Skip to main content
Log in

Laser Cladding Novel NiCrSiFeBW–CeO2 Coating with Both High Wear and Corrosion Resistance

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In order to obtain the high wear- and corrosion-resistant nickel based alloy coatings for laser remanufacturing fretting damaged metal parts which are serviced under high-temperature corrosion and wear conditions, a novel NiCrSiFeBW–CeO2 alloy powder was designed by increasing the content of B and Si, adding tungsten and CeO2 using JMatpro software on the basis of Ni60 alloy powder composition, and the NiCrSiFeBW–CeO2 coating was successfully cladded on 45# steel under different laser energy area densities. The microstructure, wear and corrosion behaviors of the NiCrSiFeBW–CeO2 coatings were systematically studied. The results show that novel NiCrSiFeBW–CeO2 coating produced by laser cladding not only has no cracks but also has both high wear resistance and corrosion resistance due to some ultra-fine compound particle phases in situ generated in its structure. Among these phases, the B3Cr5, CrB4, (Cr, Ni)3C2, Cr7C3, W3Cr12Si5 and (Fe, Ni)5Si3 played a significant role in reinforcing the wear resistance of the coating, while the B3Cr5, W3Cr12Si5 and CrB4 enhanced the corrosion resistance of the coating. The novel NiCrSiFeBW–CeO2 coating prepared under 100 J/mm2 EAD has the best comprehensive performance, the wear loss is 7.53 × 10−5 mm3/N, the Ecorr is − 0.1738 V. Compared with Ni60 alloy coating, the novel Ni-based coating not only has a better laser cladded formability but also similar wear resistance and better corrosion-resistance. It provides a reference for repairing fretting damaged metal parts by laser cladding the nickel based coating with high wear and corrosion resistance.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A. Chergui, K. Hadj-Hamou, F. Vignat, Comput. Ind. Eng. 126, 292–301 (2018)

    Article  Google Scholar 

  2. B.S. Richardson, R.F. Lind, P.D. Lloyd, M.W. Noakes, L.J. Love, B.K. Post, Addit. Manuf. 24, 467–478 (2018)

    CAS  Google Scholar 

  3. J. Liu, H. Yu, C. Chen, F. Weng, J. Dai, Opt. Lasers Eng. 93, 195–210 (2017)

    Article  Google Scholar 

  4. N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Shi, J. Blackburn, J. Mater. Sci. Technol. 35, 242–269 (2019)

    Article  Google Scholar 

  5. A. Haleem, M. Javaid, A. Saxena, Egypt. Hear. J. 70, 433–441 (2018)

    Article  Google Scholar 

  6. Z. Weng, A. Wang, X. Wu, Y. Wang, Z. Yang, Surf. Coat. Technol. 304, 283–292 (2016)

    Article  CAS  Google Scholar 

  7. S. Zhou, X. Dai, Appl. Surf. Sci. 256, 4708–4714 (2010)

    Article  CAS  Google Scholar 

  8. S. Sun, H. Fu, X. Ping, X. Guo, J. Lin, Y. Lei, W. Wu, J. Zhou, Appl. Surf. Sci. 476, 914–927 (2019)

    Article  CAS  Google Scholar 

  9. X.B. Liu, C. Zheng, Y.F. Liu, J.W. Fan, M.S. Yang, X.M. He, M. Di Wang, H.B. Yang, L.H. Qi, J. Mater. Process. Technol. 213, 51–58 (2013)

