Skip to main content

Advertisement

Log in

Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2022: single photon emission computed tomography

  • REVIEW ARTICLE
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

In this review, we will summarize a selection of articles on single-photon emission computed tomography published in the Journal of Nuclear Cardiology in 2022. The aim of this review is to concisely recap major advancements in the field to provide the reader a glimpse of the research published in the journal over the last year. This review will place emphasis on myocardial perfusion imaging using single-photon emission computed tomography summarizing advances in the field including in prognosis, non-perfusion variables, attenuation compensation, machine learning and camera design. It will also review nuclear imaging advances in amyloidosis, left ventricular mechanical dyssynchrony, cardiac innervation, and lung perfusion. We encourage interested readers to go back to the original articles, and editorials, for a comprehensive read as necessary but hope that this yearly review will be helpful in reminding readers of articles they have seen and attracting their attentions to ones they have missed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Figure was reproduced with permission from Rozanski et al.2 (Figure 2B)

Figure 2

Reproduced with permission from Tang et al.5 (Figure 8B, 1879)

Figure 3

Reproduced with permission from Zampella et al.23 (Figure 5, page 2629)

Figure 4

Reproduced with permission from Rozanski et al.36 (Figure 2, page 849)

Figure 5

Reproduced with permission from Mesquita et al.88 (Figure 2. Page 1172)

Figure 6

Reproduced with permission from Eisenberg et al.147 (Figure 2, page 2302)

Similar content being viewed by others

Abbreviations

AC:

Attenuation correction

CA:

Cardiac amyloidosis

CAD:

Coronary artery disease

LVEF:

Left ventricular ejection fraction

LVMD:

Left ventricular mechanical dyssynchrony

MACE:

Major adverse cardiovascular events

MIBG:

123I-meta-iodobenzylguanidine

MPI:

Myocardial perfusion imaging

PCI:

Percutaneous coronary intervention

PET:

Positron emission tomography

RNA:

Radionuclide angiogardiography

SPECT:

Single photon emission computed tomography

References

  1. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2020: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2021;28:2100‐11.

    Article  PubMed  PubMed Central  Google Scholar 

  2. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2019: Positron emission tomography, computed tomography and magnetic resonance. J Nucl Cardiol 2020;27:921‐30.

    Article  PubMed  Google Scholar 

  3. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2019: Single-photon emission computed tomography. J Nucl Cardiol 2020;27:1171‐9.

    Article  PubMed  Google Scholar 

  4. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2018 Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2019;26:524‐35.

    Article  PubMed  Google Scholar 

  5. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the Journal of Nuclear Cardiology in 2017. Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol 2018;25:1390‐9.

    Article  PubMed  Google Scholar 

  6. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2017. Part 1 of 2: Positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2018;25:320‐30.

    Article  PubMed  Google Scholar 

  7. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in the journal of nuclear cardiology in 2016: Part 2 of 2-myocardial perfusion imaging. J Nucl Cardiol 2017;24:1190‐9.

    Article  PubMed  Google Scholar 

  8. AlJaroudi W, Hage FG. Review of Cardiovascular Imaging in the Journal of Nuclear Cardiology in 2016. Part 1 of 2: Positron Emission Tomography, Computed Tomography and Magnetic Resonance. J Nucl Cardiol 2017;24:649‐56.

    Article  PubMed  Google Scholar 

  9. Hage FG, AlJaroudi WA. Review of Cardiovascular Imaging in the Journal of Nuclear Cardiology in 2015-Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol 2016;23:493‐8.

    Article  PubMed  Google Scholar 

  10. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in the journal of nuclear cardiology in 2015. Part 1 of 2: Plaque imaging, positron emission tomography, computed tomography, and magnetic resonance. J Nucl Cardiol 2016;23:122‐30.

    Article  PubMed  Google Scholar 

  11. Hage FG, AlJaroudi WA. Review of cardiovascular imaging in The Journal of Nuclear Cardiology in 2014: Part 2 of 2: Myocardial perfusion imaging. J Nucl Cardiol 2015;22:714‐9.

    Article  PubMed  Google Scholar 

  12. AlJaroudi WA, Hage FG. Review of cardiovascular imaging in The Journal of Nuclear Cardiology in 2014: Part 1 of 2: Positron emission tomography, computed tomography, and neuronal imaging. J Nucl Cardiol 2015;22:507‐12.

    Article  PubMed  Google Scholar 

  13. Han D, Rozanski A, Miller RJH, Sharir T, Einstein AJ, Fish MB et al. Prevalence and predictors of automatically quantified myocardial ischemia within a multicenter international registry. J Nucl Cardiol 2022.

  14. Rozanski A, Miller RJH, Han D, Gransar H, Slomka P, Dey D et al. The prevalence and predictors of inducible myocardial ischemia among patients referred for radionuclide stress testing. J Nucl Cardiol 2021.

  15. Jouni H, Gibbons RJ. Predictors of inducible ischemia with radionuclide stress testing: Choosing the right patients when the patients are changing. J Nucl Cardiol 2021.

  16. Bekendam MT, Vermeltfoort IAC, Kop WJ, Widdershoven JW, Mommersteeg PMC. Psychological factors of suspect coronary microvascular dysfunction in patients undergoing SPECT imaging. J Nucl Cardiol 2022;29:768‐78.

    Article  PubMed  Google Scholar 

  17. Tang H, Bober RR, Zhao C, Zhang C, Zhu H, He Z. 3D fusion between fluoroscopy angiograms and SPECT myocardial perfusion images to guide percutaneous coronary intervention. J Nucl Cardiol 2022;29:1870‐84.

