Skip to main content
Log in

Geometric Size Prediction and Microstructure Evolution of Laser-Cladded AlSiTiNi-WC Coating

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, a novel 3D finite element model is introduced to effectively simulate the temperature changes in the molten pool, the coating geometry, and the microstructure evolution of AlSiTiNi-WC coatings. To account for the distinct thermal properties of AlSiTiNi-WC powder and AlSiTiNi-WC alloy, a thermal property calculation is employed, resulting in enhanced accuracy of the simulation outcomes. The utilization of the 3D Gaussian heat source model enables the identification of both the coating area and the non-coating area through the implementation of a temperature discrimination mechanism. This approach provides a more visually comprehensive representation of the variations in the coating geometry. The effect of various laser process parameters on the geometric dimensions of the coating was investigated through the utilization of an improved finite element method, which involved simulating the temperature dispersion of the molten pool. The outcomes of the simulation align well with the experimental findings. The temperature field simulation results were utilized to investigate the temperature gradient (\(G\)) and solidification rate (\(R\)) of AlSiTiNi-WC coating. The objective was to examine the connection between the cooling rate (\(G*R\)) and the resulting microstructure, considering various laser process parameters. In contrast, the scanning speed exerts a more significant impact on the microstructure, resulting in a more pronounced variation in grain size and a more vigorous progression of the microstructure. Higher scanning speeds and lower power settings can yield a finer grain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J. Cheng, Y.H. Xing, E.J. Dong, L.J. Zhao, H.N. Liu, T.Y. Chang, M.J. Chen, and J.H. Wang, An Overview of Laser Metal Deposition for Cladding: Defect Formation Mechanisms, Defect Suppression Methods and Performance Improvements of Laser-Cladded Layers, Materials, 2022, 15(16), p 5522.

    Article  ADS  CAS  PubMed Central  PubMed  Google Scholar 

  2. F. Fu, Y. Zhang, G.R. Chang, and J. Dai, Analysis on the Physical Mechanism of Laser Cladding Crack and its Influence Factors, Optik, 2016, 127(1), p 200–202.

    Article  ADS  CAS  Google Scholar 

  3. L. Chang, Y.P. Yang, Z.T. Liu, H. Xin, and T.H. Jia, Differential Analysis of the Influence Mechanism of Ultrasonic Vibrations on Laser Cladding, CIRP J. Manuf. Sci. Technol., 2022, 38, p 16–37.

    Article  Google Scholar 

  4. A. Khorram, Microstructural Evolution of Laser Clad Stellite 31 Powder on Inconel 713 LC Superalloy, Surf. Coat. Technol., 2021, 423, p 127633.

    Article  CAS  Google Scholar 

  5. L.D. Zhu, P.S. Xue, Q. Lan, G.R. Meng, Y. Ren, Z.C. Yang, P.H. Xu, and Z. Liu, Recent Research and Development Status of Laser Cladding: A Review, Opt. Laser Technol., 2021, 138, p 106915.

    Article  CAS  Google Scholar 

  6. R. Gecu, Y. Yurekturk, E. Tekoglu, F. Muhaffel, and A.K. Muhaffel, Improving Wear Resistance of 304 Stainless Steel Reinforced AA7075 Aluminum Matrix Composite by Micro-Arc Oxidation, Surf. Coat. Technol., 2019, 368, p 15–24.

    Article  CAS  Google Scholar 

  7. A. Riveiro, A. Mejías, F. Lusquiños, J.D. Val, R. Comesaña, J. Pardo, and J. Pou, Laser Cladding of Aluminium on AISI 304 Stainless Steel with High-Power Diode Lasers, Surf. Coat. Technol., 2014, 253, p 214–220.

    Article  CAS  Google Scholar 

  8. S. Li, C. Li, P.R. Deng, Y.F. Zhang, Q.S. Zhang, S. Sun, H. Yan, P. Ma, and Y. Wang, Microstructure and Properties of Laser-Cladded Bimodal Composite Coatings Derived by Composition Design, J. Alloys Compd., 2018, 745, p 483–489.

    Article  CAS  Google Scholar 

  9. D.P. Karmakar, G. Muvvala, and A.K. Nath, High-Temperature Abrasive Wear Characteristics of H13 Steel Modified by Laser Remelting and Cladded with Stellite 6 and Stellite 6/30% WC, Surf. Coat. Technol., 2021, 422, p 127498.

