Skip to main content
Log in

Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The processing of selected foods by nonthermal technologies is gaining relevance in the food industry because, in many cases, the final product keeps the nutritional value and other fresh-like characteristics of the original one. There are several nonthermal technologies including high pressure processing, pulsed electric fields, ultrasound, and cold plasma which are at different stages of development. The impact of a given technology on bioactive compounds is a good indicator to assess changes on the nutritional attributes of a given food product before and after processing. Quite frequently, it is mentioned that nonthermal technologies are very appropriate to process foods minimizing changes in quality attributes. This broad claim only applies for certain processing, packaging and storage conditions, and as expected, on the food product. There are extensive scientific publications on how these processes alter the food products, but the reported results have been attained by a disparity of treatments; therefore, comparisons of these results are difficult and sometimes useless. Nevertheless, the gathered information allows to identify, in many cases, valuable trends on how a process affects the different bioactive compounds of a given food product. At the same time, the available data allows to assert, that in general, nonthermal processing is a very sound alternative to conventional thermal treatments to minimize the impact of processing on bioactive compounds. This review summarizes and analyzes the effects of these processes on relevant bioactive compounds present in selected food products as reported in the scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rastogi NK (2010) Opportunities and challenges in nonthermal processing of foods. In: Passos ML, Ribeiro CP (eds) Innovation in food engineering: new techniques and products. CRC Press, Boca Raton, pp 3–58

    Google Scholar 

  2. Giampieri F, Forbes-Hernandez TY, Gasparrini M, Alvarez-Suarez JM, Afrin S, Bompadre S, Quiles JL, Mezzetti B, Battino M (2015) Strawberry as a health promoter: an evidence based review. Food Funct 6(5):1386–1398

    Article  CAS  PubMed  Google Scholar 

  3. Wildman EC, Kelley M (2016) Nutraceuticals and functional foods. In: Wildman REC (ed) Handbook of nutraceuticals and functional foods, 2nd edn. CRC Press Inc, Boca Raton, pp 1–22

    Chapter  Google Scholar 

  4. Bermúdez-Aguirre D, Barbosa-Cánovas GV (2012) Inactivation of Saccharomyces cerevisiae in pineapple grape and cranberry juices under pulsed and continuous thermo-sonication treatments. J Food Eng 108(3):383–392

    Article  Google Scholar 

  5. Bermúdez-Aguirre D, Mobbs T, Barbosa-Cánovas GV (2011) Ultrasound applications in food processing. Ultrasound Technologies for Food and Bioprocessing. Springer, New York, pp 65–105

    Chapter  Google Scholar 

  6. Feng H, Barbosa-Cánovas GV, Weiss J (2011) Ultrasound Technologies for Food and Bioprocessing. Springer, New York

    Book  Google Scholar 

  7. Georget E, Sevenich R, Reineke K, Mathys A, Heinz V, Callanan M, Knorr D (2015) Inactivation of microorganisms by high isostatic pressure processing in complex matrices: a review. Innov Food Sci Emerg Technol 27:1–14

    Article  CAS  Google Scholar 

  8. Van Impe J, Smet C, Tiwari B, Greiner R, Ojha S, Stulić V, Režek Jambrak A (2018) State of the art of nonthermal and thermal processing for inactivation of micro-organisms. J Appl Microbiol 125(1):16–35

    Article  PubMed  Google Scholar 

  9. Manas P, Pagán R (2005) Microbial inactivation by new technologies of food preservation. J Appl Microbiol 98(6):1387–1399

    Article  CAS  PubMed  Google Scholar 

  10. Ruiling L, Donghong L, Jianwei Z (2020) Bacterial spore inactivation by non-thermal technologies: resistance and inactivation mechanisms. Curr Opin Food Sci 42:31–36

    Google Scholar 

  11. Wu D, Forghani F, Daliri EBM, Li J, Liao X, Liu D, Ding T (2020) Microbial response to some nonthermal physical technologies. Trends Food Sci Technol 95:107–117

    Article  CAS  Google Scholar 

  12. Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ (2011) Nonthermal plasma inactivation of food-borne pathogens. Food Eng Rev 3(3–4):159–170

    Article  Google Scholar 

  13. Roobab U, Aadil RM, Madni GM, Bekhit AED (2018) The impact of nonthermal technologies on the microbiological quality of juices: a review. Compr Rev Food Sci Food Saf 17(2):437–457

    Article  PubMed  Google Scholar 

  14. Zhang ZH, Wang LH, Zeng XA, Han Z, Brennan CS (2019) Non-thermal technologies and its current and future application in the food industry: a review. Int J Food Sci Technol 54(1):1–13

    Article  Google Scholar 

  15. Barbosa-Cánovas GV, Donsì F, Pokhrel PR, Candoğan K, Guadarrama-Lezama AY (2017) Nonthermal stabilization processes. In: Roos YH, Livney YD (eds) Engineering Foods for Bioactives Stability and Delivery. Springer Nature, New York, pp 341–360

    Chapter  Google Scholar 

  16. Khan MK, Ahmad K, Hassan S, Imran M, Ahmad N, Xu C (2018) Effect of novel technologies on polyphenols during food processing. Innov Food Sci Emerg Technol 45:361–381

    Article  CAS  Google Scholar 

  17. Salazar FA, Yildiz S, Leyva D, Soto-Caballero M, Welti-Chanes J, Anubhav PS, Lavilla M, Escobedo-Avellaneda Z (2021) HHP influence on food quality and bioactive compounds: a review of the last decade. In: Knoerzer K, Muthukumarappan K (eds) Innovative Food Processing Technologies: A Comprehensive Review, vol. 1. Elsevier, pp 87–111. https://doi.org/10.1016/b978-0-08-100596-5.22984-3

  18. Barba FJ, Mariutti LR, Bragagnolo N, Mercadante AZ, Barbosa-Canovas GV, Orlien V (2017) Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci Technol 67:195–206

    Article  CAS  Google Scholar 

  19. Cilla A, Bosch L, Barberá R, Alegría A (2018) Effect of processing on the bioaccessibility of bioactive compounds–a review focusing on carotenoids minerals ascorbic acid tocopherols and polyphenols. J Food Compos Anal 68:3–15

    Article  CAS  Google Scholar 

  20. Odriozola-Serrano I, Oms-Oliu G, Soliva-Fortuny R, Martín-Belloso O (2015) Carotenoids in nonthermally treated fruit juices. Processing and impact on active components in food. Academic Press, Cambridge, pp 637–642

    Chapter  Google Scholar 

  21. Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21(7):323–331

    Article  CAS  Google Scholar 

  22. Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing. Ultrason Sonochem 19(5):975–983

    Article  CAS  PubMed  Google Scholar 

  23. Anese M, Mirolo G, Beraldo P, Lippe G (2013) Effect of ultrasound treatments of tomato pulp on microstructure and lycopene in vitro bioaccessibility. Food Chem 136(2):458–463

    Article  CAS  PubMed  Google Scholar 

  24. Demirdöven A, Baysal T (2008) The use of ultrasound and combined technologies in food preservation. Food Rev Int 25(1):1–11

    Article  Google Scholar 

  25. McClements DJ (1995) Advances in the application of ultrasound in food analysis and processing. Trends Food Sci Technol 6(9):293–299

    Article  CAS  Google Scholar 

  26. Ashokkumar M (2011) The characterization of acoustic cavitation bubbles: an overview. Ultrason Sonochem 18(4):864–872

    Article  CAS  PubMed  Google Scholar 

  27. Patist A, Bates D (2008) Ultrasonic innovations in the food industry: From the laboratory to commercial production. Innov Food Sci Emerg Technol 9(2):147–154

    Article  CAS  Google Scholar 

  28. Chemat F, Khan MK (2011) Applications of ultrasound in food technology: processing preservation and extraction. Ultrason Sonochem 18(4):813–835

    Article  CAS  PubMed  Google Scholar 

  29. Leighton TG (1998) The principles of cavitation. In: Ultrasound in Food Processing. Springer Science & Business Media, Berlin

  30. Louisnard O, González-García J (2011) Acoustic cavitation. Ultrasound Technologies for Food and Bioprocessing. Springer, New York, pp 13–64

    Chapter  Google Scholar 

  31. Sango DM, Abela D, McElhatton A, Valdramidis VP (2014) Assisted ultrasound applications for the production of safe foods. J Appl Microbiol 116(5):1067–1083

    Article  CAS  PubMed  Google Scholar 

  32. Marchesini G, Balzan S, Montemurro F, Fasolato L, Andrighetto I, Segato S, Novelli E (2012) Effect of ultrasound alone or ultrasound coupled with CO2 on the chemical composition cheese-making properties and sensory traits of raw milk. Innov Food Sci Emerg Technol 16:391–397

    Article  CAS  Google Scholar 

  33. Cameron M, McMaster LD, Britz TJ (2008) Electron microscopic analysis of dairy microbes inactivated by ultrasound. Ultrason Sonochem 15(6):960–964

    Article  CAS  PubMed  Google Scholar 

  34. Li J, Ahn J, Liu D, Chen S, Ye X, Ding T (2016) Evaluation of ultrasound-induced damage to Escherichia coli and Staphylococcus aureus by flow cytometry and transmission electron microscopy. Appl Environ Microbiol 82(6):1828–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Moody A, Marx G, Swanson BG, Bermúdez-Aguirre D (2014) A comprehensive study on the inactivation of Escherichia coli under nonthermal technologies: high hydrostatic pressure pulsed electric fields and ultrasound. Food Control 37:305–314

    Article  CAS  Google Scholar 

  36. Tiwari BK, Mason TJ (2012) Ultrasound processing of fluid foods. Novel thermal and non-thermal technologies for fluid foods. Academic Press, Cambridge, pp 135–165

    Chapter  Google Scholar 

  37. Guerrouj K, Sánchez-Rubio M, Taboada-Rodríguez A, Cava-Roda RM, Marín-Iniesta F (2016) Sonication at mild temperatures enhances bioactive compounds and microbiological quality of orange juice. Food Bioprod Process 99:20–28