    Article  PubMed  Google Scholar 

  18. Xu Z, Tang H, Malhotra S, Dong M, Zhao C, Ye Z et al. Three-dimensional fusion of myocardial perfusion SPECT and invasive coronary angiography guides coronary revascularization. J Nucl Cardiol 2022.

  19. Zellweger MJ. Information: Use and process whatever you can get! J Nucl Cardiol 2022;29:1885‐6.

    Article  PubMed  Google Scholar 

  20. Massalha S, Keidar Z. Image fusion: The beauty of the truth from the inside and out. J Nucl Cardiol 2022.

  21. McRee CW, Brice LR, Farag AA, Iskandrian AE, Hage FG. Evolution of symptoms in patients with stable angina after normal regadenoson myocardial perfusion imaging: The Radionuclide Imaging and Symptomatic Evolution study (RISE). J Nucl Cardiol 2022;29:612‐21.

    Article  PubMed  Google Scholar 

  22. Li C, Xu R, Yao K, Zhang J, Chen S, Pang L, et al. Functional significance of intermediate coronary stenosis in patients with single-vessel coronary artery disease: A comparison of dynamic SPECT coronary flow reserve with intracoronary pressure-derived fractional flow reserve (FFR). J Nucl Cardiol 2022;29:622‐9.

    Article  PubMed  Google Scholar 

  23. Fang W, Hsu B. Myocardial blood flow quantitation with the SPECT technique: Where do we stand? J Nucl Cardiol 2022;29:630‐2.

    Article  PubMed  Google Scholar 

  24. Lehner S, Nowak I, Zacherl M, Brosch-Lenz J, Fischer M, Ilhan H, et al. Quantitative myocardial perfusion SPECT/CT for the assessment of myocardial tracer uptake in patients with three-vessel coronary artery disease: Initial experiences and results. J Nucl Cardiol 2022;29:2511‐20.

    Article  PubMed  Google Scholar 

  25. Yang H, Faust E, Gao E, Sethi S, Kitt TM, Kristy RM, et al. Evaluating the use of pharmacological stress agents during single-photon emission computed tomography myocardial perfusion imaging tests after inadequate exercise stress test. J Nucl Cardiol 2022;29:1788‐95.

    Article  PubMed  Google Scholar 

  26. Sharedalal P, Gerard P, Jain D. Pharmacological stress myocardial perfusion imaging after an inadequate exercise stress test. J Nucl Cardiol 2022;29:1796‐8.

    Article  PubMed  Google Scholar 

  27. Ananthasubramaniam K, Kitt TM, Saxena A, Feng Q, Nimke D, Spalding JR, et al. Healthcare resource utilization among patients receiving non-invasive testing for coronary artery disease in an outpatient setting: A cohort study reflecting daily practice trends. J Nucl Cardiol 2022;29:1776‐87.

    Article  PubMed  Google Scholar 

  28. Elder JB, Tilkemeier PL, Ewing JA. Insights into Nuclear Cardiology in the United States from the first 3 years of the ImageGuide Registry. J Nucl Cardiol 2022;29:166‐76.

    Article  PubMed  Google Scholar 

  29. Gulati M, Levy PD, Mukherjee D, Amsterdam E, Bhatt DL, Birtcher KK, et al. 2021 AHA/ACC/ASE/CHEST/SAEM/SCCT/SCMR Guideline for the Evaluation and Diagnosis of Chest Pain: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. J Am Coll Cardiol 2021;78:e187‐285.

    Article  PubMed  Google Scholar 

  30. Thompson RC, Al-Mallah MH, Beanlands RSB, Calnon DA, Dorbala S, Phillips LM, et al. ASNC’s thoughts on the AHA/ACC chest pain guidelines. J Nucl Cardiol 2022;29:19‐23.

    Article  PubMed  Google Scholar 

  31. Bourque JM, Einstein AJ, Dorbala S. ASNC Imaging Indications (ASNC-I2): Multisocietal indications for radionuclide imaging in the multimodality context-Series rationale and methodology. J Nucl Cardiol 2022;29:2667‐78.

    Article  PubMed  Google Scholar 

  32. Takura T, Yokoi H, Tanaka N, Matsumoto N, Yoshida E, Nakata T. Health economics-based verification of functional myocardial ischemia evaluation of stable coronary artery disease in Japan: A long-term longitudinal study using propensity score matching. J Nucl Cardiol 2022;29:1356‐69.

    Article  PubMed  Google Scholar 

  33. Gowdar S, Hussain N, Ahlberg AW, Elsadany M, Kowlgi GN, Silverman D, et al. Non-traditional factors affecting referral for coronary angiography following SPECT myocardial perfusion imaging. J Nucl Cardiol 2022;29:1141‐55.

    Article  PubMed  Google Scholar 

  34. Jayadeva PS, Better N. Getting the right patient to angiography: Can we level the playing field? J Nucl Cardiol 2022;29:1156‐8.

    Article  CAS  PubMed  Google Scholar 

  35. Bajaj NS, Singh S, Farag A, El-Hajj S, Heo J, Iskandrian AE, et al. The prognostic value of non-perfusion variables obtained during vasodilator stress myocardial perfusion imaging. J Nucl Cardiol 2016;23:390‐413.

    Article  PubMed  Google Scholar 

  36. Zampella E, Mannarino T, Gaudieri V, D’Antonio A, Giallauria F, Assante R, et al. Effect of changes in perfusion defect size during serial stress myocardial perfusion imaging on cardiovascular outcomes in patients treated with primary percutaneous coronary intervention after myocardial infarction. J Nucl Cardiol 2022;29:2624‐32.

