Skip to main content
Log in

Numerical Simulation of Surface Softening Behavior for Laser Heat Treated Cu-Bearing Medium Carbon Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The critical temperature condition for softening behavior of AISI P21 steel during laser-assisted heat treatment is suggested by three-dimensional transient simulation with a finite different method. Temperature history of the cross-sectional region during laser-assisted heat treatment at 1273 K was simulated. The critical temperature condition for formation of the softening zone was assumed to range from 900 to 1008 K, based on this peak temperature history. Formation of the softening zone was simulated based on the assumed critical temperature condition. Morphology and area of simulated softening zone was compared with the experimentally obtained results, and these were well matched. In this regard, critical temperature condition for formation of the softening zone during laser-assisted heat treatment was identified to range from 900 to 1008 K.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Singh, A. Verma, A brief review on injection moulding manufacturing process. Mater. Today Proc. 4, 1423–1433 (2017)

    Article  Google Scholar 

  2. F.J.G. Silva, R.P. Martinho, R.J.D. Alexandre, A.P.M. Baptista, Increasing the wear resistance of molds for injection of glass fiber reinforced plastics. Wear 271, 2494–2499 (2011)

    Article  CAS  Google Scholar 

  3. J. Bergstrom, F. Thuvander, P. Devos, C. Boher, Wear of die materials in full scale plastic injection moulding of glass fiber reinforced polycarbonate. Wear 251, 1511–1521 (2001)

    Article  Google Scholar 

  4. G. Zhao, I. Hussainova, M. Antonov, Q. Wang, T. Wang, Friction and wear of fiber reinforced polyimide composites. Wear 301, 122–129 (2013)

    Article  CAS  Google Scholar 

  5. N. Crisan, S. Descartes, Y. Berthier, J. Cavoret, D. Baud, F. Montalbano, Tribological assessment of the interface injection mold/plastic part. Tribol. Int. 100, 388–399 (2016)

    Article  CAS  Google Scholar 

  6. I. Martínez-Mateo, F.J. Carrión-Vilches, J. Sanes, M.D. Bermúdez, Surface damage of mold steel and its influence on surface roughness of injection molded plastic parts. Wear 271, 2512–2516 (2011)

    Article  Google Scholar 

  7. D.C. Wen, Microstructure and corrosion resistance of the layers formed on the surface of precipitation hardenable plastic mold steel by plasma-nitriding. Appl. Surf. Sci. 256, 797–804 (2009)

    Article  CAS  Google Scholar 

  8. M.H. Ghasemi, B. Ghasemi, H.R.M. Semnani, Investigation of microstructure and wear properties of plasma nitrided astaloy Mo. Met. Mater. Int. 25, 1008–1018 (2019)

    Article  Google Scholar 

  9. K. Bobzin, C.H. Hopmann, A. Gillner, T. Brögelmann, N.C. Kruppe, M. Orth, M. Steger, M. Naderi, Enhanced replication ratio of injection molded plastic parts by using an innovative combination of laser structuring and PVD coating. Surf. Coat. Technol. 332, 474–483 (2017)

    Article  CAS  Google Scholar 

  10. J. Kim, S.S. Park, H.W. Park, Corrosion inhibition and surface hardening of KP1 and KP4 mold steels using pulsed electron beam treatment. Corros. Sci. 89, 179–188 (2014)

    Article  CAS  Google Scholar 

  11. E.J. Chun, M.S. Kim, H. Nishikawa, C. Park, J. Shu, Laser-assisted selective fusing of thermal sprayed Ni-based self-fluxing alloys by using high-power diode lasers. Opt. Lasers Technol. 100, 317–324 (2018)

    Article  CAS  Google Scholar 

  12. B. Syed, S.M. Shariff, G. Padmanabham, S. Lenka, B. Bhattacharya, S. Kundu, Influence of laser surface hardened layer on mechanical properties of re-engineered low carbon steel sheet. Mater. Sci. Eng. A 685, 168–177 (2017)

    Article  CAS  Google Scholar 

  13. S. Guarino, M. Barletta, A. Afilal, High power diode laser (HPDL) surface hardening of low carbon steel: fatigue life improvement analysis. J. Manuf. Process 28, 266–271 (2017)

    Article  Google Scholar 

  14. G. Telasang, J.D. Majumdar, G. Padmanbham, I. Manna, Structure-property correlation in laser surface treated AISI H13 tool steel for improved mechanical properties. Mater. Sci. Eng. A 599, 255–267 (2014)

