Skip to main content

Part of the book series: Food Engineering Series ((FSES))

Abstract

The benefit of acoustic cavitation owes to its ability to concentrate acoustic energy in small volumes. This results in temperatures of thousands of kelvin, pressures of GPa, local accelerations 12 orders of magnitude higher than gravity, shockwaves, and photon emission. In a few words, it converts acoustics into extreme physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akhatov, I., Gumerov, N., Ohl, C. D., Parlitz, U., and Lauterborn, W. (1997a). The role of surface tension in stable single bubble sonoluminescence. Physics Review Letters, 78(2), 227–230.

    Article  CAS  Google Scholar 

  • Akhatov, I., Mettin, R., Ohl, C. D., Parlitz, U., and Lauterborn, W. (1997b). Bjerknes force threshold for stable single bubble sonoluminescence. Physical Review E, 55(3), 3747–3750.

    Article  CAS  Google Scholar 

  • Akhatov, I., Parlitz, U., and Lauterborn, W. (1994). Pattern formation in acoustic cavitation. Journal of the Acoustical Society of America, 96(6), 3627–3635.

    Article  Google Scholar 

  • Akhatov, I., Parlitz, U., and Lauterborn, W. (1996). Towards a theory of self-organization phenomena in bubble-liquid mixtures. Physical Review E, 54(5), 4990–5003.

    Article  CAS  Google Scholar 

  • Alekseev, V. N., and Yushin, V. P. (1986). Distribution of bubbles in acoustic cavitation. Soviet Physics Acoustics, 32(6), 469–472.

    Google Scholar 

  • Apfel, R. E. (1984). Acoustic cavitation inception. Ultrasonics, 22, 167–173.

    Article  Google Scholar 

  • Ashokkumar, M., Crum, L. A., Frensley, C. A., Grieser, F., Matula, T. J., McNamara, W. B., and Suslick, K. (2000). Effects of solutes on single-bubble sonoluminescence. Journal of Physical Chemistry A, 104, 8462–8465.

    Article  CAS  Google Scholar 

  • Ashokkumar, M., Guan, J., Tronson, R., Matula, T. J., Nuske, J. W., and Grieser, F. (2002). Effects of surfactants, polymers, and alcohols on single bubble dynamics and sonoluminescence. Physical Review E, 65, 046310–1–046310–4.

    Article  CAS  Google Scholar 

  • Augsdorfer, U. H., Evans, A. K., and Oxley, D. P. (2000). Thermal noise and the stability of single sonoluminescing bubbles. Physical Review E, 61(5), 5278–5285.

    Article  CAS  Google Scholar 

  • Barber, B. P., Hiller, R. A., Löfstedt, R., Putterman, S. J., and Weninger, K. R. (1997). Defining the unknowns of sonoluminescence. Physics Report, 281, 65–143.

    Article  CAS  Google Scholar 

  • Barber, B. P., Weninger, K. R., Putterman, S. J., and Löfstedt, R. (1995). Observation of a new phase of sonoluminescence at low partial pressures. Physics Review Letters, 74, 5276–5279.

    Article  CAS  Google Scholar 

  • Barber, B. P., Wu, C. C., Löfstedt, R., Roberts, P. H., and Putterman, S. J. (1994). Sensitivity of sonoluminescence to experimental parameters. Physics Review Letters, 72(9), 1380–1383.

    Article  CAS  Google Scholar 

  • Benjamin, T. B. (1958). Pressure waves from collapsing cavities. 2nd Symposium on Naval Hydrodynamics, pp. 207–229, Washington.

    Google Scholar 

  • Benjamin, T. B., and Ellis, A. T. (1966). The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Philosophical Transactions of the Royal Society London A, 260(110), 221–240.

    Article  Google Scholar 

  • Benjamin, T. B., and Ellis, A. T. (1990). Self-propulsion of asymmetrically vibrating bubbles. Journal of Fluid Mechanics, 212(2), 65–80.

    Article  CAS  Google Scholar 

  • Blake, F. G. (1949). The onset of cavitation in liquids; Technical memo 12. Acoustic Research Laboratory, Cambridge, MA, Harvard University.

    Google Scholar 

  • Blake, J. R., and Gibson, D. C. (1987). Cavitation bubbles near boundaries. Annual Review of Fluid Mechanics, 19, 99–123.

    Article  Google Scholar 

  • Brennen, C. E. (1995). Cavitation and bubble dynamics. Oxford Engineering Science Series, no. 44. New York, Oxford, Oxford University Press.

    Google Scholar 

  • Brenner, M. P., Hilgenfeldt, S., and Lohse, D. (2002). Single-bubble sonoluminescence. Reviews of Modern Physics, 74(2), 425–483.