    Article  CAS  Google Scholar 

  10. Y.L. Xia, H.N. Chen, X.D. Liang, and J.B. Lei, Circular Oscillating Laser Melting Deposition of Nickel-Based Superalloy Reinforced by WC: Microstructure, Wear Resistance and Electrochemical Properties, J. Manuf. Process., 2021, 68, p 1694–1704.

    Article  Google Scholar 

  11. D. Shu, Z.G. Li, C.W. Yao, D.Y. Li, and Z.B. Dai, In Situ Synthesised WC Reinforced Nickel Coating by Laser Cladding, Surf. Eng., 2018, 34(4), p 276–282.

    Article  CAS  Google Scholar 

  12. Y.C. Cai, Y. Cui, L.S. Zhu, R.Y. Tian, K.P. Geng, H.J. Li, and J. Han, Enhancing the (FeMnCrNiCo+TiC) Coating by In-Situ Laser Remelting, Surf. Eng., 2021, 37(12), p 1496–1502.

    Article  CAS  Google Scholar 

  13. C.G. Li, Q.S. Zhang, F.F. Wang, P.R. Deng, Q.H. Lu, Y.F. Zhang, S. Li, P. Ma, W.G. Li, and Y. Wang, Microstructure and Wear Behaviors of WC-Ni Coatings Fabricated by Laser Cladding under High Frequency Micro-Vibration, Appl. Surf. Sci., 2019, 485, p 513–519.

    Article  ADS  CAS  Google Scholar 

  14. C.G. Li, S. Li, C.M. Liu, Y.F. Zhang, P.R. Deng, Y.J. Guo, J.Q. Wang, and Y. Wang, Effect of WC Addition on Microstructure and Tribological Properties of Bimodal Aluminum Composite Coatings Fabricated by Laser Surface Alloying, Mater. Chem. Phys., 2019, 234, p 9–15.

    Article  CAS  Google Scholar 

  15. O.G. Devojno, E. Feldshtein, M.A. Kardapolava, and N.I. Lutsko, On the Formation Features, Microstructure and Microhardness of Single Laser Tracks Formed by Laser Cladding of a NiCrBSi Self-Fluxing Alloy, Opt. Laser Technol., 2018, 106, p 32–38.

    Article  Google Scholar 

  16. Y.A. Liu, Y. Ding, L.J. Yang, R.L. Sun, T.G. Zhang, and X.J. Yang, Research and Progress of Laser Cladding on Engineering Alloys: A Review, J. Manuf. Process., 2021, 66, p 341–363.

    Article  Google Scholar 

  17. N. Tamanna, R. Crouch, and S. Naher, Progress in Numerical Simulation of the Laser Cladding Process, Opt. Lasers Eng., 2019, 122, p 151–163.

    Article  Google Scholar 

  18. Q. Zhang, P. Xu, G.Q. Zha, Z. Ouyang, and D.T. He, Numerical Simulations of Temperature and Stress Field of Fe-Mn-Si-Cr-Ni Shape Memory Alloy Coating Synthesized by Laser Cladding, Optik, 2021, 242, p 167079.

    Article  ADS  CAS  Google Scholar 

  19. C.Y. Wang, J.Z. Zhou, T. Zhang, X.K. Meng, P.F. Li, and S. Huang, Numerical Simulation and Solidification Characteristics for Laser Cladding of Inconel 718, Opt. Laser Technol., 2022, 149, p 107843.

    Article  CAS  Google Scholar 

  20. J.L. Gao, C.Z. Wu, Y.B. Hao, X.C. Xu, and L.J. Guo, Numerical Simulation and Experimental Investigation on 3D Modelling of Single-Track Geometry and Temperature Evolution by Laser Cladding, Opt. Laser Technol., 2020, 129, p 106287.

    Article  CAS  Google Scholar 

  21. L.Y. Chen, Y. Zhao, B.X. Song, T.B. Yu, and Z. Liu, Modeling and Simulation of 3D Geometry Prediction and Dynamic Solidification Behavior of Fe-Based Coatings by Laser Cladding, Opt. Laser Technol., 2021, 139, p 107009.

    Article  CAS  Google Scholar 

  22. K. Benarji and P. Ashwin, Numerical Simulation and Experimental Study on Austenitic Stainless Steel by Laser Assisted Metal Deposition (L-MD), Mater. Today, 2021, 39, p 1497–1502.

