Skip to main content
Log in

Impact of Thermal Blanching and Thermosonication Treatments on Watercress (Nasturtium officinale) Quality: Thermosonication Process Optimisation and Microstructure Evaluation

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The objectives of the present work were to optimise watercress heat and thermosonication blanching conditions, in order to obtain a product with better quality for further freezing, and to evaluate the effects of thermosonication on the microstructure of watercress leaves. In a chart of optimal time–temperature conditions for a 90% peroxidase inactivation (imposed constraint), vitamin C (objective function) and a-value (improvement toward green) were mathematically predicted for both heat and thermosonication blanching treatments. Two optimal thermosonication combinations were selected: 92 °C and 2 s, retaining 95% of vitamin C content and 5% a-value improvement, and a better condition in terms of practical feasibility, 86 °C and 30 s, allowing a 75% vitamin C retention and 8% a-value improvement. The experimental values, for each thermosonication optimal time–temperature zone, were in good agreement with the models' predicted responses. In terms of microstructure, thermosonicated watercress at 86 and 92 °C showed similar loss of turgor and release of chloroplasts. The proposed optimal thermosonication blanching conditions allow the improvement of the blanched watercress quality and consequently contribute for the development of a high-quality new frozen product. However, a suitable scale-up is mandatory for industrial implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

a :

Colour co-ordinate, represents red to green in the Hunter Lab colour space

C :

Value or concentration of the dependent variable (peroxidase activity, colour or vitamin C)

E a :

Activation energy (kJ mol−1)

k :

Reaction rate constant (min−1)

fw:

Fresh weight

e:

Value at equilibrium

0:

Initial value at time equal to zero

1:

Relative to heat-labile enzyme fraction

2:

Relative to heat-resistant enzyme fraction

84.6 °C:

At the reference temperature of 84.6 °C

87.5 °C:

At the reference temperature of 87.5 °C

References

  • Agüero, M. V., Ansorena, M. R., Roura, S. I., & del Valle, C. E. (2008). Thermal inactivation of peroxidase during blanching of butternut squash. LWT-Food Science and Technology, 41, 401–407.

    Article  Google Scholar 

  • Allali, H., Marchal, L., & Vorobiev, E. (2008) Blanching of strawberries by ohmic heating: Effects on the kinetics of mass transfer during osmotic dehydration. Food and Bioprocess Technology. doi:10.1007/s11947-008-0115-5.

  • Bahçeci, K. S., Serpen, A., Gökmen, V., & Acar, J. (2005). Study of lipoxygenase and peroxidase as indicator enzymes in green beans: change of enzyme activity, ascorbic acid and chlorophylls during frozen storage. Journal of Food Engineering, 66(2), 187–192.

    Article  Google Scholar 

  • Banga, J. R., Perez-Martin, R. I., Gallardo, J. M., & Casares, J. J. (1991). Optimization of the thermal processing of conduction-heated canned foods: study of several objective functions. Journal of Food Engineering, 14, 25–51.

    Article  Google Scholar 

  • Bowers, J. (1992). Food theory and applications (pp. 738–739). New York: Macmillan.

    Google Scholar 

  • Cruz, R. M. S., Vieira, M. C., & Silva, C. L. M. (2006). Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale). Journal of Food Engineering, 72(1), 8–15.

    Article  CAS  Google Scholar 

  • Cruz, R. M. S., Vieira, M. C., & Silva, C. L. M. (2007). Modelling kinetics of watercress (Nasturtium officinale) colour changes due to heat and thermosonication treatments. Innovative Food Science & Emerging Technologies, 8, 244–252.

    Article  Google Scholar 

  • Cruz, R. M. S., Vieira, M. C., & Silva, C. L. M. (2008). Effect of heat and thermosonication treatments on watercress (Nasturtium officinale) vitamin C degradation kinetics. Innovative Food Science & Emerging Technologies, 9, 483–488.

    Article  CAS  Google Scholar 

  • Fonseca, S. C., Silva, C. L., & Malcata, F. X. (2005). Microstructural analysis of fresh-cut red bell pepper (Capsicum annuum L.) for postharvest quality optimization. Electronic Journal of Environmental, Agricultural and Food Chemistry, 4(5), 1081–1085.

    Google Scholar 

  • Grandison, A. S. (2006). Postharvest handling and preparation of foods for processing. In J. G. Brennan (Ed.), Food processing handbook. Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Holdsworth, S. D. (1985). Optimisation of thermal processing—A review. Journal of Food Engineering, 4, 89–116.

    Article  Google Scholar 

  • Jha, S. N., & Prasad, S. (1996). Determination of processing conditions on gorgon nut (Euryale ferox). Journal of Agricultural Engineering Research, 63(2), 103–112.

    Article  Google Scholar 

  • Kerr, W. L. (2004). Texture in frozen foods. In C. Hui, L. Legaretta & N. Murrell (Eds.), Handbook of frozen foods (pp. 149–150). New York: Marcel Dekker.

