Skip to main content
Log in

An Overview of Ultrasound-Assisted Food-Grade Nanoemulsions

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Nanoemulsions are considered a very important tool for the delivery of bioactive compounds to the human body through food systems. Application of low-frequency ultrasound, a high-energy method, facilitates the homogenization and dispersion process under the influence of cavitation phenomena. Frequency, time, power, oil phase and aqueous phase are major parameters governing the cavitation process, concomitantly influencing the size and polydispersity index of nanoemulsion droplet. Additionally, hydrostatic pressure, gas content and temperature may also have profound effects on the process. Present review highlights the principles and production technology of high-intensity ultrasound and discusses the role of acoustic cavitation in the preparation of food-grade O/W nanoemulsions. Finally, it indicates technical hurdles, issues and future prospects of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. McClements DJ, Decker EA, Weiss J (2007) Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci 72:R109–R124

    Article  CAS  Google Scholar 

  2. McClements DJ (2011) Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter 7:2297–2316

    Article  CAS  Google Scholar 

  3. McClements DJ (2012) Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter 8:1719–1729

    Article  CAS  Google Scholar 

  4. Chen H, Khemtong C, Yang X, Chang X, Gao J (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 16:354–360

    Article  CAS  Google Scholar 

  5. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys Condens Matter 18:R635–R666

    Article  CAS  Google Scholar 

  6. Solans C, Solé I (2012) Nano-emulsions: formation by low-energy methods. Curr Opin Colloid Interface Sci 17:246–254

    Article  CAS  Google Scholar 

  7. Fryd MM, Mason TG (2012) Advanced nanoemulsions. Annu Rev Phys Chem 63:493–518

    Article  CAS  Google Scholar 

  8. Sagalowicz L, Leser ME (2010) Delivery systems for liquid food products. Curr Opin Colloid Interface Sci 15:61–72

    Article  CAS  Google Scholar 

  9. McClements DJ, Xiao H (2012) Potential biological fate of ingested nanoemulsions: influence of particle characteristics. Food Funct 3:202–220

    Article  CAS  Google Scholar 

  10. Silva HD, Cerqueira MA, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5:854–867

    Article  CAS  Google Scholar 

  11. Huang Q, Yu H, Ru Q (2010) Bioavailability and delivery of nutraceuticals using nanotechnology. J Food Sci 75:R50–R57

    Article  CAS  Google Scholar 

  12. Nakabayashi K, Amemiya F, Fuchigami T, Machida K, Takeda S, Tamamitsu K, Atobe M (2011) Highly clear and transparent nanoemulsion preparation under surfactant-free conditions using tandem acoustic emulsification. Chem Commun 47:5765–5767

    Article  CAS  Google Scholar 

  13. Peshkovsky AS, Peshkovsky SL, Bystryak S (2013) Scalable high-power ultrasonic technology for the production of translucent nanoemulsions. Chem Eng Process. doi:10.1016/j.cep.2013.02.010

  14. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51:285–330

    Article  CAS  Google Scholar 

  15. Ezhilarasi P, Karthik P, Chhanwal N, Anandharamakrishnan C (2012) Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol 6:628–647

    Article  CAS  Google Scholar 

  16. Sanguansri P, Augustin MA (2006) Nanoscale materials development—a food industry perspective. Trends Food Sci Technol 17:547–556

    Article  CAS  Google Scholar 

  17. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14:3–15

    Article  CAS  Google Scholar 

  18. Tiwari R, Takhistov P (2012) Nanotechnology-enabled delivery systems for food functionalization and fortification. In: Padua GW, Wang Q (eds) Nanotechnology research methods for foods and bioproducts. Wiley-Blackwell, Oxford, pp 55–101

    Chapter  Google Scholar 

  19. Onwulata CI (2012) Encapsulation of new active ingredients. Annu Rev Food Sci Technol 3:183–202

    Article  CAS  Google Scholar 

  20. McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606

    Article  CAS  Google Scholar 

  21. Koroleva MY, Evgenii VY (2012) Nanoemulsions: the properties, methods of preparation and promising applications. Russ Chem Rev 81:21