    Article  CAS  Google Scholar 

  38. Han F, Ju Y, Ruan X, Zhao X, Yue X, Zhuang X, Fang Y (2017) Color anthocyanin and antioxidant characteristics of young wines produced from spine grapes (Vitis davidii Foex) in China. Food Nutr Res 61(1):1339552

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81(3):321–326

    Article  CAS  Google Scholar 

  40. Wang J, Vanga SK, Raghavan V (2019) High-intensity ultrasound processing of kiwifruit juice: Effects on the ascorbic acid total phenolics flavonoids and antioxidant capacity. LWT Food Sci Technol 107:299–307

    Article  CAS  Google Scholar 

  41. Wang J, Wang J, Ye J, Vanga SK, Raghavan V (2019) Influence of high-intensity ultrasound on bioactive compounds of strawberry juice: profiles of ascorbic acid phenolics antioxidant activity and microstructure. Food Control 96:128–136

    Article  CAS  Google Scholar 

  42. Bhat R, Kamaruddin NSBC, Min-Tze L, Karim AA (2011) Sonication improves kasturi lime (Citrus microcarpa) juice quality. Ultrason Sonochem 18(6):1295–1300

    Article  CAS  PubMed  Google Scholar 

  43. de la Fuente-Blanco S, De Sarabia ERF, Acosta-Aparicio VM, Blanco-Blanco A, Gallego-Juárez JA (2006) Food drying process by power ultrasound. Ultrasonics 44:e523–e527

    Article  PubMed  Google Scholar 

  44. Vieira MC, Teixeira AA, Silva CLM (2000) Mathematical modeling of the thermal degradation kinetics of vitamin C in cupuaçu (Theobroma grandiflorum) nectar. J Food Eng 43(1):1–7

    Article  CAS  Google Scholar 

  45. de Sousa Carvalho LM, Lemos MCM, Sanches EA, da Silva LS, de Araújo Bezerra J, Aguiar JPL, Campelo PH (2020) Improvement of the bioaccessibility of bioactive compounds from Amazon fruits treated using high energy ultrasound. Ultrason Sonochem 67:105148

  46. Fu X, Belwal T, Cravotto G, Luo Z (2020) Sono-physical and sono-chemical effects of ultrasound: primary applications in extraction and freezing operations and influence on food components. Ultrason Sonochem 60:104726

  47. Chemat F, Rombaut N, Sicaire AG, Meullemiestre A, Fabiano-Tixier AS, Abert-Vian M (2017) Ultrasound assisted extraction of food and natural products Mechanisms, techniques, combinations, protocols and applications A review. Ultrason Sonochem 34:540–560

    Article  CAS  PubMed  Google Scholar 

  48. Dzah CS, Duan Y, Zhang H, Wen C, Zhang J, Chen G, Ma H (2020) The effects of ultrasound assisted extraction on yield antioxidant anticancer and antimicrobial activity of polyphenol extracts: a review. Food Biosci 35:100547

  49. Wen C, Zhang J, Zhang H, Dzah CS, Zandile M, Duan Y, Ma H, Luo X (2018) Advances in ultrasound assisted extraction of bioactive compounds from cash crops–a review. Ultrason Sonochem 48:538–549

    Article  CAS  PubMed  Google Scholar 

  50. Espada-Bellido E, Ferreiro-González M, Carrera C, Palma M, Barroso CG, Barbero GF (2017) Optimization of the ultrasound-assisted extraction of anthocyanins and total phenolic compounds in mulberry (Morus nigra) pulp. Food Chem, 219, 23-32. https://doi.org/10.1016/j.foodchem.2016.09.122

  51. Xu DP, Zheng J, Zhou Y, Li Y, Li S, Li HB (2017) Ultrasound-assisted extraction of natural antioxidants from the flower of Limonium sinuatum: optimization and comparison with conventional methods. Food Chem 217:552–559

    Article  CAS  PubMed  Google Scholar 

  52. Grassino AN, Ostojić J, Miletić V, Djaković S, Bosiljkov T, Zorić Z, Brnčić M (2020) Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innov Food Sci Emerg Technol 64:102424

  53. Kumar K, Srivastav S, Sharanagat VS (2021) Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: a review. Ultrason Sonochem 70:105325

  54. Sharma P, Gaur VK, Sirohi R, Varjani S, Kim SH, Wong JW (2021) Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresource Technology, 124684. https://doi.org/10.1016/j.biortech.2021.124684

  55. Fadimu GJ, Ghafoor K, Babiker EE, Al-Juhaimi F, Abdulraheem RA, Adenekan MK (2020) Ultrasound-assisted process for optimal recovery of phenolic compounds from watermelon (Citrullus lanatus) seed and peel. J Food Meas Charact 1–10

  56. González M, Barrios S, Budelli E, Pérez N, Lema P, Heinzen H (2020) Ultrasound assisted extraction of bioactive compounds in fresh and freeze-dried Vitis vinifera cv Tannat grape pomace. Food Bioprod Process 124:378–386

    Article  Google Scholar 

  57. Kumar A, Rao PS (2020) Optimization of pulsed-mode ultrasound assisted extraction of bioactive compounds from pomegranate peel using response surface methodology. J Food Meas Charact 14(6):3493–3507

    Article  Google Scholar 

  58. Silva PB, Mendes LG, Rehder AP, Duarte CR, Barrozo MA (2020) Optimization of ultrasound-assisted extraction of bioactive compounds from acerola waste. J Food Sci Technol 57:4627–4636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kumar K, Yadav AN, Kumar V, Vyas P, Dhaliwal HS (2017) Food waste: a potential bioresource for extraction of nutraceuticals and bioactive compounds. Bioresour Bioprocess 4(1):1–14

    Article  CAS  Google Scholar 

  60. Abbas S, Hayat K, Karangwa E, Bashari M, Zhang X (2013) An overview of ultrasound-assisted food-grade nanoemulsions. Food Eng Rev 5(3):139–157

    Article  CAS  Google Scholar 

  61. Anton N, Benoit J, Saulnier P (2008) Design and production of nanoparticles formulated from nano-emulsion templates: a review. J Control Release 128:185–199

    Article  CAS  PubMed  Google Scholar 

  62. Nishad J, Dutta A, Saha S, Rudra SG, Varghese E, Sharma RR, Tomar M, Kumar M, Kaur C (2021) Ultrasound-assisted development of stable grapefruit peel polyphenolic nano-emulsion: optimization and application in improving oxidative stability of mustard oil. Food Chem 334:127561

  63. Koshani R, Jafari SM (2019) Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Adv Colloid Interface Sci 270:123–146

    Article  CAS  PubMed  Google Scholar 

  64. Abbasi F, Samadi F, Jafari SM, Ramezanpour S, Shargh MS (2019) Ultrasound-assisted preparation of flaxseed oil nanoemulsions coated with alginate-whey protein for targeted delivery of omega-3 fatty acids into the lower sections of gastrointestinal tract to enrich broiler meat. Ultrason Sonochem 50:208–217

    Article  CAS  PubMed  Google Scholar 

  65. Meghani N, Patel P, Kansara K, Ranjan S, Dasgupta N, Ramalingam C, Kumar A (2018) Formulation of vitamin D encapsulated cinnamon oil nanoemulsion: its potential anti-cancerous activity in human alveolar carcinoma cells. Colloids Surf B Biointerfaces 166:349–357

    Article  CAS  PubMed  Google Scholar 

  66. Raviadaran R, Ng MH, Manickam S, Chandran D (2020). Ultrasound-assisted production of palm oil-based isotonic W/O/W multiple nanoemulsion encapsulating both hydrophobic tocotrienols and hydrophilic caffeic acid with enhanced stability using oil-based Sucragel. Ultrason Sonochem 64:104995

  67. Saravana PS, Shanmugapriya K, Gereniu CRN, Chae SJ, Kang HW, Woo HC, Chun BS (2019) Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by κ-carrageenan: process optimization bio-accessibility and cytotoxicity. Ultrason Sonochem 55:105–116

    Article  CAS  PubMed  Google Scholar 

  68. Gudmundsson M, Hafsteinsson H (2005) Effect of high intensity electric field pulses on solid foods. Academic Press, San Diego

    Book  Google Scholar 

  69. Sobrino-López A, Martín-Belloso O (2010) Review: Potential of high-intensity pulsed electric field technology for milk processing. Food Eng Rev 2(1):17–27

    Article  Google Scholar 

  70. Zhang Q, Barbosa-Cánovas GV, Swanson BG (1995) Engineering aspects of pulsed electric field pasteurization. J Food Eng 25(2):261–281

    Article  Google Scholar 

  71. Sánchez-Vega R, Elez-Martínez P, Martín-Belloso O (2015) Influence of high-intensity pulsed electric field processing parameters on antioxidant compounds of broccoli juice. Innov Food Sci Emerg Technol 29:70–77

    Article  Google Scholar 

  72. Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Saraiva JA, Raso J, Martin-Belloso M, Witrowa-Rajchert D, Lebovka N, Vorobiev E (2015) Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 77:773–798

    Article  Google Scholar 

  73. Gómez B, Munekata PE, Gavahian M, Barba FJ, Martí-Quijal FJ, Bolumar T, Lorenzo JM (2019) Application of pulsed electric fields in meat and fish processing industries: an overview. Food Res Int 123:95–105

    Article  PubMed  Google Scholar 

  74. Jin TZ, Guo M, Zhang HQ (2015) Upscaling from benchtop processing to industrial scale production: more factors to be considered for pulsed electric field food processing. J Food Eng 146:72–80

    Article  Google Scholar 

  75. Arshad RN, Abdul-Malek Z, Munir A, Buntat Z, Ahmad MH, Jusoh YM, Aadil RM (2020) Electrical systems for pulsed electric field applications in the food industry: an engineering perspective. Trends Food Sci Technol 104:1–13

    Article  CAS  Google Scholar 

  76. Castro AJ, Barbosa-Cánovas GV, Swanson BG (1993) Microbial inactivation of foods by pulsed electric fields. J Food Process Preserv 17(1):47–73