    Article  CAS  Google Scholar 

  10. X. Luo, J. Li, G.J. Li, J. Alloys Compd. 626, 102–111 (2015)

    Article  CAS  Google Scholar 

  11. X. Chen, X. Qin, Z. Zhu, K. Gao, J. Mater. Process. Technol. 262, 257–268 (2018)

    Article  CAS  Google Scholar 

  12. C. Wang, Y. Gao, G. Zhang, Rare Met. Eng. 46, 2306–2312 (2017)

    CAS  Google Scholar 

  13. X. He, R.G. Song, D.J. Kong, J. Alloys Compd. 770, 771–783 (2019)

    Article  CAS  Google Scholar 

  14. H. Zhang, D. Gu, L. Xi, H. Zhang, M. Xia, C. Ma, J. Mater. Sci. Technol. 35, 1128–1136 (2019)

    Article  CAS  Google Scholar 

  15. Y. Lei, R. Sun, Y. Tang, W. Niu, Opt. Lasers Eng. 66, 181–186 (2015)

    Article  Google Scholar 

  16. G. Yin, S. Chen, Y. Liu, J. Mater. Eng. Perf. 27, 1154–1167 (2018)

    Article  CAS  Google Scholar 

  17. F. Liu, C. Liu, S. Chen, X. Tao, M. Wang, Surf. Coat. Technol. 201, 6332–6339 (2007)

    Article  CAS  Google Scholar 

  18. Y. Zhou, S. Chen, X. Chen, T. Cui, J. Liang, C. Liu, Mater. Sci. Eng. A 742, 150–161 (2019)

    Article  CAS  Google Scholar 

  19. L. Bian, S.M. Thompson, N. Shamsaei, JOM 67, 629–638 (2015)

    Article  CAS  Google Scholar 

  20. L. Yanan, S. Ronglu, N. Wei, Z. Tiangang, L. Yiwen, Opt. Lasers Eng. 120, 84–94 (2019)

    Article  Google Scholar 

  21. B.C. Yan, J. Zhang, L.H. Lou, Mater. Sci. Eng. A 474, 39–47 (2008)

    Article  Google Scholar 

  22. Z. Jiang, P. Wang, D. Li, Y. Li, J. Mater. Sci. Technol. (2019). https://doi.org/10.1007/s40195-017-0604-5

    Article  Google Scholar 

  23. W.P. Tian, H.W. Yang, S. De Zhang, Acta Metall. Sin. Engl. Lett. 31, 308–320 (2018)

    Article  CAS  Google Scholar 

  24. T. Hu, Z. Shi, W. Shao, X. Xing, Y. Zhou, Q. Yang, Surf. Coat. Technol. 377, 124850 (2019)

    Article  CAS  Google Scholar 

  25. Z.Y. Liu, Z. Wang, J. Mater. Sci. Technol. 34, 2116–2124 (2018)

    Article  Google Scholar 

  26. A. Viswanathan, D. Sastikumar, H. Kumar, A.K. Nath, Surf. Coat. Technol. 203, 1618–1623 (2009)

    Article  CAS  Google Scholar 

  27. M.H. Farshidianfar, A. Khajepour, A.P. Gerlich, J. Mater. Sci. Technol. 231, 468–478 (2016)

    Article  CAS  Google Scholar 

  28. J. Shao, G. Yu, X. He, S. Li, R. Chen, Y. Zhao, Opt. Laser Technol. 119, 105662 (2019)

    Article  CAS  Google Scholar 

  29. T. Minoda, H. Yoshida, Metall. Mater. Trans. A 33, 2891–2898 (2002)

    Article  Google Scholar 

  30. H.Y. Gou, Z.P. Li, H. Niu, F.M. Gao, J.W. Zhang, R.C. Ewing, J. Lian, Phys. Appl. 111907, 2–6 (2013)

    Google Scholar 

  31. H. Xu, W. Liu, F. Lu, P. Wang, Y. Ding, Mater. Charact. 130, 270–277 (2017)

    Article  CAS  Google Scholar 

  32. F. Yuan, S. Forbes, K.K. Ramachandran, Y. Mozharivskyj, J. Alloys Compd. 650, 712–717 (2015)

    Article  CAS  Google Scholar 

  33. H. Li, J. Jie, S. Liu, Y. Zhang, T. Li, Mater. Sci. Eng. A 704, 45–56 (2017)

    Article  CAS  Google Scholar 

  34. K.S. Bal, J. Dutta Majumdar, A. Roy Choudhury, Corros. Sci. 157, 406–419 (2019)

    Article  CAS  Google Scholar 

  35. Y. Sui, F. Yang, G. Qin, Z. Ao, Y. Liu, Y. Wang, J. Mater. Process. Technol. 252, 217–224 (2018)

    Article  CAS  Google Scholar 

  36. D. Deschuyteneer, F. Petit, M. Gonon, F. Cambier, Surf. Coat. Technol. 283, 162–171 (2015)

    Article  CAS  Google Scholar 

  37. C. Guo, J. Zhou, J. Chen, J. Zhao, Y. Yu, H. Zhou, Wear 270, 492–498 (2011)

    Article  CAS  Google Scholar 

  38. J. Xu, C. Zhou, S. Jiang, Intermetallics 18, 1669–1675 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Green Manufacturing System Integration Project of the Industry and Information Ministry of China (2017), National Key R&D Program of China (2016YFB1100201), Research and development plan for the future emerging industries in Shenyang (18-004-2-26), and Shenyang Achievement Transformation Project (2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suiyuan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Chen, S., Shang, F. et al. Laser Cladding Novel NiCrSiFeBW–CeO2 Coating with Both High Wear and Corrosion Resistance. Met. Mater. Int. 27, 2706–2719 (2021). https://doi.org/10.1007/s12540-020-00756-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00756-z

Keywords

Navigation