    Article  CAS  Google Scholar 

  22. Rao J, McClements DJ (2011) Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. J Agric Food Chem 59:5026–5035

    Article  CAS  Google Scholar 

  23. El Kinawy OS, Petersen S, Ulrich J (2012) Technological aspects of nanoemulsion formation of low-fat foods enriched with vitamin E by high-pressure homogenization. Chem Eng Technol 35:937–940

    Article  CAS  Google Scholar 

  24. Yuan Y, Gao Y, Zhao J, Mao L (2008) Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Res Int 41:61–68

    Article  CAS  Google Scholar 

  25. Mao L, Xu D, Yang J, Yuan F, Gao Y, Zhao J (2009) Effects of small and large molecule emulsifiers on the characteristics of β-carotene nanoemulsions prepared by high pressure homogenization. Food Technol Biotechnol 47:336–342

    CAS  Google Scholar 

  26. Mao L, Yang J, Xu D, Yuan F, Gao Y (2010) Effects of homogenization models and emulsifiers on the physicochemical properties of β-carotene nanoemulsions. J Disper Sci Technol 31:986–993

    Article  CAS  Google Scholar 

  27. Qian C, McClements DJ (2011) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocoll 25:1000–1008

    Article  CAS  Google Scholar 

  28. Donsì F, Sessa M, Ferrari G (2011) Effect of emulsifier type and disruption chamber geometry on the fabrication of food nanoemulsions by high pressure homogenization. Ind Eng Chem Res 51:7606–7618

    Article  CAS  Google Scholar 

  29. Rao J, McClements DJ (2011) Food-grade microemulsions, nanoemulsions and emulsions: fabrication from sucrose monopalmitate & lemon oil. Food Hydrocoll 25:1413–1423

    Article  CAS  Google Scholar 

  30. Liang R, Xu S, Shoemaker CF, Li Y, Zhong F, Huang Q (2012) Physical and antimicrobial properties of peppermint oil nanoemulsions. J Agric Food Chem 60:7548–7555

    Article  CAS  Google Scholar 

  31. Ziani K, Chang Y, McLandsborough L, McClements DJ (2011) Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J Agric Food Chem 59:6247–6255

    Article  CAS  Google Scholar 

  32. Lee SJ, Choi SJ, Li Y, Decker EA, McClements DJ (2010) Protein-stabilized nanoemulsions and emulsions: comparison of physicochemical stability, lipid oxidation, and lipase digestibility. J Agric Food Chem 59:415–427

    Article  CAS  Google Scholar 

  33. Yang Y, Marshall-Breton C, Leser ME, Sher AA, McClements DJ (2012) Fabrication of ultrafine edible emulsions: comparison of high-energy and low-energy homogenization methods. Food Hydrocoll 29:398–406

    Article  CAS  Google Scholar 

  34. Maher PG, Fenelon MA, Zhou Y, Haque MK, Roos YH (2011) Optimization of β-casein stabilized nanoemulsions using experimental mixture design. J Food Sci 76:C1108–C1117

    Article  CAS  Google Scholar 

  35. Jafari S, He Y, Bhandari B (2007) Optimization of nano-emulsions production by microfluidization. Eur Food Res Technol 225:733–741

    Article  CAS  Google Scholar 

  36. Jafari SM, He Y, Bhandari B (2007) Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng 82:478–488

    Article  Google Scholar 

  37. Henry JVL, Fryer PJ, Frith WJ, Norton IT (2010) The influence of phospholipids and food proteins on the size and stability of model sub-micron emulsions. Food Hydrocoll 24:66–71

    Article  CAS  Google Scholar 

  38. Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and ostwald ripening stability. Langmuir 24:12758–12765