    Article  CAS  Google Scholar 

  • Brenner, M. P., Lohse, D., and Dupont, T. F. (1995). Bubble shape oscillations and the onset of sonoluminescence. Physics Review Letters, 75(5), 954–957.

    Article  CAS  Google Scholar 

  • Briggs, L. J. (1950). Limiting negative pressure of water. Journal of Applied Physics, 21, 721–722.

    Article  CAS  Google Scholar 

  • Burdin, F., Tsochatzidis, N. A., Guiraud, P., Wilhelm, A. M., and Delmas, H. (1999). Characterisation of the acoustic cavitation cloud by two laser techniques. Ultrasonics Sonochemistry, 6, 43–51.

    Article  CAS  Google Scholar 

  • Caflish, R. E., Miksis, M. J., Papanicolaou, G. C., and Ting, L. (1985). Effective equations for wave propagation in bubbly liquids. Journal of Fluid Mechanics, 153, 259–273.

    Article  Google Scholar 

  • Carstensen, E. L., and Foldy, L. L. (1947). Propagation of sound through a liquid containing bubbles. Journal of the Acoustical Society of America, 19(3), 481–501.

    Article  Google Scholar 

  • Chen, H., Li, X., and Wan, M. (2006). Spatial-temporal dynamics of cavitation bubble clouds in 1.2 MHz focused ultrasound field. Ultrasonics Sonochemistry, 13, 480–486.

    Article  CAS  Google Scholar 

  • Chen, H., Li, X., Wan, M., and Wang, S. (2007). High-speed observation of cavitation bubble cloud structures in the focal region of a 1.2 MHz high-intensity focused ultrasound transducer. Ultrasonics Sonochemistry, 14, 291–297.

    Article  CAS  Google Scholar 

  • Church, C. C. (1988). Prediction of rectified diffusion during nonlinear bubble pulsations at biomedical frequencies. Journal of the Acoustical Society of America, 83(6), 2210–2217.

    Article  CAS  Google Scholar 

  • Commander, K. W., and Prosperetti, A. (1989). Linear pressure waves in bubbly liquids: comparison between theory and experiments. Journal of the Acoustical Society of America, 85(2), 732–746.

    Article  Google Scholar 

  • Crum, L. A. (1975). Bjerknes forces on bubbles in a stationary sound field. Journal of the Acoustical Society of America, 57(6), 1363–1370.

    Article  Google Scholar 

  • Crum, L. A. (1980). Measurements of the growth of air bubbles by rectified diffusion. Journal of the Acoustical Society of America, 68(1), 203–211.

    Article  Google Scholar 

  • Crum, L. A. (1982). Nucleation and stabilization of microbubbles in liquids. Applied Science Research, 38(3), 101–115.

    Article  CAS  Google Scholar 

  • Crum, L. A. (1983). The polytropic exponent of gas contained within air bubbles pulsating in a liquid. Journal of the Acoustical Society of America, 73(1), 116–120.

    Article  Google Scholar 

  • Crum, L. A., and Eller, A. I. (1970). Motion of bubbles in a stationary sound field. Journal of the Acoustical Society of America, 48(1), 181–189.

    Article  Google Scholar 

  • Crum, L. A., and Hansen, G. M. (1982). Generalized equations for rectified diffusion. Journal of the Acoustical Society of America, 72(5), 1586–1592.

    Article  Google Scholar 

  • Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.). (1999). Sonochemistry and Sonoluminescence. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.

    Google Scholar 

  • Crum, L. A., and Prosperetti, A. (1983). Nonlinear oscillations of gas bubbles in liquids: an interpretation of some experimental results. Journal of the Acoustical Society of America, 73(1), 121–127.

    Article  Google Scholar 

  • Crum, L. A., and Prosperetti, A. (1984). Erratum and comments on “Nonlinear oscillations of gas bubbles in liquids: An interpretation of some experimental results”. Journal of the Acoustical Society of America – Letters to the Editor, 75(6), 1910–1912.

    Article  Google Scholar 

  • Dähnke, S., Swamy, K. M., and Keil, F. J. (1999). Modeling of three-dimensional pressure fields in sonochemical reactors with an inhomogeneous density distribution of cavitation bubbles. Comparison of theoretical and experimental results. Ultrasonics Sonochemistry, 6, 31–41.

    Article  Google Scholar 

  • Devin, C. Jr. (1959). Survey of thermal, radiation and viscous damping of pulsating air bubbles in water. Journal of the Acoustical Society of America, 31(12), 1654–1667.

    Article  Google Scholar 

  • Didenko, Y. T., McNamara, W. B., and Suslick, K. S. (2000). Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Physics Review Letters, 84(4), 777–780.

    Article  CAS  Google Scholar 

  • Doinikov, A. A. (2004). Translational motion of a bubble undergoing shape oscillations. Journal of Fluid Mechanics, 501, 1–24.