    Article  PubMed  Google Scholar 

  37. Boehm E, Better N. Time is myocardium, but who does best? J Nucl Cardiol 2022;29:2633‐6.

    Article  PubMed  Google Scholar 

  38. Gokhale R. Divergent pattern: Pattern recognition or marker for adverse events. J Nucl Cardiol 2022.

  39. Bautz J, Stypmann J, Reiermann S, Pavenstädt HJ, Suwelack B, Stegger L et al. Prognostic implication of myocardial perfusion and contractile reserve in end-stage renal disease: A direct comparison of myocardial perfusion scintigraphy and dobutamine stress echocardiography. J Nucl Cardiol 2021.

  40. Kolkailah AA, Iskander M, Iskander F, Patel PP, Khan R, Doukky R. The prognostic utility of regadenoson SPECT myocardial perfusion imaging in patients with end-stage renal disease: The largest cohort to date. J Nucl Cardiol 2022;29:101‐10.

    Article  PubMed  Google Scholar 

  41. Vij A, Doukky R. Stress myocardial perfusion imaging vs. stress echocardiography for risk stratification of kidney transplant candidates: Does it even matter? J Nucl Cardiol 2021.

  42. Cantoni V, Green R, Acampa W, Assante R, Zampella E, Nappi C, et al. Prognostic value of myocardial perfusion imaging in patients with chronic kidney disease: A systematic review and meta-analysis. J Nucl Cardiol 2022;29:141‐54.

    Article  PubMed  Google Scholar 

  43. Golzar Y, Doukky R. Perioperative cardiac risk assessment in kidney transplantation: It’s time to search for a new gold standard. J Nucl Cardiol 2021.

  44. Romero-Farina G, Aguadé-Bruix S, Cuellar-Calabria H, Pizzi MN, Roque A, Candell-Riera J. Gender differences in outcome in patients with diabetes mellitus. J Nucl Cardiol 2022;29:72‐82.

    Article  PubMed  Google Scholar 

  45. Han D, Rozanski A, Gransar H, Tzolos E, Miller RJH, Sharir T et al. Comparison of diabetes to other prognostic predictors among patients referred for cardiac stress testing: A contemporary analysis from the REFINE SPECT Registry. J Nucl Cardiol 2021.

  46. Perry C, Winchester DE. Diabetes is still a CAD risk equivalent, now what? J Nucl Cardiol 2021.

  47. Klein E, Miller RJH, Sharir T, Einstein AJ, Fish MB, Ruddy TD, et al. Automated quantitative analysis of CZT SPECT stratifies cardiovascular risk in the obese population: Analysis of the REFINE SPECT registry. J Nucl Cardiol 2022;29:727‐36.

    Article  PubMed  Google Scholar 

  48. Henzlova MJ, Duvall L. Is the CZT technology the future of nuclear cardiology? J Nucl Cardiol 2022;29:737‐40.

    Article  PubMed  Google Scholar 

  49. Rozanski A, Gransar H, Hayes SW, Friedman JD, Thomson L, Berman DS. Mortality risk among patients undergoing exercise versus pharmacologic myocardial perfusion imaging: A propensity-based comparison. J Nucl Cardiol 2022;29:840‐52.

    Article  PubMed  Google Scholar 

  50. Rodriguez Lozano P, Bourque JM. Beyond traditional cardiovascular risk factors: Could frailty and other morbidities explain the worse prognosis in patients undergoing pharmacologic stress? J Nucl Cardiol 2022;29:853‐6.

    Article  PubMed  Google Scholar 

  51. Smith P, Farag A, Bhambhvani P, Iskandrian A, Hage FG. Prognostic value of absent left ventricular ejection fraction reserve with regadenoson SPECT MPI. J Nucl Cardiol 2022;29:978‐86.

    Article  PubMed  Google Scholar 

  52. Hannon MV, Schwartz RG. LVEF reserve: State of the heart is a matter of time, jeopardy and ischemic memory. J Nucl Cardiol 2021.

  53. Otaki Y, Fish MB, Miller RJH, Lemley M, Slomka PJ. Prognostic value of early left ventricular ejection fraction reserve during regadenoson stress solid-state SPECT-MPI. J Nucl Cardiol 2022;29:1219‐30.

    Article  PubMed  Google Scholar 

  54. Hage FG, Dean P, Iqbal F, Heo J, Iskandrian AE. A blunted heart rate response to regadenoson is an independent prognostic indicator in patients undergoing myocardial perfusion imaging. J Nucl Cardiol 2011;18:1086‐94.

    Article  PubMed  Google Scholar 

  55. AlJaroudi W, Campagnoli T, Fughhi I, Wassouf M, Ali A, Doukky R. Prognostic value of heart rate response during regadenoson stress myocardial perfusion imaging in patients with end stage renal disease. J Nucl Cardiol 2016;23:560‐9.

    Article  PubMed  Google Scholar 

  56. Andrikopoulou E, AlJaroudi WA, Farag A, Lester D, Patel H, Iskandrian AE, et al. The reproducibility and prognostic value of serial measurements of heart rate response to regadenoson during myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2016;43:1493‐502.

    Article  PubMed  Google Scholar 

  57. Andrikopoulou E, Hage FG. Heart rate response to regadenoson: Making the case for its value in clinical practice. J Nucl Cardiol 2016;23:575‐80.