    Article  CAS  Google Scholar 

  39. Kentish S, Wooster TJ, Ashokkumar M, Balachandran S, Mawson R, Simons L (2008) The use of ultrasonics for nanoemulsion preparation. Innov Food Sci Emerg Technol 9:170–175

    Article  CAS  Google Scholar 

  40. Li P-H, Chiang B-H (2012) Process optimization and stability of d-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason Sonochem 19:192–197

    Article  CAS  Google Scholar 

  41. Leong TSH, Wooster TJ, Kentish SE, Ashokkumar M (2009) Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem 16:721–727

    Article  CAS  Google Scholar 

  42. Delmas T, Hln Piraux, Couffin A-C, Texier I, Fo Vinet, Poulin P, Cates ME, Bibette J (2011) How to prepare and stabilize very small nanoemulsions. Langmuir 27:1683–1692

    Article  CAS  Google Scholar 

  43. Canselier JP, Delmas H, Wilhelm AM, Abismaïl B (2002) Ultrasound emulsification—an overview. J Disper Sci Technol 23:333–349

    Article  CAS  Google Scholar 

  44. Raviyan P, Zhang Z, Feng H (2005) Ultrasonication for tomato pectinmethylesterase inactivation: effect of cavitation intensity and temperature on inactivation. J Food Eng 70:189–196

    Article  Google Scholar 

  45. Bermúdez-Aguirre D, Barbosa-Cánovas GV (2012) Inactivation of Saccharomyces cerevisiae in pineapple, grape and cranberry juices under pulsed and continuous thermo-sonication treatments. J Food Eng 108:383–392

    Article  Google Scholar 

  46. Mason TJ, Paniwnyk L, Lorimer JP (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3:S253–S260

    Article  CAS  Google Scholar 

  47. Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing—food quality assurance and food safety. Trends Food Sci Technol 26:88–98

    Article  CAS  Google Scholar 

  48. Tiwari BK, Muthukumarappan K, O’Donnell CP, Cullen PJ (2009) Inactivation kinetics of pectin methylesterase and cloud retention in sonicated orange juice. Innov Food Sci Emerg Technol 10:166–171

    Article  CAS  Google Scholar 

  49. Wu J, Gamage TV, Vilkhu KS, Simons LK, Mawson R (2008) Effect of thermosonication on quality improvement of tomato juice. Innov Food Sci Emerg Technol 9:186–195

    Article  CAS  Google Scholar 

  50. O’Donnell CP, Tiwari BK, Bourke P, Cullen PJ (2010) Effect of ultrasonic processing on food enzymes of industrial importance. Trends Food Sci Technol 21:358–367

    Article  CAS  Google Scholar 

  51. Ercan SŞ, Soysal Ç (2011) Effect of ultrasound and temperature on tomato peroxidase. Ultrason Sonochem 18:689–695

    Article  CAS  Google Scholar 

  52. Condón S, Mañas P, Cebrián G (2011) Manothermosonication for microbial inactivation. In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, pp 287–319

    Chapter  Google Scholar 

  53. Wordon BA, Mortimer B, McMaster LD (2012) Comparative real-time analysis of Saccharomyces cerevisiae cell viability, injury and death induced by ultrasound (20 kHz) and heat for the application of hurdle technology. Food Res Int 47:134–139

    Article  Google Scholar 

  54. Gómez-López VM, Orsolani L, Martínez-Yépez A, Tapia MS (2010) Microbiological and sensory quality of sonicated calcium-added orange juice. LWT Food Sci Technol 43:808–813

    Article  CAS  Google Scholar 

  55. Cabeza MC, Cárcel JA, Ordóñez JA, Cambero I, De la Hoz L, Garcia ML, Benedito J (2010) Relationships among selected variables affecting the resistance of Salmonella enterica, serovar Enteritidis to thermosonication. J Food Eng 98:71–75