    Article  Google Scholar 

  • Eller, A. I. (1972). Bubble growth by rectified diffusion in an 11-kHz sound field. Journal of the Acoustical Society of America, 52, 1447–1449.

    Article  Google Scholar 

  • Eller, A. I., and Crum, L. A. (1970). Instability of the motion of a pulsating bubble in a sound field. Journal of the Acoustical Society of America, 47(3), 762–767.

    Article  Google Scholar 

  • Eller, A.I, and Flynn, H. G. (1965). Rectified diffusion during nonlinear pulsations of cavitation bubbles. Journal of the Acoustical Society of America, 37, 493–503.

    Article  Google Scholar 

  • Epstein, P. S., and Plesset, M. S. (1950). On the stability of gas bubbles in liquid-gas solutions. Journal of Chemical Physics, 18, 1505–1509.

    Article  CAS  Google Scholar 

  • Flannigan, D. J., and Suslick, K. S. (2005). Plasma formation and temperature measurement during single-bubble cavitation. Nature, 434, 52–55.

    Article  CAS  Google Scholar 

  • Flint, E. B., and Suslick, K. S. (1991). The temperature of cavitation. Science, 253, 1397–1399.

    Article  CAS  Google Scholar 

  • Flynn, H. G. (1964). Physics of acoustic cavitation in liquids. In: Mason, W. P. (ed.), Physical Acoustics, vol. 1B, pp. 57–172. New York, NY, Academic.

    Google Scholar 

  • Foldy, L. L. (1944). The multiple scattering of waves. Physical Review, 67(3–4), 107–119.

    Google Scholar 

  • Fox, F. E., Curley, S. R., and Larson, G. S. (1955). Phase velocity and absorption measurements in water containing air bubbles. Journal of the Acoustical Society of America, 27(3), 534–539.

    Article  Google Scholar 

  • Fujikawa, S., and Akamatsu, T. (1980). Effects of the nonequilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid. Journal of Fluid Mechanics, 97, 481–512.

    Article  CAS  Google Scholar 

  • Fyrillas, M. M., and Szeri, A. J. (1994). Dissolution or growth of soluble spherical oscillating bubbles. Journal of Fluid Mechanics, 277, 381–407.

    Article  Google Scholar 

  • Fyrillas, M. M., and Szeri, A. J. (1995). Dissolution or growth of soluble spherical oscillating bubbles: the effect of surfactants. Journal of Fluid Mechanics, 289, 295–314.

    Article  CAS  Google Scholar 

  • Fyrillas, M. M., and Szeri, A. J. (1996). Surfactant dynamics and rectified diffusion of microbubbles. Journal of Fluid Mechanics, 311, 361–378.

    Article  CAS  Google Scholar 

  • Gaete-Garreton, L., Vargas-Hernandez, Y., Vargas-Herrera, R., Gallego-Juarez, J. A., and Montoya-Vitini, F. (1997). On the onset of cavitation in gassy liquids. Journal of the Acoustical Society of America, 101(5), 2536–2540.

    Article  Google Scholar 

  • Gaitan, D. F., and Holt, R. G. (1999). Experimental observations of bubble response and light intensity near the threshold for single bubble sonoluminescence in an air-water system. Physical Review E, 59, 5495–5502.

    Article  Google Scholar 

  • Gaitan, D. F., Crum, L. A., Church, C. C., and Roy, R. A. (1992). Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble. Journal of the Acoustical Society of America, 91(6), 3166–3183.

    Article  Google Scholar 

  • Gallego-Juarez, J. A. (1999). High power ultrasonic transducers. In Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence. Dordrecht, Kluwer, pp. 259–270. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.

    Google Scholar 

  • Goldman, D. E., and Ringo, G. R. (1949). Determination of pressure nodes in liquids. Journal of the Acoustical Society of America, 21, 270.

    Article  Google Scholar 

  • Gould, R. K. (1974). Rectified diffusion in the presence of, and absence of, acoustic streaming. Journal of the Acoustical Society of America, 56, 1740–1746.

    Article  Google Scholar 

  • Hammer, D., and Frommhold, L. (2000). Spectra of sonoluminescent rare-gas bubbles. Physics Review Letters, 85(6), 1326–1329.

    Article  CAS  Google Scholar 

  • Hammer, D., and Frommhold, L. (2001). Sonoluminescence: how bubbles glow. Journal of Modern Optics, 48, 239–277.

    CAS  Google Scholar 

  • Hilgenfeldt, S., Brenner, M. P., Grossman, S., and Lohse, D. (1998). Analysis of Rayleigh-Plesset dynamics for sonoluminescing bubbles. Journal of Fluid Mechanics, 365, 171–204.