    Article  CAS  Google Scholar 

  15. G. Telasang, J.D. Majumdar, G. Padmanbham, I. Manna, Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel. Surf. Coat. Technol. 261, 69–78 (2015)

    Article  CAS  Google Scholar 

  16. S.M. Shariff, T.K. Pal, G. Padmanabham, S.V. Joshi, Influence of chemical composition and prior microstructure on diode laser hardening of railroad steels. Surf. Coat. Technol. 228, 14–26 (2013)

    Article  CAS  Google Scholar 

  17. S. Santhanakrishnan, R. Kovacevic, Hardness prediction in multi-pass direct diode laser heat treatment by on-line surface temperature monitoring. J. Mater. Process. Technol. 212, 2261–2271 (2012)

    Article  CAS  Google Scholar 

  18. C. Park, J. Kim, A. Sim, I.D. Park, H. Jang, E.J. Chun, Influence of high-power diode laser heat treatment on wear resistance of a mold steel. J. Mech. Sci. Technol. 33(2), 829–836 (2019)

    Article  Google Scholar 

  19. A. Liu, B. Previtali, Laser surface treatment of grey cast iron by high power diode laser. Phys. Procedia 5, 439–448 (2010)

    Article  CAS  Google Scholar 

  20. A. Bartkowska, A. Pertek, M. Kulka, L. Klimek, Laser surface modification of boronickelized medium carbon steel. Opt. Laser Technol. 74, 145–157 (2015)

    Article  CAS  Google Scholar 

  21. L. Orazi, A. Fortunato, G. Cuccolini, G. Tani, An efficient model for laser surface hardening of hypo-eutectoid steels. Appl. Surf. Sci. 256, 1913–1919 (2010)

    Article  CAS  Google Scholar 

  22. K.M. Adel, Enhancement of dry sliding wear characteristics of CK45 steel alloy by laser surface hardening processing. Procedia Mater. Sci. 6, 1639–1643 (2014)

    Article  CAS  Google Scholar 

  23. X.M. Zhang, H.C. Man, H.D. Li, Wear and friction properties of laser surface hardened En31 steel. J. Mater. Process. Technol. 69, 162–166 (1997)

    Article  Google Scholar 

  24. I.R. Pashby, S. Barnes, B.G. Bryden, Surface hardening of steel using a high power diode laser. J. Mater. Process. Technol. 139, 585–588 (2003)

    Article  CAS  Google Scholar 

  25. H. Ki, S. So, S. Kim, Laser transformation hardening of carbon steel sheets using a heat sink. J. Mater. Process. Technol. 214, 2693–2705 (2014)

    Article  CAS  Google Scholar 

  26. Z. Yu, C. Li, Z. Chen, Y. Li, X. Han, Sensitivity analysis of laser quenching parameters of ASTM 1045 of disk laser based on response surface method. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00437-6

    Article  Google Scholar 

  27. E.J. Chun, A. Sim, M.S. Kim, N. Kang, Microstructural characterization of surface softening behavior for Cu-bearing martensitic steels after laser surface heat treatment. Metals 8(6), 470 (2018)

    Article  Google Scholar 

  28. D.W. Cho, J.H. Park, H.S. Moon, A study on molten pool behavior in the one pulse one drop GMAW process using computational fluid dynamics. J. Heat. Mass. Transf. 139, 848–859 (2019)

    Article  Google Scholar 

  29. D.W. Cho, D.V. Kiran, W.H. Song, S.J. Na, Molten pool behavior in the tandem submerged arc welding process. J. Mater. Process. Technol. 214, 2233–2247 (2014)

    Article  Google Scholar 

  30. W.I. Cho, S.J. Na, T. Thomy, F. Vollertsen, Numerical simulation of molten pool dynamics in high power disk laser welding. J. Mater. Process. Technol. 212, 262–275 (2012)

    Article  CAS  Google Scholar 

  31. F. Kong, S. Santhanakrishnan, D. Lin, R. Kovacevic, Modeling of temperature field and grain growth of a dual phase steel DP980 in direct diode laser heat treatment. J. Mater. Process. Technol. 209, 5596–6003 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (or Industrial Strategic technology development program, No. 10076430) funded By the Ministry of Trade, industry & Energy (MI, Korea) and Korea Institute of Machinery and Materials (NK217C).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Won Cho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, A., Chun, EJ. & Cho, DW. Numerical Simulation of Surface Softening Behavior for Laser Heat Treated Cu-Bearing Medium Carbon Steel. Met. Mater. Int. 26, 1207–1217 (2020). https://doi.org/10.1007/s12540-019-00577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00577-9

Keywords

Navigation