    Article  PubMed  Google Scholar 

  58. Nappi C, Petretta M, Assante R, Zampella E, Gaudieri V, Cantoni V, et al. Prognostic value of heart rate reserve in patients with suspected coronary artery disease undergoing stress myocardial perfusion imaging. J Nucl Cardiol 2022;29:2521‐30.

    Article  PubMed  Google Scholar 

  59. Khan MS, Arif AW, Doukky R. The prognostic implications of ST-segment and T-wave abnormalities in patients undergoing regadenoson stress SPECT myocardial perfusion imaging. J Nucl Cardiol 2022;29:810‐21.

    Article  PubMed  Google Scholar 

  60. Thomas GS, Taghav A. Integrating baseline electrocardiography and myocardial perfusion imaging. J Nucl Cardiol 2022;29:822‐5.

    Article  PubMed  Google Scholar 

  61. Jose A, Zhou C, Baker R, Walker J, Kurek N, O’Donnell RE, et al. Predictive value of incidental right ventricular abnormalities identified on SPECT for mortality and pulmonary hypertension. J Nucl Cardiol 2022;29:1903‐14.

    Article  PubMed  Google Scholar 

  62. Brunken RC. The abnormal right ventricle: Relevant on low risk SPECT perfusion images? J Nucl Cardiol 2022;29:1915‐8.

    Article  PubMed  Google Scholar 

  63. Kassab K, Hussain K, Torres A, Iskander F, Iskander M, Khan R, et al. The diagnostic and prognostic value of near-normal perfusion or borderline ischemia on stress myocardial perfusion imaging. J Nucl Cardiol 2022;29:826‐35.

    Article  PubMed  Google Scholar 

  64. Miller TD. Drawing the line between a normal and mildly abnormal nuclear cardiology scan. J Nucl Cardiol 2022;29:836‐9.

    Article  PubMed  Google Scholar 

  65. Leslie WD, Bryanton M, Goertzen A, Slomka P. Prediction of 2-year major adverse cardiac events from myocardial perfusion scintigraphy and clinical risk factors. J Nucl Cardiol 2022;29:1956‐63.

    Article  PubMed  Google Scholar 

  66. Liu H, Wu J, Shi L, Liu Y, Miller E, Sinusas A et al. Post-reconstruction attenuation correction for SPECT myocardium perfusion imaging facilitated by deep learning-based attenuation map generation. J Nucl Cardiol 2021.

  67. Santarelli MF, Genovesi D, Positano V, Di Sarlo R, Scipioni M, Giorgetti A, et al. Cardiac amyloidosis detection by early bisphosphonate (99mTc-HMDP) scintigraphy. J Nucl Cardiol 2022;29:307‐18.

    Article  CAS  PubMed  Google Scholar 

  68. Weiler-Sagie M, Ben-Haim S. Variability in bone-seeking tracers and imaging protocols for the diagnosis of cardiac amyloidosis: The more the merrier? J Nucl Cardiol 2022;29:319‐22.

    Article  PubMed  Google Scholar 

  69. Singh V, Cuddy S, Kijewski MF, Park MA, Taylor A, Taqueti VR, et al. Inter-observer reproducibility and intra-observer repeatability in (99m)Tc-pyrophosphate scan interpretation for diagnosis of transthyretin cardiac amyloidosis. J Nucl Cardiol 2022;29:440‐6.

    Article  PubMed  Google Scholar 

  70. Sperry BW, Jaber WA. Towards reducing inter- and intra-observer variability: Reasons for optimism? J Nucl Cardiol 2022;29:447‐8.

    Article  PubMed  Google Scholar 

  71. Takahashi K, Sasaki D, Yamashita M, Sakaue T, Enomoto D, Morioka H et al. Amyloid deposit corresponds to technetium-99m-pyrophosphate accumulation in abdominal fat of patients with transthyretin cardiac amyloidosis. J Nucl Cardiol 2021.

  72. Suomalainen O, Pilv J, Loimaala A, Mätzke S, Heliö T, Uusitalo V. Prognostic significance of incidental suspected transthyretin amyloidosis on routine bone scintigraphy. J Nucl Cardiol 2022;29:1021‐9.

    Article  PubMed  Google Scholar 

  73. Quaggin-Smith JA, Wehbe RM, Holly TA. Incidental detection of ATTR cardiac amyloidosis. J Nucl Cardiol 2022;29:1030‐3.

    Article  PubMed  Google Scholar 

  74. Watanabe S, Nakajima K, Wakabayashi H, Yoneyama H, Yoshida S, Komatsu J et al. Volumetric evaluation of (99m)Tc-pyrophosphate SPECT/CT for transthyretin cardiac amyloidosis: Methodology and correlation with cardiac functional parameters. J Nucl Cardiol 2021.

  75. Roshankar G, White GC, Cadet S, Fine NM, Chan D, White JA, et al. Quantitative technetium pyrophosphate and cardiovascular magnetic resonance in patients with suspected cardiac amyloidosis. J Nucl Cardiol 2022;29:2679‐90.

    Article  PubMed  Google Scholar 

  76. Pandey S. Quantitative SPECT in PYP imaging: Ready for prime time or too early to tell? J Nucl Cardiol 2022;29:2691‐3.

    Article  PubMed  Google Scholar 

  77. Tshori S, Livschitz S, Volodarsky I, Goland S, Shimoni S, Fabrikant J, et al. Transthyretin cardiac amyloidosis scintigraphy using planar D-SPECT on dedicated cardiac CZT camera. J Nucl Cardiol 2022;29:1995‐2000.