    Article  CAS  Google Scholar 

  • Hilgenfeldt, S., Grossmann, S., and Lohse, D. (1999a). A simple explanation of light emission in sonoluminescence. Nature, 398, 402–405.

    Article  CAS  Google Scholar 

  • Hilgenfeldt, S., Grossmann, S., and Lohse, D. (1999b). Sonoluminescence light emission. Physics of Fluids, 11, 1318–1330.

    Article  CAS  Google Scholar 

  • Hilgenfeldt, S., Lohse, D., and Brenner, M. P. (1996). Phase diagrams for sonoluminescing bubbles. Physics of Fluids, 8(11), 2808–2826.

    Article  CAS  Google Scholar 

  • Hiller, R. A., Putterman, S. J., and Barber, B. P. (1992). Spectrum of synchronous picosecond sonoluminescence. Physics Review Letters, 69(8), 1182–1184.

    Article  CAS  Google Scholar 

  • Hopkins, S. D., Putterman, S. J., Kappus, B. A., Suslick, K. S., and Camara, C. G. (2005). Dynamics of a sonoluminescing bubble in sulfuric acid. Physics Review Letters, 95(254301), 1–4.

    Google Scholar 

  • Hsieh, D. Y., and Plesset, M. S. (1961). Theory of rectified diffusion of mass into gas bubbles. Journal of the Acoustical Society of America, 33, 206–215.

    Article  Google Scholar 

  • Iordansky, S. (1960). On the equations of motion for liquids containing gas bubbles. Journal of Applied Mechancis and Technical Physics, 3, 102–110.

    Google Scholar 

  • Kamath, V., Oguz, H. N., and Prosperetti, A. (1992). Bubble oscillations in the nearly adiabatic limit. Journal of the Acoustical Society of America, 92(4), 2016–2023.

    Article  Google Scholar 

  • Kamath, V., and Prosperetti, A. (1989). Numerical integration methods in gas-bubble dynamics. Journal of the Acoustical Society of America, 85(4), 1538–1548.

    Article  Google Scholar 

  • Kamath, V., Prosperetti, A., and Egolfopoulos, F. N. (1993). A theoretical study of sonoluminescence. Journal of the Acoustical Society of America, 94(1), 248–260.

    Article  Google Scholar 

  • Kapustina, O. A. (1973). Degassing of liquids. In: Rozenberg, L. D. (ed.), Physical principles of ultrasonic TECHNOLOGY. New York, NY, Plenum Press.

    Google Scholar 

  • Keller, J. B., and Miksis, M. (1980). Bubble oscillations of large amplitude. Journal of the Acoustical Society of America, 68, 628–633.

    Article  Google Scholar 

  • Ketterling, J. A., and Apfel, R. E. (1998). Experimental validation of the dissociation hypothesis for single bubble sonoluminescence. Physics Review Letters, 81, 4991–4994.

    Article  CAS  Google Scholar 

  • Ketterling, J. A., and Apfel, R. E. (2000). Extensive experimental mapping of sonoluminescence parameter space. Physical Review E, 61(4), 3832–3837.

    Article  CAS  Google Scholar 

  • Kobelev, Yu. A., and Ostrovskii, L. A. (1983). Collective self-effect of sound in a liquid with gas bubbles. Journal of Experimental and Theoretical Physics Letters, 37(1), 4–7.

    Google Scholar 

  • Kobelev, Yu. A., and Ostrovskii, L. A. (1989). Nonlinear acoustic phenomena due to bubble drift in a gas-liquid mixture. Journal of the Acoustical Society of America, 85(2), 621–629.

    Article  CAS  Google Scholar 

  • Kobelev, Yu. A., Ostrovskii, L. A., and Sutin, A. M. (1979). Self-illumination effect for acoustic waves in a liquid with gas bubbles. JETP Letters, 30(7), 395–398.

    Google Scholar 

  • Koch, P., Krefting, D., Tervo, T., Mettin, R., and Lauterborn, W. (2004a). Bubble path simulations in standing and traveling acoustic waves. Proceedings of ICA 2004, Kyoto (Japan), vol. Fr3.A.2, pp. V3571–V3572.

    Google Scholar 

  • Koch, P., Mettin, R., and Lauterborn, W. (2004b). Simulation of cavitation bubbles in travelling acoustic waves. In: Casseraeu, D. (ed.), Proceedings CFA/DAGA´04 Strasbourg, DEGA Oldenburg, pp. 919–920.

    Google Scholar 

  • Kornfeld, M., and Suvorov, L. (1944). On the destructive action of cavitation. Journal of Applied Physics, 15, 495–506.

    Article  CAS  Google Scholar 

  • Krefting, D., Mettin, R., and Lauterborn, W. (2004). High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrasonics Sonochemistry, 11, 119–123.