    Article  Google Scholar 

  77. Stirke A, Zimkus A, Ramanaviciene A, Balevicius S, Zurauskiene N, Saulis G, Ramanavicius A (2014) Electric field-induced effects on yeast cell wall permeabilization. Bioelectromagnetics 35(2):136–144

    Article  CAS  PubMed  Google Scholar 

  78. Agcam E, Akyıldız A, Evrendilek GA (2014) Comparison of phenolic compounds of orange juice processed by pulsed electric fields (PEF) and conventional thermal pasteurization. Food Chem 143:354–361

    Article  CAS  PubMed  Google Scholar 

  79. Aguilar-Rosas SF, Ballinas-Casarrubias ML, Nevarez-Moorillon GV, Martín-Belloso O, Ortega-Rivas E (2007) Thermal and pulsed electric fields pasteurization of apple juice: Effects on physicochemical properties and flavour compounds. J Food Eng 83(1):41–46

    Article  CAS  Google Scholar 

  80. Odriozola-Serrano I, Aguilo-Aguayo I, Soliva-Fortuny R, Martin-Belloso O (2013) Pulsed electric fields processing effects on quality and health-related constituents of plant-based foods. Trends Food Sci Technol 29(2):98–107

    Article  CAS  Google Scholar 

  81. Sampedro F, Geveke DJ, Fan X, Rodrigo D, Zhang QH (2009) Shelf-life study of an orange juice–milk based beverage after PEF and thermal processing. J Food Sci 74(2):S107–S112

    Article  CAS  PubMed  Google Scholar 

  82. Morales-de La Peña M, Salvia-Trujillo L, Rojas-Graü MA, Martín-Belloso O (2011) Changes on phenolic and carotenoid composition of high intensity pulsed electric field and thermally treated fruit juice–soymilk beverages during refrigerated storage. Food Chem 129(3):982–990

    Article  PubMed  Google Scholar 

  83. Bobinaitė R, Pataro G, Lamanauskas N, Šatkauskas S, Viškelis P, Ferrari G (2014) Application of pulsed electric field in the production of juice and extraction of bioactive compounds from blueberry fruits and their by-products. J Food Sci Technol 1–8

  84. Cortés C, Torregrossa F, Esteve MJ, Frígola A (2006) Carotenoid profile modification during refrigerated storage in untreated and pasteurized orange juice and orange juice treated with high-intensity pulsed electric fields. J Agric Food Chem 54:6247–6254

    Article  PubMed  Google Scholar 

  85. Wiktor A, Sledz M, Nowacka M, Rybak K, Chudoba T, Lojkowski W, Witrowa-Rajchert D (2015) The impact of pulsed electric field treatment on selected bioactive compound content and color of plant tissue. Innov Food Sci Emerg Technol 30:69–78

    Article  CAS  Google Scholar 

  86. Ozkan G, Stübler AS, Aganovic K, Draeger G, Esatbeyoglu T, Capanoglu E (2021) Retention of polyphenols and vitamin C in cranberry bush purée (Viburnum opulus) by means of non-thermal treatments. Food Chem 360:129918

  87. López N, Puértolas E, Condón S, Raso J, Alvarez I (2009) Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. J Food Eng 90(1):60–66

    Article  Google Scholar 

  88. Medina-Meza IG, Boioli P, Barbosa-Cánovas GV (2016) Assessment of the effects of ultrasonics and pulsed electric fields on nutritional and rheological properties of raspberry and blueberry purees. Food Bioproc Tech 9(3):520–531

    Article  CAS  Google Scholar 

  89. Medina-Meza IG, Barbosa-Cánovas GV (2015) Assisted extraction of bioactive compounds from plum and grape peels by ultrasonics and pulsed electric fields. J Food Eng 166:268–275

    Article  CAS  Google Scholar 

  90. Luengo E, Álvarez I, Raso J (2014) Improving carotenoid extraction from tomato waste by pulsed electric fields. Front Nutr 1:12

    Article  PubMed  PubMed Central  Google Scholar 

  91. Barbosa-Pereira L, Guglielmetti A, Zeppa G (2018) Pulsed electric field assisted extraction of bioactive compounds from cocoa bean shell and coffee silver skin. Food Bioproc Tech 11(4):818–835

    Article  CAS  Google Scholar 

  92. Gagneten M, Leiva G, Salvatori D, Schebor C, Olaiz N (2019) Optimization of pulsed electric field treatment for the extraction of bioactive compounds from blackcurrant. Food Bioproc Tech 12(7):1102–1109

    Article  CAS  Google Scholar 

  93. Zhang ZH, Wang LH, Zeng XA, Han Z, Wang MS (2017) Effect of pulsed electric fields (PEFs) on the pigments extracted from spinach (Spinacia oleracea L). Innov Food Sci Emerg Technol 43:26–34

    Article  Google Scholar 

  94. Redondo D, Venturini ME, Luengo E, Raso J, Arias E (2018) Pulsed electric fields as a green technology for the extraction of bioactive compounds from thinned peach by-products. Innov Food Sci Emerg Technol 45:335–343

    Article  CAS  Google Scholar 

  95. Lončarić A, Celeiro M, Jozinović A, Jelinić J, Kovač T, Jokić S, Lores M (2020) Green extraction methods for extraction of polyphenolic compounds from blueberry pomace. Foods 9(11):1521

    Article  PubMed Central  Google Scholar 

  96. Niu D, Ren EF, Li J, Zeng XA, Li SL (2021). Effects of pulsed electric field-assisted treatment on the extraction, antioxidant activity and structure of naringin. Sep Purif Technol 265:118480

  97. Arshad RN, Abdul-Malek Z, Roobab U, Qureshi MI, Khan N, Ahmad MH, Aadil RM (2021) Effective valorization of food wastes and by-products through pulsed electric field: a systematic review. J Food Process Eng 44(3):e13629

  98. Morales-de la Peña M, Rábago-Panduro LM, Soliva-Fortuny R, Martín-Belloso O, Welti-Chanes J (2021) Pulsed electric fields technology for healthy food products. Food Eng Rev 1–15

  99. Pataro G, Carullo D, Falcone M, Ferrari G (2020) Recovery of lycopene from industrially derived tomato processing by-products by pulsed electric fields-assisted extraction. Innov Food Sci Emerg Technol 63:102369

  100. Cai Z, Riedel H, Min N, Kütük O, Mewis I, Jäger H, Knorr D, Smetanska I (2011) Effects of pulsed electric field on secondary metabolism of Vitis vinifera L. cv. Gamay Fréaux suspension culture and exudates. Appl Biochem Biotechnol 164:443–453

    Article  CAS  PubMed  Google Scholar 

  101. Donsi F, Ferrari G, Pataro G (2010) Applications of pulsed electric field treatments for the enhancement of mass transfer from vegetable tissue. Food Eng Rev 2:109–130

    Article  CAS  Google Scholar 

  102. Elez-Martínez P, Odriozola-Serrano I, Oms-Oliu G, Soliva-Fortuny R, Martín-Belloso O (2017) Effects of pulsed electric fields processing strategies on health-related compounds of plant-based foods. Food Eng Rev 9:213–225

    Article  Google Scholar 

  103. Gómez Galindo F, Wadso L, Vicente A, Dejmek P (2008) Exploring metabolic responses of potato tissue induced by electric pulses. Food Biophys 3:352–360

    Article  Google Scholar 

  104. González-Casado S, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R (2018) Induced accumulation of individual carotenoids and quality changes in tomato fruits treated with pulsed electric fields and stored at different post-treatments temperatures. Postharvest Biol Technol 146:117–123

    Article  Google Scholar 

  105. González-Casado S, Martín-Belloso O, Elez-Martínez P, Soliva-Fortuny R (2018) Application of pulsed electric fields to tomato fruit for enhancing the bioaccessibility of carotenoids in derived products. Food Funct 9(4):2282–2289

    Article  PubMed  Google Scholar 

  106. Rodríguez-Roque MJ, de Ancos B, Sánchez-Vega R, Sánchez-Moreno C, Cano MP, Elez-Martínez P, Martín-Belloso O (2016) Food matrix and processing influence on carotenoid bioaccessibility and lipophilic antioxidant activity of fruit juice-based beverages. Food Funct 7:380–389

    Article  PubMed  Google Scholar 

  107. Bot F, Verkerk R, Mastwijk H, Anese M, Fogliano V, Capuano E (2018) The effect of pulsed electric fields on carotenoids bioaccessibility: the role of tomato matrix. Food Chem 240:415–421

    Article  CAS  PubMed  Google Scholar 

  108. Ribas-Agustí A, Martín-Belloso O, Soliva-Fortuny R, Elez-Martínez P (2019) Influence of pulsed electric fields processing on the bioaccessible and non-bioaccessible fractions of apple phenolic compounds. J Funct Foods 59:206–214

    Article  Google Scholar 

  109. Hoover DG, Metrick C, Papineau AM, Farkas DF, Knorr D (1989) Biological effects of high hydrostatic pressure on food microorganisms. Food Technol 43(3):99–107

    Google Scholar 

  110. Balasubramaniam VB, Martinez-Monteagudo SI, Gupta R (2015) Principles and application of high pressure–based technologies in the food industry. Annu Rev Food Sci Technol 6:435–462

    Article  CAS  PubMed  Google Scholar 

  111. Koutchma T (2014) HPP Commercial and pilot equipment. Adapting high hydrostatic pressure (HPP) for food processing operations. Academic Press, Cambridge, pp 41–56

    Chapter  Google Scholar 

  112. Tonello-Samson C, Queirós RP, González-Angulo M (2020) Advances in high-pressure processing in-pack and in-bulk commercial equipment. Present and future of high pressure processing. Elsevier, Amsterdam, pp 297–316

    Chapter  Google Scholar 

  113. Rasanayagam V, Balasubramaniam VM, Ting E, Sizer CE, Bush C, Anderson C (2003) Compression heating of selected fatty food materials during high-pressure processing. J Food Sci 68(1):254–259

