.F. Juan, Z.J. Lu, W.L. Ji, J. Alloy. Compd. 775, 1 (2018)

    Article  Google Scholar 

  35. S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 103505 (2011)

    Article  Google Scholar 

  36. S.A. Kube, S. Sohn, D. Uhl, A. Datye, A. Mehta, J. Schroers. Acta Mater. 166, 677 (2019)

  37. J. Cieslak, J. Tobola, K. Berent, M. Marciszko, J. Alloy. Compd. 740, 264 (2018)

    Article  CAS  Google Scholar 

  38. C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J.D. Poplawsky, P.K. Liaw, Mater. Design 109, 425 (2016)

    Article  CAS  Google Scholar 

  39. H.R. Sistla, J.W. Newkirk, F.W. Liou, Mater. Design 81, 113 (2015)

    Article  CAS  Google Scholar 

  40. S. Guo, Q. Hu, C. Ng, C.T. Liu, Intermetallics 41, 96 (2013)

    Article  Google Scholar 

  41. H.L. Wei, Y. Cao, W.H. Liao, T.T. Liu, 34, 101221 (2020).

  42. S.A. Khairallah, A.T. Anderson, A. Rubenchik, W.E. King, Acta Mater. 108, 36 (2016)

  43. X. Zhan, J. Chen, J. Liu, Y. Wei, J. Zhou, Y. Meng, Mater. Design 99, 449 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge by the Foundation of National Key Laboratory of Science and Technology on Helicopter Transmission (Nanjing University of Aeronautics and Astronautics) (Grant No. HTL-A-19K02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Zhan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, S., Zhan, X., Wu, M. et al. Analysis of Elements Non-Uniform Distribution of FeCoCrNi High-Entropy Alloy Coatings on Ti–6Al–4V Surface by Laser Cladding. Met. Mater. Int. 27, 467–480 (2021). https://doi.org/10.1007/s12540-020-00900-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00900-9

Keywords

Navigation