    Article  PubMed  Google Scholar 

  78. Bellevre D, Bailliez A, Delelis F, Blaire T, Agostini D, Mouquet F, et al. Quantitation of myocardial (99m)Tc-HMDP uptake with new SPECT/CT cadmium zinc telluride (CZT) camera in patients with transthyretin-related cardiac amyloidosis: Ready for clinical use? J Nucl Cardiol 2022;29:506‐14.

    Article  PubMed  Google Scholar 

  79. Kudo T, Imakhanova A. Quantification of amyloid deposition using bone scan agents. J Nucl Cardiol 2022;29:515‐8.

    Article  PubMed  Google Scholar 

  80. Sakatani T, Kasahara T, Irie D, Tsubakimoto Y, Matsuo A, Fujita H, et al. Prognostic value of left ventricular mechanical dyssynchrony induced by exercise stress in patients with normal myocardial perfusion single-photon emission computed tomography. J Nucl Cardiol 2022;29:1‐10.

    Article  PubMed  Google Scholar 

  81. Alexánderson-Rosas E, Hernández-Sandoval S. Gated SPECT beyond myocardial perfusion: Assessment of mechanical left ventricular synchrony. J Nucl Cardiol 2022;29:975‐7.

    Article  PubMed  Google Scholar 

  82. Lu X, Zhao M, Tian C, Wei H, Gao M, Yang X, et al. Prognostic value of ventricular mechanical dyssynchrony in patients with left ventricular aneurysm: A comparative study of medical and surgical treatment. J Nucl Cardiol 2022;29:652‐60.

    Article  PubMed  Google Scholar 

  83. Aviv Y, Zafrir N. Left ventricular mechanical dyssynchrony as a target for therapy in patients with left ventricular aneurysm. J Nucl Cardiol 2022;29:661‐2.

    Article  PubMed  Google Scholar 

  84. Aljaroudi W, Koneru J, Iqbal F, Aggarwal H, Heo J, Iskandrian AE. Left ventricular mechanical dyssynchrony by phase analysis of gated single photon emission computed tomography in end-stage renal disease. Am J Cardiol 2010;106:1042‐7.

    Article  PubMed  Google Scholar 

  85. Morgan WS, Ives CW, Farag AA, Kumar V, Bhambhvani P, Iskandrian AE et al. Effect of left ventricular mechanical dyssynchrony assessed pre-renal transplantation on cardiovascular death post transplantation. J Nucl Cardiol 2021.

  86. Beneyto M, Maury P, Rollin A, Mondoly P, Mandel F, Pascal P et al. Phase analysis for ventricular arrhythmia prediction: A retrospective monocentric cohort study. J Nucl Cardiol 2021.

  87. Aljaroudi WA, Hage FG, Hermann D, Doppalapudi H, Venkataraman R, Heo J, et al. Relation of left-ventricular dyssynchrony by phase analysis of gated SPECT images and cardiovascular events in patients with implantable cardiac defibrillators. J Nucl Cardiol 2010;17:398‐404.

    Article  PubMed  Google Scholar 

  88. Régis C, Rouzet F. A new perspective for phase analysis of radionuclide angiocardiography. J Nucl Cardiol 2022.

  89. Doi T, Nakata T, Noto T, Mita T, Yuda S, Hashimoto A. Improved risk-stratification in heart failure patients with mid-range to severe abnormalities of QRS duration and systolic function using mechanical dyssynchrony assessed by myocardial perfusion-gated SPECT. J Nucl Cardiol 2022;29:1611‐25.

    Article  PubMed  Google Scholar 

  90. Zhang F, Wang Y. Left ventricular mechanical dyssynchrony in patients with heart failure: What is the next step? J Nucl Cardiol 2022;29:1629‐31.

    Article  PubMed  Google Scholar 

  91. Valzania C, Mei R, Biffi M. Three-dimensional left ventricular mechanical dyssynchrony assessed by myocardial perfusion gated-SPECT: Is there a role in cardiac resynchronization therapy? J Nucl Cardiol 2022;29:1626‐8.

    Article  PubMed  Google Scholar 

  92. de Amorim FF, Peix A, Giubbini R, Karthikeyan G, Massardo T, Patel C, et al. Reproducibility of global LV function and dyssynchrony parameters derived from phase analysis of gated myocardial perfusion SPECT: A multicenter comparison with core laboratory setting. J Nucl Cardiol 2022;29:952‐61.

    Article  Google Scholar 

  93. Vigdor A, Bravo PE. Mechanical dyssynchrony with gated myocardial perfusion SPECT: Reproducibility is the key. J Nucl Cardiol 2022;29:962‐4.

    Article  PubMed  Google Scholar 

  94. AlJaroudi W, Alraies MC, Menon V, Brunken RC, Cerqueira MD, Jaber WA. Predictors and incremental prognostic value of left ventricular mechanical dyssynchrony response during stress-gated positron emission tomography in patients with ischemic cardiomyopathy. J Nucl Cardiol 2012;19:958‐69.

    Article  PubMed  Google Scholar 

  95. AlJaroudi W, Alraies MC, Hachamovitch R, Jaber WA, Brunken R, Cerqueira MD, et al. Association of left ventricular mechanical dyssynchrony with survival benefit from revascularization: A study of gated positron emission tomography in patients with ischemic LV dysfunction and narrow QRS. Eur J Nucl Med Mol Imaging 2012;39:1581‐91.