    Article  CAS  Google Scholar 

  114. Ting E (2011) High-pressure processing equipment fundamentals. In: Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Patrick Dunne C, Farkas DF, Yuan JTC (eds) Nonthermal processing technologies for food. Wiley-Blackwell Publishing Ltd, Sussex, pp 20–27

    Chapter  Google Scholar 

  115. Ohlsson T, Bengtsson N (2002) Minimal processing of foods with non-thermal methods. In: Minimal processing Technologies in the Food Industry. Swedish Institute for Food and Biotechnology, Gothenburg, pp 34–60

  116. Sánchez-Moreno C, De Ancos B, Plaza L, Elez-Martínez P, Cano MP (2009) Nutritional approaches and health-related properties of plant foods processed by high pressure and pulsed electric fields. Crit Rev Food Sci Nutr 49(6):552–576

    Article  PubMed  Google Scholar 

  117. Igual M, Sampedro F, Martínez-Navarrete N, Fan X (2013) Combined osmodehydration and high pressure processing on the enzyme stability and antioxidant capacity of a grapefruit jam. J Food Eng 114:514–521

    Article  CAS  Google Scholar 

  118. Barba FJ, Jäger H, Meneses N, Esteve MJ, Frígola A, Knorr D (2012) Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing. Innov Food Sci Emerg Technol 14:18–24

    Article  CAS  Google Scholar 

  119. Plaza L, Sánchez-Moreno C, De Ancos B, Elez-Martínez P, Martín-Belloso O, Cano MP (2011) Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT Food Sci Technol 44(4):834–839

    Article  CAS  Google Scholar 

  120. Barba FJ, Cortés C, Esteve MJ, Frígola A (2011) Study of antioxidant capacity and quality parameters in an orange juice–milk beverage after high-pressure processing treatment. Food Bioproc Tech 5(6):2222–2232

    Article  Google Scholar 

  121. Xu Z, Lin T, Wang Y, Liao X (2015) Quality assurance in pepper and orange juice blend treated by high pressure processing and high temperature short time. Innov Food Sci Emerg Technol 31:28–36

    Article  Google Scholar 

  122. Andrés V, Villanueva MJ, Tenorio MD (2016) The effect of high-pressure processing on colour bioactive compounds and antioxidant activity in smoothies during refrigerated storage. Food Chem 192:328–335

    Article  PubMed  Google Scholar 

  123. Westphal A, Schwarzenbolz U, Böhm V (2018) Effects of high pressure processing on bioactive compounds in spinach and rosehip puree. Eur Food Res Technol 244(3):395–407

    Article  CAS  Google Scholar 

  124. Wang F, Du BL, Cui ZW, Xu LP, Li CY (2017) Effects of high hydrostatic pressure and thermal processing on bioactive compounds antioxidant activity and volatile profile of mulberry juice. Food Sci Technol Int 23(2):119–127

    Article  CAS  PubMed  Google Scholar 

  125. Kieling DD, Barbosa-Cánovas GV, Prudencio SH (2019) Effects of high pressure processing on the physicochemical and microbiological parameters bioactive compounds and antioxidant activity of a lemongrass-lime mixed beverage. J Food Sci Technol 56(1):409–419

    Article  CAS  PubMed  Google Scholar 

  126. Langmuir I (1928) Oscillations in ionized gases. Proc Natl Acad Sci USA 14(8):627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mandal R, Singh A, Singh AP (2018) Recent developments in cold plasma decontamination technology in the food industry. Trends Food Sci Technol 80:93–103

    Article  CAS  Google Scholar 

  128. Niemira BA (2012) Cold plasma decontamination of foods. Annu Rev Food Sci Technol 3:125–142

    Article  CAS  PubMed  Google Scholar 

  129. Chen JY, Du J, Li ML, Li CM (2020) Degradation kinetics and pathways of red raspberry anthocyanins in model and juice systems and their correlation with color and antioxidant changes during storage. LWT Food Sci Technol 128:109448

  130. Chen YQ, Cheng JH, Sun DW (2020) Chemical physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: mechanisms and application advances. Crit Rev Food Sci Nutr 60(16):2676–2690

    Article  CAS  PubMed  Google Scholar 

  131. Fridman A (2008) Plasma chemistry. Cambridge University Press, New York

    Book  Google Scholar 

  132. Misra NN, Schluter OK, Cullen PJ (2016) Cold plasma in food and agriculture: fundamentals and applications. Elsevier Academic Press, United Kingdom

    Google Scholar 

  133. Muhammad AI, Liao X, Cullen PJ, Liu D, Xiang Q, Wang J, Chen S, Ye X, Ding T (2018) Effects of nonthermal plasma technology on functional food components. Compr Rev Food Sci Food Saf 17(5):1379–1394

    Article  CAS  PubMed  Google Scholar 

  134. Scholtz V, Pazlarova J, Souskova H, Khun J, Julak J (2015) Nonthermal plasma - a tool for decontamination and disinfection. Biotechnol Adv 33(6):1108–1119

    Article  CAS  PubMed  Google Scholar 

  135. Misra NN, Pankaj SK, Segat A, Ishikawa K (2016) Cold plasma interactions with enzymes in foods and model systems. Trends Food Sci Technol 55:39–47

    Article  CAS  Google Scholar 

  136. Ekezie FGC, Sun DW, Cheng JH (2017) A review on recent advances in cold plasma technology for the food industry: current applications and future trends. Trends Food Sci Technol 69:46–58

    Article  Google Scholar 

  137. Pankaj SK, Keener KM (2017) Cold plasma: background, applications and current trends. Curr Opin Food Sci 16:49–52

    Article  Google Scholar 

  138. Thirumdas R, Sarangapani C, Annapure US (2015) Cold plasma: a novel non-thermal technology for food processing. Food Biophys 10(1):1–11

    Article  Google Scholar 

  139. Niemira BA, Sites J (2008) Cold plasma inactivates Salmonella Stanley and Escherichia coli O157: H7 inoculated on golden delicious apples. J Food Prot 71(7):1357–1365

    Article  PubMed  Google Scholar 

  140. Surowsky B, Fischer A, Schlueter O, Knorr D (2013) Cold plasma effects on enzyme activity in a model food system. Food Microbiol 30:233–238

    Google Scholar 

  141. Pankaj SK, Misra NN, Cullen P (2013) Kinetics of tomato peroxidase inactivation by atmospheric pressure cold plasma based on dielectric barrier discharge. Innov Food Sci Emerg Technol 19:153–157

    Article  CAS  Google Scholar 

  142. Almeida FDL, Cavalcante RS, Cullen PJ, Frias JM, Bourke P, Fernandes FA, Rodrigues S (2015) Effects of atmospheric cold plasma and ozone on prebiotic orange juice. Innov Food Sci Emerg Technol 32:127–135

    Article  CAS  Google Scholar 

  143. Ramazzina I, Berardinelli A, Rizzi F, Tappi S, Ragni L, Sacchetti G, Rocculi P (2015) Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol Technol 107:55–65

    Article  CAS  Google Scholar 

  144. Paixão LMN, Fonteles TV, Oliveira VS, Fernandes FAN, Rodrigues FAN (2019) Cold plasma effects of functional compounds of siriguela juice. Food Bioproc Tech 12:110–121

    Article  Google Scholar 

  145. Rodríguez O, Gomes WF, Rodrigues S, Fernandes FAN (2017) Effect of indirect cold plasma treatment on cashew apple juice (Anacardium occidentale L). LWT Food Sci Technol 84:457–463

    Article  Google Scholar 

  146. Fernandes FAN, Santos VO, Rodrigues S (2019) Effects of glow plasma technology on some bioactive compounds of acerola juice. Food Res Int 115:16–22

    Article  CAS  PubMed  Google Scholar 

  147. Yodpitak S, Mahatheeranonta S, Boonyawand D, Sookwonga P, Roytrakule S, Norkaew O (2019) Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chem 289:328–339

    Article  CAS  PubMed  Google Scholar 

  148. Kovačević DB, Putnik P, Dragović-Uzelac V, Pedisić S, Jambrak AR, Herceg Z (2015) Effects of cold atmospheric gas phase plasma on anthocyanins and color in pomegranate juice. Food Chem 190:317–323

    Article  Google Scholar 

  149. Dong XY, Yang YL (2019) A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food Bioproc Tech 12(8):1409–1421

    Article  CAS  Google Scholar 

  150. de Castro DRG, Mar JM, da Silva LS, da Silva KA, Sanches EA, de Araújo Bezerra J, Campelo PH (2020) Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: effect of the excitation frequency. Food Res Int 131:109044

  151. Liao X, Li J, Muhammad AI, Suo Y, Chen S, Ye X, Ding T (2018) Application of a dielectric barrier discharge atmospheric cold plasma (Dbd-Acp) for Escherichia coli inactivation in apple juice. J Food Sci 83(2):401–408

    Article  CAS  PubMed  Google Scholar 

  152. Lukić K, Vukušić T, Tomašević M, Ćurko N, Gracin L, Ganić KK (2019) The impact of high voltage electrical discharge plasma on the chromatic characteristics and phenolic composition of red and white wines. Innov Food Sci Emerg Technol 53:70–77

    Article  Google Scholar 

  153. Pankaj SK, Wan Z, Colonna W, Keener KM (2017) Effect of high voltage atmospheric cold plasma on white grape juice quality. J Sci Food Agric 97(12):4016–4021

    Article  CAS  PubMed  Google Scholar 

  154. Bußler S, Rawel HM, Schlüter OK (2020) Impact of plasma processed air (PPA) on phenolic model systems: suggested mechanisms and relevance for food applications. Innov Food Sci Emerg Technol 64:102432

  155. Barbosa-Cánovas GV, Yildiz S, Oner ME, Candoğan K (2020) Selected Novel Food Processing Technologies Used as Hurdles. In: Demirci A, Feng H, Krishnamurthy K (eds) Food Safety Engineering. Springer Nature, Cham, p 629–657

  156. Raso J, Barbosa-Cánovas GV (2003) Nonthermal preservation of foods using combined processing techniques. Crit Rev Food Sci Nutr 43(3):265–285