    Article  CAS  Google Scholar 

  • Labouret, S., Frohly, J., and Rivart, F. (2006). Evolution of an 1 MHz ultrasonic cavitation bubble field in a chopped irradiation mode. Ultrasonics Sonochemistry, 13(4), 287–294.

    Article  CAS  Google Scholar 

  • Lauterborn, W. (1976). Numerical investigation of nonlinear oscillations of gas bubbles in liquids. Journal of the Acoustical Society of America, 59(2), 283–296.

    Article  Google Scholar 

  • Lauterborn, W., and Bolle, H. (1975). Experimental investigations of cavitation-bubble collapse in the neighborhood of a solid boundary. Journal of Fluid Mechanics, 72, 391–399.

    Article  Google Scholar 

  • Lauterborn, W., and Cramer, E. (1981a). On the dynamics of acoustic cavitation noise spectra. Acustica, 49, 280–287.

    Google Scholar 

  • Lauterborn, W., and Cramer, E. (1981b). Subharmonic route to chaos observed in acoustics. Physics Review Letters, 47(20), 1445–1448.

    Article  Google Scholar 

  • Lauterborn, W., Kurz, T., Mettin, R., and Ohl, C. D. (1999). Experimental and theoretical bubble dynamics. Advanced in Chemical Physics, 110, 295–380.

    Article  CAS  Google Scholar 

  • Lauterborn, W., and Mettin, R. (1999). Nonlinear bubble dynamics: response curves and more. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and Sonoluminescence, pp. 63–72. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.

    Google Scholar 

  • Leighton, T. G. (1994). The acoustic bubble. London, Academic.

    Google Scholar 

  • Leighton, T. G. (1995). Bubble population phenomena in acoustic cavitation. Ultrasonics Sonochemistry, 2(2), S123–S136.

    Article  Google Scholar 

  • Lezzi, A., and Prosperetti, A. (1987). Bubble dynamics in a compressible liquid. Part 2. Second-order theory. Journal of Fluid Mechanics, 185, 289–321.

    Article  Google Scholar 

  • Li, M. K., and Fogler, H. S. (2004). Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. Journal of Fluid Mechanics, 88, 513–528.

    Article  Google Scholar 

  • Lin, H., Storey, B. D., and Szeri, A. J. (2002a). Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the Rayleigh-Plesset equation. Journal of Fluid Mechanics, 452(10), 145–162.

    CAS  Google Scholar 

  • Lin, H., Storey, B. D., and Szeri, A. J. (2002b). Rayleigh-Taylor instability of violently collapsing bubbles. Physics of Fluids, 14(8), 2925–2928.

    Article  CAS  Google Scholar 

  • Lindau, O., and Lauterborn, W. (2003). Cinematographic observation of the collapse and rebound of a laser-produced cavitation bubble near a wall. Journal of Fluid Mechanics, 479, 327–348.

    Article  CAS  Google Scholar 

  • Löfstedt, R., Barber, B. P., and Putterman, S. J. (1993). Toward a hydrodynamic theory of sonoluminescence. Physics of Fluids, A5(11), 2911–2928.

    Google Scholar 

  • Löfstedt, R., Weninger, K., Putterman, S., and Barber, B. P. (1995). Sonoluminescing bubbles and mass diffusion. Physical Review E, 51(5), 4400–4410.

    Article  Google Scholar 

  • Lohse, D., and Hilgenfeldt, S. (1997). Inert gas accumulation in sonoluminescing bubbles. Journal of Chemical Physics, 107(17), 6986–6997.

    Article  CAS  Google Scholar 

  • Lohse, D., Brenner, M. P., Dupont, T. F., Hilgenfeldt, S., and Johnston, B. (1997). Sonoluminescing air bubbles rectify argon. Physics Review Letters, 78(7), 1359–1362.

    Article  CAS  Google Scholar 

  • Louisnard, O., and Gomez, F. (2003). Growth by rectified diffusion of strongly acoustically forced gas bubbles in nearly saturated liquids. Physical Review E, 67(036610), 1–12.

    Google Scholar 

  • Magnaudet, J. (1997). The forces acting on bubbles and rigid particles. In: ASME Fluids Engineering Division Summer Meeting, Vancouver, Canada, paper 97–3522.

    Google Scholar 

  • Magnaudet, J., and Legendre, D. (1998). The viscous drag force on a spherical bubble with a time-dependent radius. Physics of Fluids, 10, 550–554.

    Article  CAS  Google Scholar 

  • Mason, T. J. (1999). Laboratory equipment and usage considerations. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 245–258. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.

    Google Scholar 

  • Matula, T. J. (2000). Single-bubble sonoluminescence in microgravity. Ultrasonics, 357, 203–223.