    Article  PubMed  Google Scholar 

  96. Lehner S, Graner FP, Fischer M, Ilhan H, Bartenstein P, Todica A. The assessment of left ventricular mechanical dyssynchrony from gated 99mTc-tetrofosmin SPECT and gated 18F-FDG PET by QGS: A comparative study. J Nucl Cardiol 2022;29:2350‐60.

    Article  PubMed  Google Scholar 

  97. Fudim M, Fathallah M, Shaw LK, Liu PR, James O, Samad Z, et al. The prognostic value of diastolic and systolic mechanical left ventricular dyssynchrony among patients with coronary heart disease. JACC Cardiovasc Imaging 2019;12:1215‐26.

    Article  PubMed  Google Scholar 

  98. Zhang F, Wang J, Shao X, Xu M, Chen Y, Fan S, et al. Longitudinal evaluation of diastolic dyssynchrony by SPECT gated myocardial perfusion imaging early after acute myocardial infarction and the relationship with left ventricular remodeling progression in a swine model. J Nucl Cardiol 2022;29:1520‐33.

    Article  PubMed  Google Scholar 

  99. van der Bijl P, Delgado V, Bax JJ. Diastolic dyssynchrony by SPECT: A novel parameter to predict post-infarct adverse remodeling. J Nucl Cardiol 2022;29:1534‐6.

    Article  PubMed  Google Scholar 

  100. AlJaroudi W. Mechanical dyssynchrony & CRT: Is it time for guideline updates? J Nucl Cardiol 2021;28:2185‐9.

    Article  PubMed  Google Scholar 

  101. Boogers MJ, Chen J, van Bommel RJ, Borleffs CJ, Dibbets-Schneider P, van der Hiel B, et al. Optimal left ventricular lead position assessed with phase analysis on gated myocardial perfusion SPECT. Eur J Nucl Med Mol Imaging 2011;38:230‐8.

    Article  PubMed  Google Scholar 

  102. He Z, Li D, Cui C, Qin HY, Zhao Z, Hou X, et al. Predictive values of left ventricular mechanical dyssynchrony for CRT response in heart failure patients with different pathophysiology. J Nucl Cardiol 2022;29:2637‐48.

    Article  PubMed  Google Scholar 

  103. Vij A, Malhotra S. Identifying CRT responders: Moving from electrical to mechanical dyssynchrony. J Nucl Cardiol 2022;29:2649‐51.

    Article  PubMed  Google Scholar 

  104. Mesquita CT, Peix A, de Amorim FF, Giubbini R, Karthikeyan G, Massardo T, et al. Clinical and gated SPECT MPI parameters associated with super-response to cardiac resynchronization therapy. J Nucl Cardiol 2022;29:1166‐74.

    Article  PubMed  Google Scholar 

  105. He Z, de Amorim Fernandes F, de Nascimento EA, Garcia EV, Mesquita CT, Zhou W. Incremental value of left ventricular shape parameters measured by gated SPECT MPI in predicting the super-response to CRT. J Nucl Cardiol 2022;29:1537‐46.

    Article  PubMed  Google Scholar 

  106. Altawil M, Greenberg J, Ananthasubramaniam K. Gated SPECT left ventricular shape and prediction of super responders to cardiac resynchronization therapy: Not so easy as it (LV) looks. J Nucl Cardiol 2022;29:1547‐51.

    Article  PubMed  Google Scholar 

  107. Jones KA, Goodfield NER. Mechanical dyssynchrony and super-response to CRT. J Nucl Cardiol 2022;29:1175‐7.

    Article  CAS  PubMed  Google Scholar 

  108. Sazonova SI, Atabekov TA, Batalov RE, Mishkina AI, Varlamova JV, Zavadovsky KV, et al. Prediction of appropriate ICD therapy in patients with ischemic heart failure. J Nucl Cardiol 2022;29:680‐91.

    Article  PubMed  Google Scholar 

  109. Travin MI. Importance of individual patient characteristics when assessing the ability of cardiac adrenergic imaging to guide ICD use. J Nucl Cardiol 2022;29:692‐7.

    Article  PubMed  Google Scholar 

  110. Toda K, Kasama S, Toyama T, Kasahara M, Kurabayashi M. Effects of mineralocorticoid receptor antagonist eplerenone on cardiac sympathetic nerve activity and left ventricular remodeling after reperfusion therapy in patients with first ST-segment elevation myocardial infarction. J Nucl Cardiol 2022;29:2325‐35.

    Article  PubMed  Google Scholar 

  111. Khan MH, Gerson MC. Use of mineralocorticoid receptor antagonist in ST elevation myocardial infarction. J Nucl Cardiol 2022;29:2336‐9.

    Article  PubMed  Google Scholar 

  112. Avendaño R, Hashemi-Zonouz T, Sandoval V, Liu C, Burg M, Sinusas AJ, et al. Anger recall mental stress decreases (123)I-metaiodobenzylguanidine ((123)I-MIBG) uptake and increases heterogeneity of cardiac sympathetic activity in the myocardium in patients with ischemic cardiomyopathy. J Nucl Cardiol 2022;29:798‐809.

    Article  PubMed  Google Scholar 

  113. Pontico M, Brunotti G, Conte M, Corica F, Cosma L, De Angelis C, et al. The prognostic value of (123)I-mIBG SPECT cardiac imaging in heart failure patients: A systematic review. J Nucl Cardiol 2022;29:1799‐809.

    Article  PubMed  Google Scholar 

  114. Bandyopadhyay D, Gerard P, Jain D. Significance of (123)I-mIBG SPECT cardiac imaging in heart failure. J Nucl Cardiol 2022;29:1810‐2.