    Article  PubMed  Google Scholar 

  157. Ross AI, Griffiths MW, Mittal GS, Deeth HC (2003) Combining nonthermal technologies to control foodborne microorganisms. Int J Food Microbiol 89(2–3):125–138

    Article  PubMed  Google Scholar 

  158. Teribia N, Buve C, Bonerz D, Aschoff J, Hendrickx M, Van Loey A (2021) Impact of processing and storage conditions on color stability of strawberry puree: the role of PPO reactions revisited. J Food Eng 294:110402

  159. Manzoor MF, Zeng XA, Ahmad N, Ahmed Z, Rehman A, Aadil RM, Roobab U, Siddique R, Rahaman A (2020) Effect of pulsed electric field and thermal treatments on the bioactive compounds, enzymes, microbial, and physical stability of almond milk during storage. Journal of Food Processing and Preservation 44(7), e14541. https://doi.org/10.1111/jfpp.14541

  160. Chen T, Li B, Shu C, Tian J, Zhang Y, Gao N, Wang J (2021) Combined effect of thermosonication and high hydrostatic pressure on bioactive compounds microbial load and enzyme activities of blueberry juice. Food Sci Technol Int 10820132211004316

  161. Islam MN, Zhang M, Adhikari B (2014) The inactivation of enzymes by ultrasound—a review of potential mechanisms. Food Rev Int 30(1):1–21

    Article  CAS  Google Scholar 

  162. Islam MN, Zhang M, Adhikari B, Xinfeng C, Xu BG (2014) The effect of ultrasound-assisted immersion freezing on selected physicochemical properties of mushrooms. Int J Refrig 42:121–133

    Article  CAS  Google Scholar 

  163. Terefe NS, Buckow R, Versteeg C (2014) Quality-related enzymes in fruit and vegetable products: effects of novel food processing technologies part 1: high-pressure processing. Crit Rev Food Sci Nutr 54(1):24–63

    Article  CAS  PubMed  Google Scholar 

  164. Terefe NS, Buckow R, Versteeg C (2015) Quality-related enzymes in plant-based products: effects of novel food-processing technologies part 3: ultrasonic processing. Crit Rev Food Sci Nutr 55(2):147–158

    Article  PubMed  Google Scholar 

  165. Vanga SK, Wang J, Jayaram S, Raghavan V (2021) Effects of pulsed electric fields and ultrasound processing on proteins and enzymes: a review. Processes 9(4):722

    Article  CAS  Google Scholar 

  166. Arroyo C, Cebrián G, Pagán R, Condón S (2011) Inactivation of Cronobacter sakazakii by manothermosonication in buffer and milk. Int J Food Microbiol 151(1):21–28

    Article  CAS  PubMed  Google Scholar 

  167. Bermúdez-Aguirre D, Corradini MG, Mawson R, Barbosa-Cánovas GV (2009) Modeling the inactivation of Listeria innocua in raw whole milk treated under thermo-sonication. Innov Food Sci Emerg Technol 10(2):172–178

    Article  Google Scholar 

  168. Cregenzán-Alberti O, Halpin RM, Whyte P, Lyng J, Noci F (2014) Suitability of ccRSM as a tool to predict inactivation and its kinetics for Escherichia coli Staphylococcus aureus and Pseudomonas fluorescens in homogenized milk treated by manothermosonication (MTS). Food Control 39:41–48

    Article  Google Scholar 

  169. Kiang WS, Bhat R, Rosma A, Cheng LH (2013) Effects of thermosonication on the fate of Escherichia coli O157: H7 and Salmonella Enteritidis in mango juice. Lett Appl Microbiol 56(4):251–257

    Article  CAS  PubMed  Google Scholar 

  170. Yildiz S, Pokhrel PR, Unluturk S, Barbosa-Cánovas GV (2019) Identification of equivalent processing conditions for pasteurization of strawberry juice by high pressure ultrasound and pulsed electric fields processing. Innov Food Sci Emerg Technol 57:102195

  171. Evelyn SFV (2016) High pressure processing pretreatment enhanced the thermosonication inactivation of Alicyclobacillus acidoterrestris spores in orange juice. Food Control 62:365–372

    Article  CAS  Google Scholar 

  172. Raso J, Palop A, Pagan R, Condon S (1998) Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatment. J Appl Microbiol 85(5):849–854

    Article  CAS  PubMed  Google Scholar 

  173. Condón S, Raso J, Pagán R, Barbosa-Cánovas G, Tapia M, Cano M (2005) Microbial inactivation by ultrasound. Novel Food Process Technol 423–442

  174. Raso J, Pagan R, Condon S, Sala FJ (1998) Influence of temperature and pressure on the lethality of ultrasound. Appl Environ Microbiol 64(2):465–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Suslick KS (1988) Homogeneous sonochemistry. In: Suslick KS (ed) Ultrasound: Its chemical physical and biological effects. VHC Publishers Inc, New York, pp 123–163

    Google Scholar 

  176. Halpin RM, Cregenzán-Alberti O, Whyte P, Lyng JG, Noci F (2013) Combined treatment with mild heat, manothermosonication and pulsed electric fields reduces microbial growth in milk. Food Control 34(2):364–371

    Article  CAS  Google Scholar 

  177. Muñoz A, Caminiti IM, Palgan I, Pataro G, Noci F, Morgan DJ, Cronin DA, Whyte P, Ferrari G, Lyng JG (2012) Effects on Escherichia coli inactivation and quality attributes in apple juice treated by combinations of pulsed light and thermosonication. Food Res Int 45(1):299–305

    Article  Google Scholar 

  178. Palgan I, Caminiti IM, Muñoz A, Noci F, Whyte P, Morgan DJ, Cronin DA, Lyng JG (2011) Combined effect of selected non-thermal technologies on Escherichia coli and Pichia fermentans inactivation in an apple and cranberry juice blend and on product shelf life. Int J Food Microbiol 151(1):1–6

    Article  CAS  PubMed  Google Scholar 

  179. Zhu J, Wang Y, Li X, Li B, Liu S, Chang N, Jie D, Ning C, Gao H, Meng X (2017) Combined effect of ultrasound heat and pressure on Escherichia coli O157: H7 polyphenol oxidase activity and anthocyanins in blueberry (Vaccinium corymbosum) juice. Ultrason Sonochem 37:251–259

    Article  CAS  PubMed  Google Scholar 

  180. Jiménez-Monreal AM, García-Diz L, Martínez-Tomé M, Mariscal M, Murcia MA (2009) Influence of cooking methods on antioxidant activity of vegetables. J Food Sci 74(3):H97–H103

    Article  PubMed  Google Scholar 

  181. Saeeduddin M, Abid M, Jabbar S, Wu T, Hashim MM, Awad FN, Hu B, Lei S, Zeng X (2015) Quality assessment of pear juice under ultrasound and commercial pasteurization processing conditions. LWT Food Sci Technol 64(1):452–458

    Article  CAS  Google Scholar 

  182. Abid M, Jabbar S, Hu B, Hashim MM, Wu T, Lei S, Khan MA, Zeng X (2014) Thermosonication as a potential quality enhancement technique of apple juice. Ultrason Sonochem 21(3):984–990

    Article  CAS  PubMed  Google Scholar 

  183. Anaya-Esparza LM, Velázquez-Estrada RM, Roig AX, García-Galindo HS, Sayago-Ayerdi SG, Montalvo-González E (2017) Thermosonication: an alternative processing for fruit and vegetable juices. Trends Food Sci Technol 61:26–37

    Article  CAS  Google Scholar 

  184. Jabbar S, Abid M, Hu B, Hashim MM, Lei S, Wu T, Zeng X (2015) Exploring the potential of thermosonication in carrot juice processing. J Food Sci Technol 52(11):7002–7013

    Article  CAS  Google Scholar 

  185. Manzoor MF, Zeng XA, Rahaman A, Siddeeg A, Aadil RM, Ahmed Z, Niu D (2019) Combined impact of pulsed electric field and ultrasound on bioactive compounds and FT-IR analysis of almond extract. J Food Sci Technol 56(5):2355–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Aadil RM, Zeng XA, Han Z, Sahar A, Khalil AA, Rahman UU, Khan M, Mehmood T (2018) Combined effects of pulsed electric field and ultrasound on bioactive compounds and microbial quality of grapefruit juice. J Food Process Preserv 42(2):e13507

  187. Wang J, Liu Q, Xie B, Sun Z (2020) Effect of ultrasound combined with ultraviolet treatment on microbial inactivation and quality properties of mango juice. Ultrason Sonochem 64:105000

  188. Nowacka M, Wiktor A, Śledź M, Jurek N, Witrowa-Rajchert D (2012) Drying of ultrasound pretreated apple and its selected physical properties. J Food Eng 113(3):427–433

    Article  Google Scholar 

  189. Li Y, Wang X, Wu Z, Wan N, Yang M (2020) Dehydration of hawthorn fruit juices using ultrasound-assisted vacuum drying. Ultrason Sonochem 68:105219

  190. Kayacan S, Karasu S, Akman PK, Goktas H, Doymaz I, Sagdic O (2020) Effect of different drying methods on total bioactive compounds, phenolic profile in vitro bioaccessibility of phenolic and HMF formation of persimmon. LWT Food Sci Technol 118:108830

  191. Bozkir H, Ergün AR, Serdar E, Metin G, Baysal T (2019) Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrason Sonochem 54:135–141

    Article  CAS  PubMed  Google Scholar 

  192. Garcia-Noguera J, Oliveira FI, Gallão MI, Weller CL, Rodrigues S, Fernandes FA (2010) Ultrasound-assisted osmotic dehydration of strawberries: effect of pretreatment time and ultrasonic frequency. Dry Technol 28(2):294–303

    Article  Google Scholar 

  193. Rahaman A, Zeng XA, Kumari A, Rafiq M, Siddeeg A, Manzoor MF, Baloch Z, Ahmed Z (2019) Influence of ultrasound-assisted osmotic dehydration on texture bioactive compounds and metabolites analysis of plum. Ultrason Sonochem 58:104643