    Article  Google Scholar 

  56. Weiss J, Kristbergsson K, Kjartansson GT (2011) Engineering Food Ingredients with High-Intensity Ultrasound. In: Barbosa-Canovas G, Weiss J (eds) Feng H. Springer New York, Ultrasound Technologies for Food and Bioprocessing, pp 239–285

    Google Scholar 

  57. Ashokkumar M, Sunartio D, Kentish S, Mawson R, Simons L, Vilkhu K, Versteeg C (2008) Modification of food ingredients by ultrasound to improve functionality: a preliminary study on a model system. Innov Food Sci Emerg Technol 9:155–160

    Article  CAS  Google Scholar 

  58. Vilkhu K, Manasseh R, Mawson R, Ashokkumar M (2011) Ultrasonic recovery and modification of food ingredients. In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, pp 345–368

    Chapter  Google Scholar 

  59. Ashokkumar M, Bhaskaracharya R, Kentish S, Lee J, Palmer M, Zisu B (2010) The ultrasonic processing of dairy products—an overview. Dairy Sci Technol 90:147–168

    Article  CAS  Google Scholar 

  60. Gogate P, Pandit A (2011) Sonocrystallization andits application in food and bioprocessing. In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, pp 467–493

    Chapter  Google Scholar 

  61. Mason TJ, Chemat F, Vinatoru M (2011) The extraction of natural products using ultrasound or microwaves. Curr Org Chem 15:237–247

    Article  CAS  Google Scholar 

  62. Esclapez M, García-Pérez J, Mulet A, Cárcel J (2011) Ultrasound-assisted extraction of natural products. Food Eng Rev 3:108–120

    Article  Google Scholar 

  63. Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry—a review. Innov Food Sci Emerg Technol 9:161–169

    Article  CAS  Google Scholar 

  64. Balachandran S, Kentish SE, Mawson R, Ashokkumar M (2006) Ultrasonic enhancement of the supercritical extraction from ginger. Ultrason Sonochem 13:471–479

    Article  CAS  Google Scholar 

  65. Chemat F, Zill-e-Huma Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835

    Article  CAS  Google Scholar 

  66. Ertugay MF, Sengul M, Sengul M (2004) Effect of ultrasound treatment on milk homogenization and particle size distribution of fat. Turk J Vet Anim Sci 28:303–308

    Google Scholar 

  67. Lad VN, Murthy ZVP (2012) Enhancing the stability of oil-in-water emulsions emulsified by coconut milk protein with the application of acoustic cavitation. Ind Eng Chem Res 51:4222–4229

    Article  CAS  Google Scholar 

  68. Salvia-Trujillo L, Rojas-Graü A, Soliva-Fortuny R, Martín-Belloso O (2012) Physicochemical characterization of lemongrass essential oil–alginate nanoemulsions: effect of ultrasound processing parameters. Food Bioprocess Technol, 1–8. doi:10.1007/s11947-11012-10881-y

  69. Herrera M (2012) Nano and micro food emulsions. In: Analytical techniques for studying the physical properties of lipid emulsions, vol 3. Springer, New York, pp 7–14

  70. Krishnan RS, Venkatasubramanian VS, Rajagopal ES (1961) Studies on ultrasonic emulsification. J Coll Sci 16:41–48

    Article  CAS  Google Scholar 

  71. Torley P, Bhesh B (2007) Ultrasound in food processing and preservation. In: Rahman MS (ed) Handbook of food preservation, 2nd edn. CRC Press, Boca Raton, pp 713–739

    Chapter  Google Scholar 

  72. Tang SY, Shridharan P, Sivakumar M (2013) Impact of process parameters in the generation of novel aspirin nanoemulsions—comparative studies between ultrasound cavitation and microfluidizer. Ultrason Sonochem 20:485–497

    Article  CAS  Google Scholar 

  73. Li MK, Fogler HS (1978) Acoustic emulsification. Part 2. Breakup of the large primary oil droplets in a water medium. J Fluid Mech 88:513–528