    Article  PubMed  Google Scholar 

  115. Liga R, Gimelli A, De Carlo M, Marzullo P, Pedrinelli R, Petronio AS. Cardiac sympathetic dysfunction in left ventricular hypertrophy caused by arterial hypertension and degenerative aortic stenosis. J Nucl Cardiol 2022;29:337‐47.

    Article  PubMed  Google Scholar 

  116. De Vincentis G, Frantellizzi V. Left ventricular hypertrophy caused by arterial hypertension and degenerative aortic stenosis: How useful (123)I-mIBG is. J Nucl Cardiol 2022;29:348‐9.

    Article  PubMed  Google Scholar 

  117. Kadoya Y, Zen K, Tamaki N, Nakamura S, Fujimoto T, Yashige M, et al. Serial changes in cardiac sympathetic nervous function after transcatheter aortic valve replacement: A prospective observational study using 123I-meta-iodobenzylguanidine imaging. J Nucl Cardiol 2022;29:2652‐63.

    Article  PubMed  Google Scholar 

  118. Silverio A, Galasso G. Understanding changes in central nervous system function after transcatheter aortic valve replacement. J Nucl Cardiol 2022;29:2664‐6.

    Article  PubMed  Google Scholar 

  119. Sazonova SI, Varlamova JV, Nikitin NA, Minin SM, Kisteneva IV, Batalov RE, et al. Cardiac 123I-mIBG scintigraphy for prediction of catheter ablation outcome in patients with atrial fibrillation. J Nucl Cardiol 2022;29:2220‐31.

    Article  CAS  PubMed  Google Scholar 

  120. Marcassa C. MIBG and imaging of cardiac adrenergic system: From heart failure to ventricular arrhythmias and atrial fibrillation, through cardiac asynchrony. What else? J Nucl Cardiol 2022;29:2232-4.

  121. Bauckneht M, Sambuceti G. Functional innervation imaging in the evaluation of cardiotoxicity: Just the beginning of the journey. J Nucl Cardiol 2022;29:2292‐4.

    Article  PubMed  Google Scholar 

  122. Gadioli LP, Miranda CH, Marin-Neto JA, Volpe GJ, Filho A, Filho AP et al. Regional myocardial sympathetic denervation precedes the development of left ventricular systolic dysfunction in chronic Chagas' cardiomyopathy. J Nucl Cardiol 2022.

  123. van der Bijl P, Bax JJ. Myocardial sympathetic denervation in Chagas' cardiomyopathy: A predictor of deterioration of left ventricular systolic function. J Nucl Cardiol 2021.

  124. Assante R, Salvatore E, Nappi C, Peluso S, De Simini G, Di Maio L, et al. Autonomic disorders and myocardial 123I-metaiodobenzylguanidine scintigraphy in Huntington’s disease. J Nucl Cardiol 2022;29:642‐8.

    Article  PubMed  Google Scholar 

  125. Ng ACT, Delgado V, Bax JJ. Autonomic dysfunction in Huntington’s disease: A (123)I-MIBG study. J Nucl Cardiol 2022;29:649‐51.

    Article  PubMed  Google Scholar 

  126. Assante R, D'Antonio A, Mannarino T, Nappi C, Gaudieri V, Zampella E et al. Simultaneous assessment of myocardial perfusion and adrenergic innervation in patients with heart failure by low-dose dual-isotope CZT SPECT imaging. J Nucl Cardiol 2022.

  127. Sala M, Kincl V, Kamínek M, Vašina J, Máchal J, Panovský R, et al. Assessment of left ventricular volumes and ejection fraction using ultra-low-dose thallium-201 SPECT on a CZT camera: a comparison with magnetic resonance imaging. J Nucl Cardiol 2022;29:181‐7.

    Article  PubMed  Google Scholar 

  128. Acampa W, Zampella E, Assante R, Genova A, De Simini G, Mannarino T, et al. Quantification of myocardial perfusion reserve by CZT-SPECT: A head to head comparison with (82)Rubidium PET imaging. J Nucl Cardiol 2021;28:2827‐39.

    Article  PubMed  Google Scholar 

  129. Liu FS, Wang SY, Shiau YC, Wu YW. Integration of quantitative absolute myocardial blood flow estimates from dynamic CZT-SPECT improves the detection of coronary artery disease. J Nucl Cardiol 2022;29:2311‐21.

    Article  PubMed  Google Scholar 

  130. D’Antonio A, Assante R, Zampella E, Acampa W. High technology by CZT cameras: It is time to join forces. J Nucl Cardiol 2022;29:2322‐4.

    Article  PubMed  Google Scholar 

  131. Zavadovsky KV, Mochula AV, Maltseva AN, Boshchenko AA, Baev AE, Andreev SL, et al. The diagnostic value of SPECT CZT quantitative myocardial blood flow in high-risk patients. J Nucl Cardiol 2022;29:1051‐63.

    Article  PubMed  Google Scholar 

  132. Brana Q, Thibault F, Courtehoux M, Metrard G, Ribeiro MJ, Angoulvant D, et al. Regadenoson versus dipyridamole: Evaluation of stress myocardial blood flow response on a CZT-SPECT camera. J Nucl Cardiol 2022;29:113‐22.

    Article  PubMed  Google Scholar 

  133. Mannarino T, Gaudieri V, Acampa W. Vasodilators and myocardial blood flow by CZT cameras: Make us see further. J Nucl Cardiol 2022;29:123‐5.