    Google Scholar 

  • Matula, T. J., and Crum, L. A. (1998). Evidence of gas exchange in single-bubble sonoluminescence. Physics Review Letters, 80(4), 865–868.

    Article  CAS  Google Scholar 

  • Matula, T. J., Roy, R. A., Mourad, P. D., McNamara, W. B., and Suslick, K. S. (1995). Comparison of multibubble and single-bubble sonoluminescence spectra. Physics Review Letters, 75(13), 2602–2605.

    Article  CAS  Google Scholar 

  • McNamara, W. B., Didenko, Y. T., and Suslick, K. S. (1999). Sonoluminescence temperatures during multi-bubble cavitation. Nature, 401, 772–775.

    Article  CAS  Google Scholar 

  • Mettin, R. (2005). Bubble structures in acoustic cavitation. In: Doinikov, A. A. (ed.), Bubble and particle dynamics in acoustic fields: Modern trends and applications, pp. 1–36. Kerala (India), Research Signpost.

    Google Scholar 

  • Mettin, R., Akhatov, I., Parlitz, U., Ohl, C. D., and Lauterborn, W. (1997). Bjerknes force between small cavitation bubbles in a strong acoustic field. Physical Review E, 56(3), 2924–2931.

    Article  CAS  Google Scholar 

  • Mettin, R., Koch, P., Lauterborn, W., and Krefting, D. (11-15 September 2006). Modeling acoustic cavitation with bubble redistribution. Sixth International Symposium on Cavitation – CAV2006 (Paper 75), Wageningen (The Netherlands), pp. 125–129.

    Google Scholar 

  • Mettin, R., Luther, S., and Lauterborn, W. (1999a). Bubble size distribution and structures in acoustic cavitation. Proceedings of 2nd conference on Applications of Power Ultrasound in Physical and Chemical Processing, Toulouse, France, pp. 125–129.

    Google Scholar 

  • Mettin, R., Luther, S., Ohl, C. D., and Lauterborn, W. (1999b). Acoustic cavitation structures and simulations by a particle model. Ultrasonics Sonochemistry, 6, 25–29.

    Article  CAS  Google Scholar 

  • Miksis, M. J., and Ting, L. (1984). Nonlinear radial oscillations of a gas bubble including thermal effects. Journal of the Acoustical Society of America, 76(3), 897–905.

    Article  Google Scholar 

  • Moussatov, A., Granger, C., and Dubus, B. (2003a). Cone-like bubble formation in ultrasonic cavitation field. Ultrasonics Sonochemistry, 10, 191–195.

    Article  CAS  Google Scholar 

  • Moussatov, A., Mettin, R., Granger, C., Tervo, T., Dubus, B., and Lauterborn, W. (2003b, 7-10 September). Evolution of acoustic cavitation structures near larger emitting surface. Proceedings of the World Congress on Ultrasonics, Paris (France), pp. 955–958.

    Google Scholar 

  • Neppiras, E. A. (1969). Subharmonic and other low-frequency emission from bubbles in sound-irradiated liquids. Journal of the Acoustical Society of America, 46, 587–601.

    Article  CAS  Google Scholar 

  • Neppiras, E. A. (1980). Acoustic cavitation. Physics Report, 61, 159–251.

    Article  Google Scholar 

  • Noltingk, B. E., and Neppiras, E. A. (1950). Cavitation produced by ultrasonics. Proceedings of the Physical Society, B63, 674–685.

    Google Scholar 

  • Nyborg, W. L., and Hughes, D. E. (1967). Bubble annihilation in cavitation streamers. Journal of the Acoustical Society of America, 42(4), 891–894.

    Google Scholar 

  • Oguz, H. N., and Prosperetti, A. (1990). A generalization of the impulse and virial theorems with an application to bubble oscillations. Journal of Fluid Mechanics, 218, 143–162.

    Article  CAS  Google Scholar 

  • Ohl, C. D., Lindau, O., and Lauterborn, W. (1998). Luminescence from spherically and aspherically collapsing laser bubbles. Physics Review Letters, 80, 393–396.

    Article  CAS  Google Scholar 

  • Parlitz, U., Mettin, R., Luther, S., Akhatov, I., Voss, M., and Lauterborn, W. (1999). Spatio temporal dynamics of acoustic cavitation bubble clouds. Philosophical Transactions of the Royal Society London A, 357, 313–334.

    Article  CAS  Google Scholar 

  • Pecha, R., and Gompf, B. (2000). Microimplosions: cavitation collapse and shock wave emission on a nanosecond time scale. Physics Review Letters, 84(6), 1328–1330.

    Article  CAS  Google Scholar 

  • Pelekasis, N. A., and Tsamopoulos, J. A. (1993). Bjerknes forces between two bubbles. Part 2. Response to an oscillatory pressure field. Journal of Fluid Mechanics, 254, 501–527.