    Google Scholar 

  • Knorr, D., Zenker, M., Heinz, V., & Lee, D. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15, 261–266.

    Article  CAS  Google Scholar 

  • Kunzek, H., Kabbert, R., & Gloyna, D. (1999). Aspects of material science in food processing: Changes in plant cell walls of fruits and vegetables. Zeitschrift für Lebensmittel untersuchung und-Forschung A, 208, 233–250.

    Article  CAS  Google Scholar 

  • Lemos, M. A., Oliveira, J. C., & Saraiva, J. A. (2000). Influence of pH on the thermal inactivation kinetics of horseradish peroxidase in aqueous solution. LWT-Food Science and Technology, 33, 362–368.

    CAS  Google Scholar 

  • Mason, T. G., Paniwnyk, L., & Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3, 253–260.

    Article  Google Scholar 

  • Mountney, G. J., & Gould, W. A. (1988). Low-temperature food preservation. In G. Mountney (Ed.), Practical food microbiology and technology (pp. 112–115). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Murcia, M. A., López-Ayerra, B., Martinez-Tomé, M., Vera, A. M., & García-Carmona, F. (2000). Evolution of ascorbic acid and peroxidase during industrial processing of broccoli. Journal of the Science of Food and Agriculture, 80, 1882–1886.

    Article  CAS  Google Scholar 

  • Pala, M. (1983). Effect of different pretreatments on the quality of deep frozen green beans and carrots. International Journal of Refrigeration, 6, 237–246.

    Article  Google Scholar 

  • Pizzocaro, F., Senesi, E., Querro, O., & Gasparoli, A. (1995). Blanching effect on carrots. Study of the lipids stability during the frozen conservation. Industrie Alimentari, 34, 1265–1272.

    CAS  Google Scholar 

  • Préstamo, G., & Arroyo, G. (1998). High hydrostatic pressure effects on vegetable structure. Journal of Food Science, 63(5), 1–4.

    Article  Google Scholar 

  • Quintero-Ramos, A., Bourne, M. C., Barnard, J., & Anzaldúa-Morales, A. (1998). Optimization of low temperature blanching of frozen jalapeño pepper (Capsicum annuum) using response surface methodology. Journal of Food Science, 63(3), 519–522.

    Article  CAS  Google Scholar 

  • Raso, J., & Barbosa-Cánovas, G. V. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43(3), 265–285.

    Article  Google Scholar 

  • Saguy, I., & Karel, M. (1979). Optimal retort temperature profile in optimizing thiamin retention in conduction-type heating of canned foods. Journal of Food Science, 44(5), 1485–1490.

    Article  CAS  Google Scholar 

  • Teixeira, A. A., & Shoemaker, C. F. (1989). Process optimization. In S. Teixeira (Ed.), Computerized food processing operations (pp. 169–170). New York: Van Nostrand Reinhold.

    Google Scholar 

  • Tiwari, B. K., O' Donnell, C. P., Muthukumarappan, K., & Cullen, P. J. (2009). Ascorbic acid degradation kinetics of sonicated orange juice during storage and comparison with thermally pasteurised juice. LWT-Food Science and Technology, 42, 700–704.

    Article  CAS  Google Scholar 

  • Vercet, A., Burgos, J., Crelier, S., & López-Buesa, P. (2001). Inactivation of proteases and lipases by ultrasound. Innovative Food Science & Emerging Technologies, 2, 139–150.

    Article  CAS  Google Scholar 

  • Walkling-Ribeiro, M., Noci, F., Riener, J., Cronin, D. A., Lyng, J. G., & Morgan, D. J. (2007). The Impact of thermosonication and pulsed electric fields on Staphylococcus aureus inactivation and selected quality parameters in orange juice. Food and Bioprocess Technology, . doi:10.1007/s11947-007-0045-7.

    Google Scholar 

  • Zapata, S., & Dufour, J. (1992). Ascorbic, dehydroascorbic and isoascorbic acid simultaneous determinations by reverse phase ion interaction HPLC. Journal of Food Science, 57(2), 506–511.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author Rui M. S. Cruz gratefully acknowledges his Ph.D. grant SFRH/BD/9172/2002 to Fundação para a Ciência e a Tecnologia (FCT) from Ministério da Ciência e do Ensino Superior. The authors thank the Vitacress Company for supplying the raw watercress.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina L. M. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, R.M.S., Vieira, M.C., Fonseca, S.C. et al. Impact of Thermal Blanching and Thermosonication Treatments on Watercress (Nasturtium officinale) Quality: Thermosonication Process Optimisation and Microstructure Evaluation. Food Bioprocess Technol 4, 1197–1204 (2011). https://doi.org/10.1007/s11947-009-0220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-009-0220-0

Keywords

Navigation