    CAS  Google Scholar 

  23. C.M. Liu, C.G. Li, Z. Zhang et al., Modeling of Thermal Behavior and Microstructure Evolution during Laser Cladding of AlSi10Mg Alloys, Opt. Laser Technol., 2020, 123, p 105926.

    Article  CAS  Google Scholar 

  24. Z. Zhang, P. Farahmand, and R. Kovacevic, Laser Cladding of 420 Stainless Steel with Molybdenum on Mild Steel A36 by a High Power Direct Diode Laser, Mater. Des., 2016, 109, p 686–699.

    Article  CAS  Google Scholar 

  25. C. Shen, C.G. Li, Y.J. Guo, C.M. Liu, X.J. Zhang, and X.S. Feng, Modeling of Temperature Distribution and Clad Geometry of the Molten Pool during Laser Cladding of TiAlSi Alloys, Opt. Laser Technol., 2021, 142, p 107277.

    Article  CAS  Google Scholar 

  26. C. Du, L. Hu, X. Ren, Y. Li, F. Zhang, P. Liu, and Y. Li, Cracking Mechanism of Brittle FeCoNiCrAl HEA Coating using Extreme High-Speed Laser Cladding, Surf. Coat. Technol., 2021, 424, p 127617.

    Article  CAS  Google Scholar 

  27. D. Youssef, S. Hassab-Elnaby, and S.R. Al-Sayed, New 3D Model for Accurate Prediction of Thermal and Microstructure Evolution of Laser Powder Cladding of Ti6Al4V Alloy, Alex. Eng. J., 2022, 61(5), p 4137–4158.

    Article  Google Scholar 

  28. C.G. Li, C.M. Liu, S. Li, Z. Zhang, M. Zeng, F.F. Wang, J.Q. Wang, and Y.J. Guo, Numerical Simulation of Thermal Evolution and Solidification Behavior of Laser Cladding AlSiTiNi Composite Coatings, Coatings, 2019, 9(6), p 391.

    Article  Google Scholar 

  29. H.M. Liu and Y. Zhou, An Interaction Model for Laser and Powder in Wide-Beam Laser Cladding, Int. J. Adv. Manuf. Technol., 2021, 112, p 15–23.

    Article  Google Scholar 

  30. G. John, C. Aditya, and B. Malcolm, A New Finite Element Model for Welding Heat Sources, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 1984, 15(2), p 299–305.

    Google Scholar 

  31. L. Du, D.D. Gu, D.H. Dai, Q.M. Shi, C.L. Ma, and M.J. Xia, Relation of Thermal Behavior and Microstructure Evolution during Multi-Track Laser Melting Deposition of Ni-Based Material, Opt. Laser Technol., 2018, 108, p 207–217.

    Article  ADS  CAS  Google Scholar 

  32. S. Wu, Z. Liu, X. Huang, Y. Wu, and Y. Gong, Process Parameter Optimization and EBSD Analysis of Ni60A-25% WC Laser Cladding, Int. J. Refract. Hard. Met., 2021, 101, p 105675.

    Article  CAS  Google Scholar 

  33. M. Afshari, H.G. Hamzekolaei, N. Hamzekolaei, M. Yazdanshenas, M. Hamounpeyma, and H. Afshari, Investigating the Effect of Laser Cladding Parameters on the Microstructure, Geometry and Temperature Changes of Inconel 718 Superalloy using the Numerical and Experimental Procedures, Mater. Today Commun., 2023, 35, p 106329.

    Article  CAS  Google Scholar 

  34. P.F. Zuo, S.Y. Chen, M.W. Wei, J. Liang, C.S. Liu, and M. Wang, Thermal Behavior and Grain Evolution of 24CrNiMoY Alloy Steel Prepared by Pre-Laid Laser Cladding Technology, Opt. Laser Technol., 2019, 119, p 105613.

    Article  CAS  Google Scholar 

  35. H.M. Liu, M.B. Li, X.P. Qin, S. Huang, and F. Hong, Numerical Simulation and Experimental Analysis of Wide-Beam Laser Cladding, Int. J. Adv. Manuf. Technol., 2019, 100, p 237–249.

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the Open Fund of the Key Laboratory of Equipment Pre-Research and Class III Peak Discipline of Shanghai-Materials Science and Engineering (High-Energy Beam Intelligent Processing and Green Manufacturing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chonggui Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Li, C., Lu, J. et al. Geometric Size Prediction and Microstructure Evolution of Laser-Cladded AlSiTiNi-WC Coating. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09294-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09294-w

Keywords

Navigation