Skip to main content
Log in

Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/α(Ti) matrix coating produced by laser cladding

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A Ti2Ni/α(Ti) matrix composite coating reinforced by TiC and TiB was prepared on a Ti6Al4V substrate by laser cladding. The microstructure of the coating was examined and discussed. The wear behavior of the coating at various sliding speeds was investigated from the perspective of energy dissipation, and the relationship between accumulated dissipated energy (ΣE) and accumulated wear volume (ΣV) was established. Results indicate a good linear relationship between ΣE and ΣV at low sliding speed (0.1 m·s−1); at higher sliding speed (0.2 m·s−1), the relationship between these parameters follows a quadratic function. The results may be explained from the perspective of energy transformation, wherein the friction heat and plastic deformation of the coating surface consume a substantial amount of ΣE at high sliding speed (0.2 m·s−1) and the remainder of the energy is used to produce worn coating debris. The wear mechanism of the coating involves a combination of microcutting and brittle debonding accompanied by oxidization of the worn surface and formation of Al2O3 adherents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Guo C, Zhou JS, Chen JM, Zhao JR, Yu YL, Zhou HD. Improvement of the oxidation and wear resistance of pure Ti by laser cladding at elevated temperature. Surf Coat Technol. 2010;205(7):2142.

    Article  CAS  Google Scholar 

  2. Yao B, Ma XL, Lin F, Ge WJ. Microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser microcladding deposition. Rare Met. 2015;34(7):445.

    Article  CAS  Google Scholar 

  3. Emamian A, Corbin SF, Khajepour A. Tribology characteristics of in situ laser deposition of Fe–TiC. Surf Coat Technol. 2012;206(22):4495.

    Article  CAS  Google Scholar 

  4. Farayibi PK, Folkes J, Clare A, Oyelola O. Cladding of pre-blended Ti–6Al–4V and WC powder for wear resistant applications. Surf Coat Technol. 2011;206(2–3):372.

    Article  CAS  Google Scholar 

  5. Ochonogor OF, Meacock C, Abdulwahab M, Pityana S, Popoola API. Effects of Ti and TiC ceramic powder on laser-cladded Ti–6Al–4V in situ intermetallic composite. Appl Surf Sci. 2012;263(5):591.

    Article  CAS  Google Scholar 

  6. Kamdi Z, Shipway PH, Voisey KT, Sturgeon AJ. Abrasive wear behaviour of onventional and large-particle tungsten carbide-based cermet coatings as a function of abrasive size and type. Wear. 2011;271(9–10):1264.

    Article  CAS  Google Scholar 

  7. Archard JF. Contact and rubbing of flat surface. J Appl Phys. 1953;24(8):981.

    Article  Google Scholar 

  8. Uetz H, Föhl J. Wear as an energy transformation process. Wear. 1978;49(2):253.

    Article  Google Scholar 

  9. Liskiewicz T, Fouvry S. Development of a friction energy capacity approach to predict the surface coating endurance under complex oscillating sliding conditions. Tribol Int. 2005;38(1):69.

    Article  CAS  Google Scholar 

  10. Mohrbacher H, Blanpain B, Celis JP, Roos JR. The influence of humidity on the fretting behaviour of PVD TiN coatings. Wear. 1995;180(1–2):43.

    Article  CAS  Google Scholar 

  11. Jahangiri M, Hashempour M, Razavizadeh H, Rezaie HR. Application and conceptual explanation of an energy-based approach for the modelling and prediction of sliding wear. Wear. 2012;274–275(27):168.

    Article  Google Scholar 

  12. Fouvry S, Kapsa P, Zahouani H, Vincent L. Wear analysis in fretting of hard coatings through a dissipated energy concept. In: Proceedings of the 11th International Conference on Wear of Materials. 1997;203–204 (3);393.

  13. Jahangiri M, Hashempour M, Razavizadeh H, Rezaie HR. A new method to investigate the sliding wear behaviour of materials based on energy dissipation: W-25 wt% Cu composite. Wear. 2012;274–275(27):175.

    Article  Google Scholar 

  14. Huq MZ, Celis JP. Expressing wear rate in sliding contacts based on dissipated energy. Wear. 2002;252(5–6):375.

    Article  CAS  Google Scholar 

  15. Syahrullail S, Nuraliza N, Izhan MI, Abdul Hamid MK, Md Razaka D. Wear characteristic of palm Olein as lubricant in different rotating speed. Procedia Eng. 2013;68(12):158.