  194. Amami E, Khezami W, Mezrigui S, Badwaik LS, Bejar AK, Perez CT, Kechaou N (2017) Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrason Sonochem 36:286–300

    Article  CAS  PubMed  Google Scholar 

  195. Qiu L, Zhang M, Chitrakar B, Bhandari B (2020) Application of power ultrasound in freezing and thawing Processes: Effect on process efficiency and product quality. Ultrasonics Sonochemistry, 68, 105230. https://doi.org/10.1016/j.ultsonch.2020.105230

  196. Deora NS, Misra NN, Deswal A, Mishra HN, Cullen PJ, Tiwari BK (2013) Ultrasound for improved crystallisation in food processing. Food Eng Rev 5(1):36–44

    Article  Google Scholar 

  197. Xu BG, Zhang M, Bhandari B, Cheng XF, Islam MN (2015) Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish. Ultrason Sonochem 27:316–324

    Article  CAS  PubMed  Google Scholar 

  198. Yuan J, Li H, Tao W, Han Q, Dong H, Zhang J, Jing Y, Wang Y, Xiong Q, Xu T (2020) An effective method for extracting anthocyanins from blueberry based on freeze-ultrasonic thawing technology. Ultrason Sonochem 68:105192

  199. Sutariya SG, Sunkesula V (2020) Food freezing: emerging techniques for improving quality and process efficiency a comprehensive review. Innov Food Process Technol 36–63. https://doi.org/10.1016/B978-0-08-100596-5.23035-7

  200. Aguilar-Camacho M, Welti-Chanes J, Jacobo-Velazquez DA (2019) Combined effect of ultrasound treatment and exogenous phytohormones on the accumulation of bioactive compounds in broccoli florets. Ultrason Sonochem 50:289–301

    Article  CAS  PubMed  Google Scholar 

  201. Esua OJ, Chin NL, Yusof YA, Sukor R (2019) Combination of ultrasound and ultraviolet-C irradiation on kinetics of color firmness weight loss and total phenolic content changes in tomatoes during storage. J Food Process Preserv 43(10):e14161

  202. Balazadeh S, Jaspert N, Arif M, Mueller-Roeber B, Maurino VG (2012) Expression of ROS-responsive genes and transcription factors after metabolic formation of H2O2 in chloroplasts. Front Plant Sci 3:234

    Article  PubMed  PubMed Central  Google Scholar 

  203. Jacobo-Velázquez DA, del Rosario C-V, Welti-Chanes J, Cisneros-Zevallos L, Ramos-Parra PA, Hernández-Brenes C (2017) Nonthermal processing technologies as elicitors to induce the biosynthesis and accumulation of nutraceuticals in plant foods. Trends Food Sci Technol 60:80–87

    Article  Google Scholar 

  204. Atanasov S, Stoylov B, Saykova I, Tchaoushev S (2019) Mass transfer intensification in bioactive compounds recovery by alternative extraction methods: effects of solvent. Glob NEST J 21(1):30–36

    CAS  Google Scholar 

  205. El Kantar S, Boussetta N, Lebovka N, Foucart F, Rajha HN, Maroun RG, Louka N, Vorobiev E (2018) Pulsed electric field treatment of citrus fruits: improvement of juice and polyphenols extraction. Innov Food Sci Emerg Technol 46:153–161

    Article  Google Scholar 

  206. Osae R, Essilfie G, Alolga RN, Akaba S, Song X, Owusu-Ansah P, Zhou C (2020) Application of non-thermal pretreatment techniques on agricultural products prior to drying: a review. J Sci Food Agric 100(6):2585–2599

    Article  CAS  PubMed  Google Scholar 

  207. Yu Y, Jin TZ, Xiao G (2017) Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries. J Food Process Preserv 41(6):e13303

  208. Yu Y, Jin TZ, Fan X, Xu Y (2017) Osmotic dehydration of blueberries pretreated with pulsed electric fields: effects on dehydration kinetics, and microbiological and nutritional qualities. Dry Technol 35(13):1543–1551

    Article  CAS  Google Scholar 

  209. Wiktor A, Nowacka M, Anuszewska A, Rybak K, Dadan M, Witrowa-Rajchert D (2019) Drying kinetics and quality of dehydrated cranberries pretreated by traditional and innovative techniques. J Food Sci 84(7):1820–1828

    Article  CAS  PubMed  Google Scholar 

  210. Dermesonlouoglou E, Chalkia A, Dimopoulos G, Taoukis P (2018) Combined effect of pulsed electric field and osmotic dehydration pre-treatments on mass transfer and quality of air dried goji berry. Innov Food Sci Emerg Technol 49:106–115

    Article  CAS  Google Scholar 

  211. Tylewicz U, Oliveira G, Alminger M, Nohynek L, Dalla Rosa M, Romani S (2020) Antioxidant and antimicrobial properties of organic fruits subjected to PEF-assisted osmotic dehydration. Innov Food Sci Emerg Technol 62:102341

  212. Fratianni A, Niro S, Messia MC, Panfili G, Marra F, Cinquanta L (2019) Evaluation of carotenoids and furosine content in air dried carrots and parsnips pre-treated with pulsed electric field (PEF). Eur Food Res Technol 245(11):2529–2537

    Article  CAS  Google Scholar 

  213. Nguyen TL, Rastogi NK, Balasubramaniam VM (2007) Evaluation of the instrumental quality of pressure-assisted thermally processed carrots. J Food Sci 72(5):E264–E270

    Article  CAS  Google Scholar 

  214. Al-Ghamdi S, Sonar CR, Patel J, Albahr Z, Sablani SS (2020) High pressure-assisted thermal sterilization of low-acid fruit and vegetable purees: microbial safety nutrient quality and packaging evaluation. Food Control 114:107233

  215. García-Parra J, González-Cebrino F, Delgado J, Cava R, Ramírez R (2016) High pressure assisted thermal processing of pumpkin purée: effect on microbial counts color bioactive compounds and polyphenoloxidase enzyme. Food Bioprod Process 98:124–132

    Article  Google Scholar 

  216. Terefe NS, Matthies K, Simons L, Versteeg C (2009) Combined high pressure-mild temperature processing for optimal retention of physical and nutritional quality of strawberries (Fragaria× ananassa). Innov Food Sci Emerg Technol 10(3):297–307

    Article  CAS  Google Scholar 

  217. Zhao L, Wang Y, Hu X, Sun Z, Liao X (2016) Korla pear juice treated by ultrafiltration followed by high pressure processing or high temperature short time. LWT Food Sci Technol 65:283–289

    Article  CAS  Google Scholar 

  218. Rastogi NK, Angersbach A, Knorr D (2000) Synergistic effect of high hydrostatic pressure pretreatment and osmotic stress on mass transfer during osmotic dehydration. J Food Eng 45(1):25–31

    Article  Google Scholar 

  219. Rastogi NK, Niranjan K (1998) Enhanced mass transfer during osmotic dehydration of high pressure treated pineapple. J Food Sci 63(3):508–511

    Article  CAS  Google Scholar 

  220. Luo W, Tappi S, Wang C, Yu Y, Zhu S, Dalla Rosa M, Rocculi P (2019) Effect of high hydrostatic pressure (HHP) on the antioxidant and volatile properties of candied Wumei fruit (Prunus mume) during osmotic dehydration. Food Bioproc Tech 12(1):98–109

    Article  CAS  Google Scholar 

  221. Nuñez-Mancilla Y, Pérez-Won M, Uribe E, Vega-Gálvez A, Di Scala K (2013) Osmotic dehydration under high hydrostatic pressure: effects on antioxidant activity total phenolics compounds vitamin C and colour of strawberry (Fragaria vesca). LWT Food Sci Technol 52(2):151–156

    Article  Google Scholar 

  222. Torres-Ossandón MJ, Vega-Gálvez A, López J, Stucken K, Romero J, Di Scala K (2018) Effects of high hydrostatic pressure processing and supercritical fluid extraction on bioactive compounds and antioxidant capacity of Cape gooseberry pulp (Physalis peruviana L). J Supercrit Fluids 138:215–220

    Article  Google Scholar 

  223. Bao Y, Reddivari L, Huang JY (2020) Enhancement of phenolic compounds extraction from grape pomace by high voltage atmospheric cold plasma. LWT 133:109970

  224. Bao Y, Reddivari L, Huang JY (2020) Development of cold plasma pretreatment for improving phenolics extractability from tomato pomace. Innov Food Sci Emerg Technol 65:102445

  225. Ball GF (2008) Vitamins: their role in the human body. John Wiley & Sons, New Jersey

    Google Scholar 

  226. Durazzo A, Lucarini M, Souto EB, Cicala C, Caiazzo E, Izzo AA, Santini A (2019) Polyphenols: a concise overview on the chemistry occurrence and human health. Phytother Res 33(9):2221–2243

    Article  PubMed  Google Scholar 

  227. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55(3):207–216

    Article  CAS  PubMed  Google Scholar 

  228. Kırca A, Cemeroğlu B (2003) Degradation kinetics of anthocyanins in blood orange juice and concentrate. Food Chem 81(4):583–587

    Article  Google Scholar 

  229. Peron DV, Fraga S, Antelo F (2017) Thermal degradation kinetics of anthocyanins extracted from juçara (Euterpe edulis Martius) and “Italia” grapes (Vitis vinifera L) and the effect of heating on the antioxidant capacity. Food Chem 232:836–840

    Article  CAS  PubMed  Google Scholar 

  230. Wang WD, Xu SY (2007) Degradation kinetics of anthocyanins in blackberry juice and concentrate. J Food Eng 82(3):271–275

    Article  CAS  Google Scholar 

  231. Oancea AM, Turturică M, Bahrim G, Râpeanu G, Stănciuc N (2017) Phytochemicals and antioxidant activity degradation kinetics during thermal treatments of sour cherry extract. LWT Food Sci Technol 82:139–146