    Article  CAS  Google Scholar 

  74. Mason TJ, Paniwnyk L, Chemat F, Abert Vian M (2011) Ultrasonic food processing. In: Proctor A (ed) Alternatives to conventional food processing. The Royal Society of Chemistry, Cambridge, pp 387–414

    Google Scholar 

  75. Chendke PK, Fogler HS (1975) Macrosonics in industry: chemical processing. Ultrasonics 13:31–37

    Article  CAS  Google Scholar 

  76. Abismaïl B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C (1999) Emulsification by ultrasound: drop size distribution and stability. Ultrason Sonochem 6:75–83

    Article  Google Scholar 

  77. Tang SY, Manickam S, Wei TK, Nashiru B (2012) Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrason Sonochem 19:330–345

    Article  CAS  Google Scholar 

  78. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108–109:303–318

    Article  CAS  Google Scholar 

  79. Jafari SM, He Y, Bhandari B (2006) Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop 9:475–485

    Article  CAS  Google Scholar 

  80. Patist A, Bates D (2011) Industrial applications of high power ultrasonics. In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, pp 599–616

    Chapter  Google Scholar 

  81. Hielscher T (2005) Ultrasonic production of nano-size dispersions and emulsions. In: Dans european nano systems workshop- ENS. Paris, France. Available at http://arxiv.org/ftp/arxiv/papers/0708/0708.1831.pdf

  82. Fathi M, Mozafari MR, Mohebbi M (2012) Nanoencapsulation of food ingredients using lipid based delivery systems. Trends Food Sci Technol 23:13–27

    Article  CAS  Google Scholar 

  83. Li MK, Fogler HS (1978) Acoustic emulsification. Part 1. The instability of the oil-water interface to form the initial droplets. J Fluid Mech 88:499–511

    Article  CAS  Google Scholar 

  84. Sharp DH (1984) An overview of Rayleigh-Taylor instability. Physica D 12:3–18

    Article  Google Scholar 

  85. Santos HM, Lodeiro C, Capelo-Martínez J-L (2009) The power of ultrasound. In: Ultrasound in chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–16

  86. Feng H, Yang W (2011) Ultrasonic processing. In: Zhang HQ, Barbosa-Cánovas GV, Balasubramaniam VM, Dunne CP, Farkas DF, Yuan JTC (eds) Nonthermal processing technologies for food. Wiley-Blackwell, Hoboken, pp 135–154

    Chapter  Google Scholar 

  87. Muthukumaran S, Kentish Sandra E, Stevens Geoff W, Ashokkumar M (2006) Application of ultrasound in membrane separation processes: a review. Rev Chem Eng 22:155

    Article  CAS  Google Scholar 

  88. Leighton TG (1994) The acoustic bubble. Academic Press, San Diego, CA

    Google Scholar 

  89. Ashokkumar M (2011) The characterization of acoustic cavitation bubbles—an overview. Ultrason Sonochem 18:864–872

    Article  CAS  Google Scholar 

  90. Leong T, Wu S, Kentish S, Ashokkumar M (2010) Growth of bubbles by rectified diffusion in aqueous surfactant solutions. J Phys Chem C 114:20141–20145

    Article  CAS  Google Scholar 

  91. Ashokkumar M, Lee J, Kentish S, Grieser F (2007) Bubbles in an acoustic field: an overview. Ultrason Sonochem 14:470–475

    Article  CAS  Google Scholar 

  92. Louisnard O, González-García J (2011) Acoustic cavitation. In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, pp 13–64

    Chapter  Google Scholar 

  93. Ashokkumar M, Mason TJ (2007) Sonochemistry. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York. Published online : 19 Oct 2007. doi:10.1002/0471238961.1915141519211912.a01.pub2

  94. Bhaskaracharya R, Kentish S, Ashokkumar M (2009) Selected applications of ultrasonics in food processing. Food Eng Rev 1:31–49