    Article  CAS  Google Scholar 

  • Pétrier, C., and Francony, A. (1997). Ultrasonic waste-water treatment: incidence of ultrasonic frequency on the rate of phenol and carbon tetrachloride degradation. Ultrasonics Sonochemistry, 4, 295–300.

    Article  Google Scholar 

  • Philipp, A., and Lauterborn, W. (1998). Cavitation erosion by single laser-produced bubbles. Journal of Fluid Mechanics, 361, 75–116.

    Article  CAS  Google Scholar 

  • Plesset, M. S. (1949). The dynamics of cavitation bubbles. Journal of Applied Mechanics, 16, 277–282.

    Google Scholar 

  • Plesset, M. S., and Mitchell, T. P. (1956). On the stability of the spherical shape of a vapor cavity in a liquid. Quarterly of Applied Mathematics, 13(4), 419–430.

    Google Scholar 

  • Plesset, M. S., and Prosperetti, A. (1977). Bubble dynamics and cavitation. Annual Review of Fluid Mechanics, 9, 145–185.

    Article  CAS  Google Scholar 

  • Prosperetti, A. (1977a). Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. Journal of the Acoustical Society of America, 61(1), 17–27.

    Article  Google Scholar 

  • Prosperetti, A. (1977b). Viscous effects on perturbed spherical flows. Quarterly of Applied Mathematics, 34, 339–352.

    Google Scholar 

  • Prosperetti, A. (1991). The thermal behaviour of oscillating gas bubbles. Journal of Fluid Mechanics, 222, 587–616.

    Article  CAS  Google Scholar 

  • Prosperetti, A. (1997). A new mechanism for sonoluminescence. Journal of the Acoustical Society of America, 101(4), 2003–2007.

    Article  Google Scholar 

  • Prosperetti, A. (1999). Old-fashioned bubble dynamics. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 39–62. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.

    Google Scholar 

  • Prosperetti, A., and Hao, Y. (1999). Modelling of spherical gas bubble oscillations and sonoluminescence. Philosophical Transactions of the Royal Society London A, 357, 203–223.

    Article  CAS  Google Scholar 

  • Prosperetti, A., and Lezzi, A. (1986). Bubble dynamics in a compressible liquid. Part 1. First-order theory. Journal of Fluid Mechanics, 168, 457–478.

    Article  CAS  Google Scholar 

  • Prosperetti, A., and Seminara, G. (1978). Linear stability of a growing or collapsing bubble in a slightly viscous liquid. Physics of Fluids, 21(9), 1465–1470.

    Article  Google Scholar 

  • Prosperetti, A., Crum, L. A., and Commander, K. W. (1988). Nonlinear bubble dynamics. Journal of the Acoustical Society of America, 83, 502–514.

    Article  CAS  Google Scholar 

  • Putterman, S. J., and Weninger, K. R. (2000). Sonoluminescence: How bubbles turn into light. Annual Review of Fluid Mechanics, 32, 445–476.

    Article  Google Scholar 

  • Ratoarinoro, Contamine, F., Wilhelm, A. M., Berlan, J., and Delmas, H. (1995). Power measurement in sonochemistry. Ultrasonics Sonochemistry, 2(1), S43–S47.

    Article  CAS  Google Scholar 

  • Rayleigh, Lord. (1917). On the pressure developed in a liquid during the collapse of a spherical cavity. Philosophical Magazine, 34, 94–98.

    Google Scholar 

  • Reddy, A. J., and Szeri, A. J. (2002). Shape stability of unsteadily translating bubbles. Physics of Fluids, 14(7), 2216–2224.

    Article  CAS  Google Scholar 

  • Rozenberg, L. D. (ed.). (1971a). High-intensity ultrasonic fields. New York, NY, Plenum Press.

    Google Scholar 

  • Rozenberg, L. D. (1971b). The cavitation zone. In: Rozenberg, L. D. (ed.), High-intensity ultrasonic fields. New-York, NY, Plenum Press.

    Google Scholar 

  • Rozenberg, L. D. (ed.). (1973). Physical principles of ultrasonic technology. New York, NY, Plenum Press.

    Google Scholar 

  • Servant, G., Caltagirone, J. P., Girard, A., Laborde, J. L., and Hita, A. (2000). Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor. Ultrasonics Sonochemistry, 7, 217–227.

    Article  CAS  Google Scholar 

  • Servant, G., Laborde, J. L., Hita, A., Caltagirone, J. P., and Girard, A. (2003). On the interaction between ultrasound waves and bubble clouds in mono- and dual-frequency sonoreactors. Ultrasonics Sonochemistry, 10(6), 347–355.

    Article  CAS  Google Scholar 

  • Silberman, E. (1957). Sound velocity and attenuation in bubbly mixtures measured in standing wave tubes. Journal of the Acoustical Society of America, 29(8), 925–933.