    Article  CAS  Google Scholar 

  232. Patras A, Brunton NP, O’Donnell C, Tiwari BK (2010) Effect of thermal processing on anthocyanin stability in foods mechanisms and kinetics of degradation. Trends Food Sci Technol 21(1):3–11

    Article  CAS  Google Scholar 

  233. McGhie TK, Walton MC (2007) The bioavailability and absorption of anthocyanins: towards a better understanding. Mol Nutr Food Res 51(6):702–713

    Article  CAS  PubMed  Google Scholar 

  234. Adams JB (1973) Thermal degradation of anthocyanins with particular reference to the 3-glycosides of cyanidin I In acidified aqueous solution at 100 °C. J Sci Food Agric 24(7):747–762

    Article  CAS  Google Scholar 

  235. Markaris P, Livingston GE, Fellers CR (1957) Quantitative aspects of strawberry pigment degradation a b. J Food Sci 22(2):117–130

    Article  Google Scholar 

  236. de Rosso VV, Mercadante AZ (2007) The high ascorbic acid content is the main cause of the low stability of anthocyanin extracts from acerola. Food Chem 103(3):935–943

    Article  Google Scholar 

  237. Riaz M, Zia-Ul-Haq M, Saad B (2016) Biosynthesis and stability of anthocyanins. In: Anthocyanins and human health: biomolecular and therapeutic aspects. Springer, Cham

  238. Packer L (1997) Vitamin C in health and disease (Vol. 4). CRC Press, Florida

    Google Scholar 

  239. Belitz HD, Grosch W, Schieberle P (2004) Food chemistry. Springer-Verlag, Berlin

    Book  Google Scholar 

  240. Verbeyst L, Bogaerts R, Van der Plancken I, Hendrickx M, Van Loey A (2013) Modelling of vitamin C degradation during thermal and high-pressure treatments of red fruit. Food Bioproc Tech 6(4):1015–1023

    Article  CAS  Google Scholar 

  241. Peleg M (2017) Theoretical study of aerobic vitamin C loss kinetics during commercial heat preservation and storage. Food Res Int 102:246–255

    Article  CAS  PubMed  Google Scholar 

  242. Munyaka AW, Makule EE, Oey I, Van Loey A, Hendrickx M (2010) Thermal stability of L-ascorbic acid and ascorbic acid oxidase in broccoli (Brassica oleracea var italica). J Food Sci 75(4):C336–C340

    Article  CAS  PubMed  Google Scholar 

  243. Dhuique-Mayer C, Tbatou M, Carail M, Caris-Veyrat C, Dornier M, Amiot MJ (2007) Thermal degradation of antioxidant micronutrients in citrus juice: kinetics and newly formed compounds. J Agric Food Chem 55(10):4209–4216

    Article  CAS  PubMed  Google Scholar 

  244. Hiwilepo-van Hal P, Bosschaart C, van Twisk C, Verkerk R, Dekker M (2012) Kinetics of thermal degradation of vitamin C in marula fruit (Sclerocarya birrea subsp caffra) as compared to other selected tropical fruits. LWT Food Sci Technol 49(2):188–191

    Article  CAS  Google Scholar 

  245. Lu Q, Peng Y, Zhu C, Pan S (2018) Effect of thermal treatment on carotenoids flavonoids and ascorbic acid in juice of orange cv Cara Cara. Food Chem 265:39–48

    Article  CAS  PubMed  Google Scholar 

  246. Herbig AL, Renard CM (2017) Factors that impact the stability of vitamin C at intermediate temperatures in a food matrix. Food Chem 220:444–451

    Article  CAS  PubMed  Google Scholar 

  247. Yahia EM, Ornelas-Paz JDJ (2010) Chemistry stability and biological actions of carotenoids. In: Fruit and vegetable phytochemicals: chemistry, nutritional value and stability. Wiley-Blackwell, Ames, p 177–222

  248. Boon CS, McClements DJ, Weiss J, Decker EA (2010) Factors influencing the chemical stability of carotenoids in foods. Crit Rev Food Sci Nutr 50(6):515–532

    Article  CAS  PubMed  Google Scholar 

  249. Rodriguez-Amaya DB (2015) Food carotenoids: chemistry biology and technology. John Wiley & Sons, UK

    Book  Google Scholar 

  250. Aparicio-Ruiz R, Mínguez-Mosquera MI, Gandul-Rojas B (2011) Thermal degradation kinetics of lutein β-carotene and β-cryptoxanthin in virgin olive oils. J Food Compos Anal 24(6):811–820

    Article  CAS  Google Scholar 

  251. Ordóñez-Santos LE, Martínez-Girón J (2020) Thermal degradation kinetics of carotenoids vitamin C and provitamin A in tree tomato juice. Int J Food Sci Technol 55(1):201–210

    Article  Google Scholar 

  252. Mayer-Miebach E, Behsnilian D, Regier M, Schuchmann HP (2005) Thermal processing of carrots: lycopene stability and isomerisation with regard to antioxidant potential. Food Res Int 38(8–9):1103–1108

    Article  CAS  Google Scholar 

  253. Rodriguez-Amaya DB (1997) Carotenoids and food preparation: the retention of provitamin A carotenoids in prepared processed and stored foods. John Snow Incorporated/OMNI Project, Arlington, pp 1–93

    Google Scholar 

  254. Radziejewska-Kubzdela E, Szwengiel A, Ratajkiewicz H, Nowak K (2020) Effect of ultrasound heating and enzymatic pre-treatment on bioactive compounds in juice from Berberis amurensis Rupr. Ultrason Sonochem 63:104971

  255. Stojanovic J, Silva JL (2007) Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries. Food Chem 101(3):898–906

    Article  CAS  Google Scholar 

  256. Tiwari BK, O’Donnell CP, Patras A, Cullen PJ (2008) Anthocyanin and ascorbic acid degradation in sonicated strawberry juice. J Agric Food Chem 56(21):10071–10077

    Article  CAS  PubMed  Google Scholar 

  257. Korn M, Primo PM, de Sousa CS (2002) Influence of ultrasonic waves on phosphate determination by the molybdenum blue method. Microchem J 73(3):273–277

    Article  CAS  Google Scholar 

  258. Pingret D, Fabiano-Tixier AS, Chemat F (2013) Degradation during application of ultrasound in food processing: a review. Food Control 31(2):593–606

    Article  Google Scholar 

  259. Mahnič-Kalamiza S, Vorobiev E, Miklavčič D (2014) Electroporation in food processing and biorefinery. J Membr Biol 247(12):1279–1304

    Article  PubMed  Google Scholar 

  260. Huang HW, Wu SJ, Lu JK, Shyu YT, Wang CY (2017) Current status and future trends of high-pressure processing in food industry. Food Control 72:1–8

    Article  Google Scholar 

  261. Koutchma T, Popović V, Ros-Polski V, Popielarz A (2016) Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr Rev Food Sci Food Saf 15(5):844–867

    Article  CAS  PubMed  Google Scholar 

  262. Ozen E, Singh RK (2020) Atmospheric cold plasma treatment of fruit juices: a review. Trends Food Sci Technol 103:144–151

    Article  CAS  Google Scholar 

  263. Sonawane SK, Patil S (2020) Non-thermal plasma: an advanced technology for food industry. Food Sci Technol Int 26(8):727–740

    Article  PubMed  Google Scholar 

  264. Dasan BG, Boyaci IH (2018) Effect of cold atmospheric plasma on inactivation of Escherichia coli and physicochemical properties of apple orange tomato juices and sour cherry nectar. Food Bioproc Tech 11(2):334–343

    Article  CAS  Google Scholar 

  265. Garofulić IE, Jambrak AR, Milošević S, Dragović-Uzelac V, Zorić Z, Herceg Z (2015) The effect of gas phase plasma treatment on the anthocyanin and phenolic acid content of sour cherry Marasca (Prunus cerasus var Marasca) juice. LWT Food Sci Technol 62(1):894–900

    Article  Google Scholar 

  266. Herceg Z, Kovačević DB, Kljusurić JG, Jambrak AR, Zorić Z, Dragović-Uzelac V (2016) Gas phase plasma impact on phenolic compounds in pomegranate juice. Food Chem 190:665–672

    Article  CAS  PubMed  Google Scholar 

  267. Hou Y, Wang R, Gan Z, Shao T, Zhang X, He M, Sun A (2019) Effect of cold plasma on blueberry juice quality. Food Chem 290:79–86

    Article  CAS  PubMed  Google Scholar 

  268. Yildiz S, Pokhrel PR, Unluturk S, Barbosa-Cánovas GV (2020) Changes in quality characteristics of strawberry juice after equivalent high pressure ultrasound and pulsed electric fields processes. Food Eng Rev 1–12

  269. Vervoort L, Van der Plancken I, Grauwet T, Verlinde P, Matser A, Hendrickx M, Van Loey A (2012) Thermal versus high pressure processing of carrots: a comparative pilot-scale study on equivalent basis. Innov Food Sci Emerg Technol 15:1–13

    Article  Google Scholar 

  270. Vervoort L, Van der Plancken I, Grauwet T, Timmermans RAH, Mastwijk HC, Matser AM, Hendrickx ME, Van Loey A (2011) Comparing equivalent thermal high pressure and pulsed electric field processes for mild pasteurization of orange juice Part II: Impact on specific chemical and biochemical quality parameters. Innov Food Sci Emerg Technol 12:466–477

    Article  CAS  Google Scholar 

  271. Dolas R, Saravanan C, Kaur BP (2019) Emergence and era of ultrasonic’s in fruit juice preservation: a review. Ultrason sonochem 58:104609

  272. Nadeem M, Ubaid N, Qureshi TM, Munir M, Mehmood A (2018) Effect of ultrasound and chemical treatment on total phenol, flavonoids and antioxidant properties on carrot-grape juice blend during storage. Ultrason Sonochem 45:1–6

    Article  CAS  PubMed  Google Scholar 

  273. Campoli SS, Rojas ML, do Amaral JEPG, Canniatti-Brazaca SG, Augusto PED (2018) Ultrasound processing of guava juice: effect on structure physical properties and lycopene in vitro accessibility. Food Chem 268:594–601