    Article  CAS  Google Scholar 

  95. Chandrapala J, Oliver C, Kentish S, Ashokkumar M (2012) Ultrasonics in food processing. Ultrason Sonochem 19:975–983

    Article  CAS  Google Scholar 

  96. Rastogi NK (2011) Opportunities and challenges in application of ultrasound in food processing. Crit Rev Food Sci Nutr 51:705–722

    Article  Google Scholar 

  97. Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innov Food Sci Emerg Technol 9:147–154

    Article  CAS  Google Scholar 

  98. Knorr D, Zenker M, Heinz V, Lee D-U (2004) Applications and potential of ultrasonics in food processing. Trends Food Sci Technol 15:261–266

    Article  CAS  Google Scholar 

  99. Cárcel JA, García-Pérez JV, Benedito J, Mulet A (2012) Food process innovation through new technologies: use of ultrasound. J Food Eng 110:200–207

    Article  Google Scholar 

  100. Awad TS, Moharram HA, Shaltout OE, Asker D, Youssef MM (2012) Applications of ultrasound in analysis, processing and quality control of food: a review. Food Res Int 48:410–427

    Article  CAS  Google Scholar 

  101. Knorr D, Froehling A, Jaeger H, Reineke K, Schlueter O, Schoessler K (2011) Emerging technologies in food processing. Annu Rev Food Sci Technol 2:203–235

    Article  CAS  Google Scholar 

  102. Soria AC, Villamiel M (2010) Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends Food Sci Technol 21:323–331

    Article  CAS  Google Scholar 

  103. Ortega-Rivas E (2012) Ultrasound in food preservation. In: Non-thermal food engineering operations. Springer, US, pp 251–262

  104. Bermúdez-Aguirre D, Mobbs T, Barbosa-Cánovas GV (2011) Ultrasound applications in food processing. In: Feng H, Barbosa-Canovas G, Weiss J (eds) Ultrasound technologies for food and bioprocessing. Springer, New York, pp 65–105

    Chapter  Google Scholar 

  105. Mason TG, Graves SM, Wilking JN, Lin MY (2006) Extreme emulsification: formation and structure of nanoemulsions. Condens Matter Phys 9:193–199

    Article  Google Scholar 

  106. Nazarzadeh E, Sajjadi S (2010) Viscosity effects in miniemulsification via ultrasound. AIChE J 56:2751–2755

    Article  CAS  Google Scholar 

  107. Abismaıl B, Canselier JP, Wilhelm AM, Delmas H, Gourdon C (2000) Emulsification processes: on-line study by multiple light scattering measurements. Ultrason Sonochem 7:187–192

    Article  Google Scholar 

  108. Kolmogorov AN (1949) On the disintegration of drops in a turbulent flow. Dokl Akad Nauk SSSR 66:825–828

    Google Scholar 

  109. Maali A, Mosavian MTH (2012) Preparation and application of nanoemulsions in the last decade (2000–2010). J Disper Sci Technol 34:92–105

    Article  CAS  Google Scholar 

  110. Tal-Figiel B (2007) The formation of stable w/o, o/w, w/o/w cosmetic emulsions in an ultrasonic field. Chem Eng Res Des 85:730–734

    Article  CAS  Google Scholar 

  111. Takegami S, Kitamura K, Kawada H, Matsumoto Y, Kitade T, Ishida H, Nagata C (2008) Preparation and characterization of a new lipid nano-emulsion containing two cosurfactants, sodium palmitate for droplet size reduction and sucrose palmitate for stability enhancement. Chem Pharm Bull 56:1097–1102

    Article  CAS  Google Scholar 

  112. Lorimer JP, Mason TJ (1987) Sonochemistry. Part 1—the physical aspects. Chem Soc Rev 16:239–274

    Article  CAS  Google Scholar 

  113. Ghosh V, Mukherjee A, Chandrasekaran N (2013) Ultrasonic emulsification of food-grade nanoemulsion formulation and evaluation of its bactericidal activity. Ultrason Sonochem 20:338–344