    Article  Google Scholar 

  • Sirotyuk, M. G. (1971). Experimental investigations of ultrasonic cavitation. In: Rozenberg, L. D. (ed.), High-intensity ultrasonic fields. New-York, NY, Plenum Press.

    Google Scholar 

  • Storey, B. D., and Szeri, A.J. (2000). Water vapour, sonoluminescence and sonochemistry. Proceedings of the Royal Society of London, Series A, 456, 1685–1709.

    Article  CAS  Google Scholar 

  • Storey, B. D., and Szeri, A.J. (2001). A reduced model of cavitation physics for use in sonochemistry. Proceedings of the Royal Society of London, Series A, 457, 1685–1700.

    Article  CAS  Google Scholar 

  • Storey, B. D., and Szeri, A. J. (2002). Argon rectification and the cause of light emission in single-bubble sonoluminescence. Physics Review Letters, 88(7), 074301-1–074301-3.

    Article  CAS  Google Scholar 

  • Storey, B. D., Lin, H., and Szeri, A. J. (2001). Physically realistic models of catastrophic bubble collapses. In: Fourth International Symposium on Cavitation. California Institute of Technology, Pasadena, CA, June 20–23.

    Google Scholar 

  • Strasberg, A. (1961). Rectified diffusion: Comments on a paper of Hsieh and Plesset. Journal of the Acoustical Society of America – Letters to the Editor, 33, 359.

    Article  Google Scholar 

  • Strasberg, M., and Benjamin, T. B. (1958). Excitation of oscillations in the shape of pulsating gas bubbles. Journal of the Acoustical Society of America (Abstract), 30, 697.

    Article  Google Scholar 

  • Suslick, K. S., McNamara, W. B., and Didenko, Y. (1999). Hot spot conditions during multi-bubble cavitation. In: Crum, L. A., Mason, T. J., Reisse, J. L., and Suslick, K. S. (eds.), Sonochemistry and sonoluminescence, pp. 191–204. Dordrecht, Kluwer. Proceedings of the NATO Advanced Study Institute on Sonoluminescence and Sonoluminescence, Leavenworth, Washington, DC, 18–29 August 1997.

    Google Scholar 

  • Toegel, R., Gompf, B., Pecha, R., and Lohse, D. (2000a). Does water vapor prevent upscaling sonoluminescence? Physics Review Letters, 85(15), 3165–3168.

    Article  CAS  Google Scholar 

  • Toegel, R., Hilgenfeldt, S., and Lohse, D. (2000b). Squeezing alcohols into sonoluminescing bubbles: the universal role of surfactants. Physics Review Letters, 84(11), 2509–2512.

    Article  Google Scholar 

  • Tomita, Y., and Shima, A. (1977). On the behaviour of a spherical bubble and the impulse pressure in a viscous compressible liquid. Bulletin of the JSME, 20(149), 1453–1460.

    CAS  Google Scholar 

  • Vazquez, G. E., and Putterman, S. J. (2000). Tempurature and pressure dependence of sonoluminescence. Physics Review Letters, 85(14), 3037–3040.

    Article  CAS  Google Scholar 

  • Walton, A. J., and Reynolds, G. T. (1984). Sonoluminescence. Advances in Physics, 33(6), 595–660.

    Article  CAS  Google Scholar 

  • Wijngaarden, V. L. (1968). On the equations of motion for mixtures of liquid and gas bubbles. Journal of Fluid Mechanics, 33(3), 465–474.

    Article  Google Scholar 

  • Yasui, K. (1997). Alternative model of single-bubble sonoluminescence. Physical Review E, 56, 6750–6760.

    Article  CAS  Google Scholar 

  • Yasui, K. (2001). Effect of liquid temperature on sonoluminescence. Physical Review E, 64(016310), 1–10.

    Google Scholar 

  • Yasui, K., Tuziuti, T., and Iida, Y. (2005). Dependence of the characteristics of bubbles on types of sonochemical reactors. Ultrasonics Sonochemistry, 12, 43–51.

    Article  CAS  Google Scholar 

  • Yuan, L., Ho, C. Y., Chu, M. C., and Leung, P. T. (2001). Role of gas density in the stability of single-bubble sonoluminescence. Physical Review E, 64(016317), 1–6.

    Google Scholar 

  • Zardi, D., and Seminara, G. (1995). Chaotic mode competition in the shape oscillations of pulsating bubbles. Journal of Fluid Mechanics, 286, 257–276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Louisnard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Louisnard, O., González-García, J. (2011). Acoustic Cavitation. In: Feng, H., Barbosa-Canovas, G., Weiss, J. (eds) Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7472-3_2

Download citation

Publish with us

Policies and ethics