    Article  CAS  Google Scholar 

  16. Khanafi-Benghalem N, Felder E, Loucifa K, Montmitonnet P. Plastic deformation of 25CrMo4 steel during wear: effect of the temperature, the normal force, the sliding velocity and the structural state. Wear. 2010;268(1–2):23.

    Article  CAS  Google Scholar 

  17. Liu YQ, Han Z, Cong HT. Effects of sliding velocity and normal load on the tribological behavior of a nanocrystalline Al based composite. Wear. 2010;268(7–8):976.

    Article  CAS  Google Scholar 

  18. Straffelini G, Pellizzari M, Maines L. Effect of sliding speed and contact pressure on the oxidative wear of austempered ductile iron. Wear. 2011;270(9–10):714.

    Article  CAS  Google Scholar 

  19. Kooi BJ, Pei YT, Th J, Hosson MD. The evolution of microstructure in a laser clad TiB–Ti composite coating. Acta Mater. 2003;51(3):831.

    Article  CAS  Google Scholar 

  20. Tian YS. Growth mechanism of the tubular TiB crystals in situ formed in the coatings laser-borided on Ti–6Al–4V alloy. Mater Lett. 2010;64(22):2483.

    Article  CAS  Google Scholar 

  21. Jin YX, Wang HW, Zeng SY, Zhang EL. Formation and growth mechanism of TiC crystal in TiCp/Ti composites. Trans Nonferr Met Soc China. 2002;12(6):1158.

    CAS  Google Scholar 

  22. Feng SR, Tang HB, Zhang SQ, Wang HM. Microstructure and wear resistance of laser clad TiB–TiC/TiNi–Ti2Ni intermetallic coating on titanium alloy. Trans Nonferr Met Soc China. 2012;22(7):1667.

    Article  CAS  Google Scholar 

  23. Lu WJ, Zhang D, Zhang XN, Wu RJ, Sakatac T. Microstructural characterization of TiC in situ synthesized technique. J Alloys Compd. 2001;327(1–2):248.

    Article  CAS  Google Scholar 

  24. Kurz W, Bezençon C, Gäumann M. Columnar to equiaxed transition in solidification processing. Sci Technol Adv Mater. 2001;2(1):185.

    Article  CAS  Google Scholar 

  25. Yang S, Zhong ML, Liu WJ. TiC particulate composite coating produced in situ by laser cladding. Mater Sci Eng A. 2003;343(1–2):57.

    Article  Google Scholar 

  26. Witusiewicz VT, Hallstedt B, Bondar AA, Hecht U, Sleptsov SV, Velikanova TY. Thermodynamic description of the Al–C–Ti system. J Alloys Compd. 2015;623(25):480.

    Article  CAS  Google Scholar 

  27. Murray JL. Phase Diagrams of Binary Nickel Alloys. In: Nash P, editor. Ohio: ASM International; 1991. 342

  28. Subramanian B, Ananthakumar R, Jayachandran M. Microstructural, mechanical and electrochemical corrosion properties of sputtered titanium–aluminum–nitride films for bio-implants. Vacuum. 2010;85(5):601.

    Article  CAS  Google Scholar 

  29. Leyens C, Peters M. Titanium and Titanium Alloys. In: Christoph L, Manfred P, editors. Beijing: Chemical Industry Press of China. 2005. 13.

  30. Ma W, Lu J, Wang B. Sliding friction and wear of Cu-graphite against 2024, AZ91D and Ti6Al4V at different speeds. Wear. 2009;266(11–12):1072.

    Article  CAS  Google Scholar 

  31. Rao RN, Das S. Effect of SiC content and sliding speed on the wear behaviour of aluminium matrix composites. Mater Des. 2011;32(2):1066.

    Article  CAS  Google Scholar 

  32. Ye DL, Hu JH. Practical Inorganic Thermodynamics Date Manual. 2nd ed. Beijing: Metallurgical Industry Press; 2002. 1056.

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (No. 51471105), “Shu Guang” Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation (No. 12SG44), and “Graduate Innovation” Project of Shanghai University of Engineering Science (No. 14KY0502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, JZ., Li, J., Song, R. et al. Microstructure and wear behaviors of TiB/TiC reinforced Ti2Ni/α(Ti) matrix coating produced by laser cladding. Rare Met. 39, 304–315 (2020). https://doi.org/10.1007/s12598-016-0787-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-016-0787-3

Keywords

Navigation