    Article  CAS  Google Scholar 

  114. Margulis MA, Margulis IM (2003) Calorimetric method for measurement of acoustic power absorbed in a volume of a liquid. Ultrason Sonochem 10:343–345

    Article  CAS  Google Scholar 

  115. Tiwari BK, Muthukumarappan K, O’Donnell CP, Cullen PJ (2008) Effects of sonication on the kinetics of orange juice quality parameters. J Agric Food Chem 56:2423–2428

    Article  CAS  Google Scholar 

  116. Cucheval A, Chow RCY (2008) A study on the emulsification of oil by power ultrasound. Ultrason Sonochem 15:916–920

    Article  CAS  Google Scholar 

  117. Behrend O, Schubert H (2001) Influence of hydrostatic pressure and gas content on continuous ultrasound emulsification. Ultrason Sonochem 8:271–276

    Article  CAS  Google Scholar 

  118. Sauter C, Emin MA, Schuchmann HP, Tavman S (2008) Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason Sonochem 15:517–523

    Article  CAS  Google Scholar 

  119. Moldoveanu SC (2007) Ultrasound assistance to analytical heterogeneous liquid–liquid systems. In: de Castro L, Capote FP (eds), Analytical applications of ultrasound (Techniques and instrumentation in analytical chemistry, vol 26). Elsevier, Amsterdam, pp 193–226

  120. Rooze J, Rebrov EV, Schouten JC, Keurentjes JTF (2013) Dissolved gas and ultrasonic cavitation—a review. Ultrason Sonochem 20:1–11

    Article  CAS  Google Scholar 

  121. Jafari SM, Assadpoor E, He Y, Bhandari B (2008) Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocoll 22:1191–1202

    Article  CAS  Google Scholar 

  122. Taylor P (1998) Ostwald ripening in emulsions. Adv Colloid Interface Sci 75:107–163

    Article  CAS  Google Scholar 

  123. Chemat F, Grondin I, Shum Cheong Sing A, Smadja J (2004) Deterioration of edible oils during food processing by ultrasound. Ultrason Sonochem 11:13–15

    Article  CAS  Google Scholar 

  124. Chemat F, Grondin I, Costes P, Moutoussamy L, Sing ASC, Smadja J (2004) High power ultrasound effects on lipid oxidation of refined sunflower oil. Ultrason Sonochem 11:281–285

    Article  CAS  Google Scholar 

  125. Pingret D, Durand G, Fabiano-Tixier A-S, Rockenbauer A, Ginies C, Chemat F (2012) Degradation of edible oil during food processing by ultrasound: electron paramagnetic resonance, physicochemical, and sensory appreciation. J Agric Food Chem 60:7761–7768

    Article  CAS  Google Scholar 

  126. Pingret D, Fabiano-Tixier A-S, Chemat F (2013) Degradation during application of ultrasound in food processing: a review. Food Control 31:593–606

    Article  Google Scholar 

  127. Walstra P (1993) Principles of emulsion formation. Chem Eng Sci 48:333–349

    Article  CAS  Google Scholar 

  128. Tadros TF (2009) Emulsion science and technology: a general introduction. In: Emulsion science and technology. Wiley-VCH Verlag GmbH & Co. KGaA, pp 1–56

  129. McClements DJ (2005) Food emulsions; principles, practice, and techniques, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  130. Chalothorn K, Warisnoicharoen W (2012) Ultrasonic emulsification of whey protein isolate-stabilized nanoemulsions containing omega-3 oil from plant seed. Am J Food Technol 7:532–541

    Article  CAS  Google Scholar 

  131. Wulff-Perez M, Torcello-Gomez A, Galvez-Ruiz MJ, Martin-Rodriguez A (2009) Stability of emulsions for parenteral feeding: preparation and characterization of o/w nanoemulsions with natural oils and Pluronic F68 as surfactant. Food Hydrocoll 23:1096–1102