    Article  CAS  PubMed  Google Scholar 

  274. Ding J, Ulanov AV, Dong M, Yang T, Nemzer BV, Xiong S, Zhao S, Feng H (2018) Enhancement of gamma-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication. Ultrason Sonochem 40:791–797

    Article  CAS  PubMed  Google Scholar 

  275. Ordóñez-Santos LE, Martínez-Girón J, Arias-Jaramillo ME (2017) Effect of ultrasound treatment on visual color vitamin C total phenols and carotenoids content in Cape gooseberry juice. Food Chem 233:96–100

    Article  PubMed  Google Scholar 

  276. del Rosario C-V, Ortega-Hernández E, Becerra-Moreno A, Welti-Chanes J, Cisneros-Zevallos L, Jacobo-Velázquez DA (2016) Effects of ultrasound treatment and storage time on the extractability and biosynthesis of nutraceuticals in carrot (Daucus carota). Postharvest Biol Technol 119:18–26

    Article  Google Scholar 

  277. Yu M, Liu H, Shi A, Liu L, Wang Q (2016) Preparation of resveratrol-enriched and poor allergic protein peanut sprout from ultrasound treated peanut seeds. Ultrason Sonochem 28:334–340

    Article  CAS  PubMed  Google Scholar 

  278. Keenan DF, Tiwari BK, Patras A, Gormley R, Butler F, Brunton NP (2012) Effect of sonication on the bioactive quality and rheological characteristics of fruit smoothies. Int J Food Sci Technol 47:827–836

    Article  CAS  Google Scholar 

  279. Reis PMCL, Mezzomo N, Aguiar GPS, Senna EMTL, Hense H, Ferreira SRS (2019) Ultrasound-assisted emulsion of laurel leaves essential oil (Laurus nobilis L) encapsulated by SFEE. J Supercrit Fluids 147:284–292

    Article  CAS  Google Scholar 

  280. Silva EK, Gomes MTMS, Hubinger MD, Cunha RL, Meireles MAA (2015) Ultrasound-assisted formation of annatto seed oil emulsions stabilized by biopolymers. Food Hydrocoll 47:1–13

    Article  CAS  Google Scholar 

  281. Abbas S, Bashari M, Akhtar W, Li WW, Zhang X (2014) Process optimization of ultrasound-assisted curcumin nanoemulsions stabilized by OSA-modified starch. Ultrason Sonochem 21(4):1265–1274

    Article  CAS  PubMed  Google Scholar 

  282. Shanmugam A, Ashokkumar M (2014) Ultrasonic preparation of stable flax seed oil emulsions in dairy systems: physicochemical characterization. Food Hydrocoll 39:151–162

    Article  CAS  Google Scholar 

  283. Gharibzahedi SMT, Razavi SH, Mousavi SM (2013) Ultrasound-assisted formation of the canthaxanthin emulsions stabilized by Arabic and xanthan gums. Carbohydr Polym 96(1):21–30

    Article  CAS  PubMed  Google Scholar 

  284. Ghosh V, Mukherjee A, Chandrasekaran N (2013) Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem 20(1):338–344

    Article  CAS  PubMed  Google Scholar 

  285. Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N (2013) Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J Nanosci Nanotechnol 13(1):114–122

    Article  CAS  PubMed  Google Scholar 

  286. Saranya S, Chandrasekaran N, Mukherjee A (2012) Antibacterial activity of eucalyptus oil nanoemulsion against Proteus mirabilis. Int J Pharm Pharm Sci 4(3):668–671

    Google Scholar 

  287. Soliva-Fortuny R, Balasa A, Knorr D, Martín-Belloso O (2009) Effects of pulsed electric fields on bioactive compounds in foods: a review. Trends Food Sci Technol 20(11):544–556

    Article  CAS  Google Scholar 

  288. Evrendilek GA (2017) Impacts of pulsed electric field and heat treatment on quality and sensory properties and microbial inactivation of pomegranate juice. Food Sci Technol Int 23(8):668–680

    Article  CAS  PubMed  Google Scholar 

  289. Zulueta A, Esteve MJ, Frígola A (2010) Ascorbic acid in orange juice–milk beverage treated by high intensity pulsed electric fields and its stability during storage. Innov Food Sci Emerg Technol 11(1):84–90

    Article  CAS  Google Scholar 

  290. Cortés C, Esteve MJ, Frígola A (2008) Effect of refrigerated storage on ascorbic acid content of orange juice treated by pulsed electric fields and thermal pasteurization. Eur Food Res Technol 227:629–635

    Article  Google Scholar 

  291. Torregrosa F, Esteve MJ, Frígola A, Cortés C (2006) Ascorbic acid stability during refrigerated storage of orange–carrot juice treated by high pulsed electric field and comparison with pasteurized juice. J Food Eng 73:339–345

    Article  CAS  Google Scholar 

  292. Rivas A, Rodrigo D, Company B, Sampedro F, Rodrigo M (2007) Effects of pulsed electric fields on water-soluble vitamins and ACE inhibitory peptides added to a mixed orange juice and milk beverage. Food Chem 104(4):1550–1559

    Article  CAS  Google Scholar 

  293. Bansal V, Jabeen K, Rao PS, Prasad P, Yadav SK (2019) Effect of high pressure processing (HPP) on microbial safety physicochemical properties and bioactive compounds of whey-based sweet lime (whey-lime) beverage. J Food Meas Charact 13:454–465

    Article  Google Scholar 

  294. González-Cebrino F, García-Parra J, Contador R, Tabla R, Ramírez R (2012) Effect of high-pressure processing and thermal treatment on quality attributes and nutritional compounds of “Songold” plum puree. J Food Sci 77(8):C866–C873

    Article  PubMed  Google Scholar 

  295. Torres B, Tiwari BK, Patras A, Cullen PJ, Brunton N, O’Donnell CP (2011) Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innov Food Sci Emerg Technol 12:93–97

    Article  CAS  Google Scholar 

  296. Barba FJ, Esteve MJ, Frígola A (2010) Ascorbic acid is the only bioactive that is better preserved by high hydrostatic pressure than by thermal treatment of a vegetable beverage. J Agric Food Chem 58:10070–10075

    Article  CAS  PubMed  Google Scholar 

  297. Patras A, Brunton NP, Da Pieve S, Butler F (2009) Impact of high pressure processing on total antioxidant activity phenolic ascorbic acid anthocyanin content and colour of strawberry and blackberry purées. Innov Food Sci Emerg Technol 10:308–313

    Article  CAS  Google Scholar 

  298. Patras A, Brunton N, Da Pieve S, Butler F, Downey G (2009) Effect of thermal and high pressure processing on antioxidant activity and instrumental colour of tomato and carrot purées. Innov Food Sci Emerg Technol 10:16–22

    Article  CAS  Google Scholar 

  299. Plaza L, Sánchez-Moreno C, De Ancos B, Cano MP (2006) Carotenoid content and antioxidant capacity of Mediterranean vegetable soup (gazpacho) treated by high-pressure/temperature during refrigerated storage. Eur Food Res Technol 223(2):210–215

    Article  CAS  Google Scholar 

  300. Baier M, Foerster J, Schnabel U, Knorr D, Ehlbeck J, Herppich WB, Schlüter O (2013) Direct non-thermal plasma treatment for the sanitation of fresh corn salad leaves: evaluation of physical and physiological effects and antimicrobial efficacy. Postharvest Biol Technol 84:81–87

    Article  CAS  Google Scholar 

  301. Wang RX, Nian WF, Wu HY, Feng HQ, Zhang K, Zhang J, Zhu WD, Becker KH, Fang J (2012) Atmospheric-pressure cold plasma treatment of contaminated fresh fruit and vegetable slices: inactivation and physiochemical properties evaluation. Eur Phys J D Atomic Mol Optic Plasma Phys 66(10):1–7

    Google Scholar 

  302. Komes D, Belščak-Cvitanović A, Domitran Z, Opalić M (2013) Content of saccharides antioxidant and sensory properties of pear cultivar “Abate Fete” affected by ultrasound pre-treatment and air drying duration. J Food Nutr Res 52:239–250

    CAS  Google Scholar 

  303. Sales JM, Resurreccion AVA (2010) Maximizing phenolics antioxidants and sensory acceptance of UV and ultrasound-treated peanuts. LWT Food Sci Technol 43:1058–1066

    Article  CAS  Google Scholar 

  304. Sales JM, Resurreccion AVA (2010) Phenolic profile antioxidants and sensory acceptance of bioactive-enhanced peanuts using ultrasound and UV. Food Chem 122:795–803

    Article  CAS  Google Scholar 

  305. Sales JM, Resurreccion AVA (2009) Maximising resveratrol and piceid contents in UV and ultrasound treated peanuts. Food Chem 117:674–680

    Article  CAS  Google Scholar 

  306. Abid M, Jabbar S, Wu T, Hashim MM, Hu B, Lei S, Zhang X, Zeng X (2013) Effects of ultrasound on different quality parameters of apple juice. Ultrason Sonochem 20:1182–1187

    Article  CAS  PubMed  Google Scholar 

  307. Rawson A, Tiwari BK, Patras A, Brunton N, Brennan C, Cullen PJ, O’Donnell C (2011) Effect of thermosonication on bioactive compounds in watermelon juice. Food Res Int 44(5):1168–1173

    Article  CAS  Google Scholar 

  308. Cruz RM, Vieira MC, Fonseca SC, Silva CL (2011) Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimisation and microstructure evaluation. Food Bioproc Tech 4(7):1197–1204

    Article  Google Scholar 

  309. Cruz RM, Vieira MC, Silva CL (2008) Effect of heat and thermosonication treatments on watercress (Nasturtium officinale) vitamin C degradation kinetics. Innov Food Sci Emerg Technol 9(4):483–488

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Semanur Yildiz or Kezban Candoğan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa-Cánovas, G.V., Donsì, F., Yildiz, S. et al. Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. Food Eng Rev 14, 63–99 (2022). https://doi.org/10.1007/s12393-021-09295-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-021-09295-8

Keywords

Navigation