    Article  CAS  Google Scholar 

  132. Amani A, York P, Chrystyn H, Clark B (2010) Factors affecting the stability of nanoemulsions—use of artificial neural networks. Pharm Res 27:37–45

    Article  CAS  Google Scholar 

  133. McClements DJ (2009) Biopolymers in food emulsions. In: Stefan K, Ian TN, Ubbink JB (eds) Modern biopolymer science. Academic Press, San Diego, pp 129–166

    Chapter  Google Scholar 

  134. Corzo-Martínez M, Soria AC, Villamiel M, Olano A, Harte FM, Moreno FJ (2011) Effect of glycation on sodium caseinate-stabilized emulsions obtained by ultrasound. J Dairy Sci 94:51–58

    Article  CAS  Google Scholar 

  135. Behrend O, Ax K, Schubert H (2000) Influence of continuous phase viscosity on emulsification by ultrasound. Ultrason Sonochem 7:77–85

    Article  CAS  Google Scholar 

  136. Gaikwad SG, Pandit AB (2008) Ultrasound emulsification: effect of ultrasonic and physicochemical properties on dispersed phase volume and droplet size. Ultrason Sonochem 15:554–563

    Article  CAS  Google Scholar 

  137. Tesch S, Schubert H (2002) Influence of increasing viscosity of the aqueous phase on the short-term stability of protein stabilized emulsions. J Food Eng 52:305–312

    Article  Google Scholar 

  138. Braginsky LM, Belevitskaya MA (1996) Kinetics of droplets breakup in agitated vessels. In: Kulov NN (ed) Liquid–liquid systems. Nova science, Commack, New York

    Google Scholar 

  139. Gutiérrez JM, González C, Maestro A, Solè I, Pey CM, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13:245–251

    Article  CAS  Google Scholar 

  140. Freitas S, Hielscher G, Merkle HP, Gander B (2006) Continuous contact- and contamination-free ultrasonic emulsification—a useful tool for pharmaceutical development and production. Ultrason Sonochem 13:76–85

    Article  CAS  Google Scholar 

  141. Kaltsa O, Michon C, Yanniotis S, Mandala I (2013) Ultrasonic energy input influence οn the production of sub-micron o/w emulsions containing whey protein and common stabilizers. Ultrason Sonochem 20:881–891

    Article  CAS  Google Scholar 

  142. Dey TK, Ghosh S, Ghosh M, Koley H, Dhar P (2012) Comparative study of gastrointestinal absorption of EPA & DHA rich fish oil from nano and conventional emulsion formulation in rats. Food Res Int 49:72–79

    Article  CAS  Google Scholar 

  143. Camino NA, Pilosof AMR (2011) Hydroxypropylmethylcellulose at the oil–water interface. Part II. Submicron-emulsions as affected by pH. Food Hydrocoll 25:1051–1062

    Article  CAS  Google Scholar 

  144. de Araújo SC, de Mattos AC, Teixeira HF, Coelho PM, Nelson DL, de Oliveira MC (2007) Improvement of in vitro efficacy of a novel schistosomicidal drug by incorporation into nanoemulsions. Int J Pharm 337:307–315

    Article  CAS  Google Scholar 

  145. Ganta S, Amiji M (2009) Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm 6:928–939

    Article  CAS  Google Scholar 

  146. Choi AJ, Kim CJ, Cho YJ, Hwang JK, Kim CT (2009) Effects of surfactants on the formation and stability of capsaicin-loaded nanoemulsions. Food Sci Biotechnol 18:1161–1172

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Key Technology R&D Program of China (2011BAD23B04) and (2013AA102204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, S., Hayat, K., Karangwa, E. et al. An Overview of Ultrasound-Assisted Food-Grade Nanoemulsions. Food Eng Rev 5, 139–157 (2013). https://doi.org/10.1007/s12393-013-9066-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-013-9066-3

Keywords

Navigation