    Article  PubMed  Google Scholar 

  134. Panjer M, Dobrolinska M, Wagenaar NRL, Slart R. Diagnostic accuracy of dynamic CZT-SPECT in coronary artery disease. A systematic review and meta-analysis. J Nucl Cardiol 2022;29:1686-97.

  135. Renaud JM, Poitrasson-Rivière A, Hagio T, Moody JB, Arida-Moody L, Ficaro EP, et al. Myocardial flow reserve estimation with contemporary CZT-SPECT and 99mTc-tracers lacks precision for routine clinical application. J Nucl Cardiol 2022;29:2078‐89.

    Article  PubMed  Google Scholar 

  136. Otaki Y, Manabe O, Miller RJH, Manrique A, Nganoa C, Roth N, et al. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with (15)O-water PET. J Nucl Cardiol 2021;28:1477‐86.

    Article  PubMed  Google Scholar 

  137. Apert A, Canu M, Jankowski A, Riou L, Broisat A, Charlon C, et al. Comparison of Cadmium Zinc Telluride ECG-gated SPECT equilibrium radionuclide angiocardiography to magnetic resonance imaging to measure right ventricular volumes and ejection fraction in patients with cardiomyopathy. J Nucl Cardiol 2022;29:1647‐56.

    Article  PubMed  Google Scholar 

  138. Zerahn B, Haarmark C. Cardiac CZT-SPECT: More than left ventricular imaging. J Nucl Cardiol 2022;29:1657‐9.

    Article  PubMed  Google Scholar 

  139. Taillefer R. Scintillation cameras: A new clinical era has come. J Nucl Cardiol 2022;29:1942‐5.

    Article  PubMed  Google Scholar 

  140. Bonnefoy PB, Janvier L, Arede C, Drouet C, Harami D, Marque S, et al. Reduced acquisition time for thallium myocardial perfusion imaging with large field cadmium-zinc-telluride SPECT/CT cameras: An equivalence study. J Nucl Cardiol 2022;29:1933‐41.

    Article  CAS  PubMed  Google Scholar 

  141. Karimeddini D, Bergmann S. The state of the future is solid. J Nucl Cardiol 2016;23:1288‐90.

    Article  PubMed  Google Scholar 

  142. Hashimoto H, Oka T, Nakanishi R, Mizumura S, Dobashi S, Hashimoto Y et al. Evaluation of balloon pulmonary angioplasty using lung perfusion SPECT in patients with chronic thromboembolic pulmonary hypertension. J Nucl Cardiol 2022.

  143. Akincioglu C, Mehta S. Nuclear imaging in chronic thromboembolic pulmonary hypertension: increasingly central to diagnosis and management. J Nucl Cardiol 2022.

  144. Al-Mashat M, Borgquist R, Carlsson M, Arheden H, Jögi J. Pulmonary perfusion and NYHA classification improve after cardiac resynchronization therapy. J Nucl Cardiol 2021.

  145. Cuocolo A, Petretta M. Ventilation/perfusion SPECT: One more promising resource to fight the medical Hydra. J Nucl Cardiol 2021.

  146. Singhvi A, Suacier S, Verma I, Felpel K, Gabriel A, Tandon T, et al. Impact of Gd-153 scanning line source attenuation correction on downstream invasive testing. J Nucl Cardiol 2022;29:1832‐42.

    Article  PubMed  Google Scholar 

  147. Motwani M. You might be correct, but it makes no difference: No impact of attenuation correction for SPECT MPI on downstream testing. J Nucl Cardiol 2022;29:1843‐5.

    Article  PubMed  Google Scholar 

  148. Lee JC, Delaney FT. Prevalence and clinical significance of incidental findings on CT attenuation correction for myocardial perfusion imaging. J Nucl Cardiol 2022;29:1813‐22.

    Article  PubMed  Google Scholar 

  149. Al Badarin FJ. Extra-cardiac findings in the age of hybrid cardiac imaging: Incidental or essential? J Nucl Cardiol 2022;29:1823‐5.

    Article  PubMed  Google Scholar 

  150. Al-Mallah MH, Bateman TM, Branch KR, Crean A, Gingold EL, Thompson RC et al. 2022 ASNC/AAPM/SCCT/SNMMI guideline for the use of CT in hybrid nuclear/CT cardiac imaging. J Nucl Cardiol 2022.

  151. Gennari AG, Grünig H, Benz DC, Skawran S, Maurer A, Abukwaik AMA et al. Low-dose CT from myocardial perfusion SPECT/CT allows the detection of anemia in preoperative patients. J Nucl Cardiol 2022.

  152. Chen X, Zhou B, Shi L, Liu H, Pang Y, Wang R, et al. CT-free attenuation correction for dedicated cardiac SPECT using a 3D dual squeeze-and-excitation residual dense network. J Nucl Cardiol 2022;29:2235‐50.

    Article  PubMed  Google Scholar 

  153. Miller RJH, Slomka PJ. Artificial intelligence-based attenuation correction; closer to clinical reality? J Nucl Cardiol 2022;29:2251‐3.

    Article  PubMed  Google Scholar 

  154. Liu J, Yang Y, Wernick MN, Pretorius PH, Slomka PJ, King MA. Improving detection accuracy of perfusion defect in standard dose SPECT-myocardial perfusion imaging by deep-learning denoising. J Nucl Cardiol 2022;29:2340‐9.

    Article  PubMed  Google Scholar 

  155. Mirshahvalad SA, Chavoshi M, Hekmat S. Diagnostic performance of prone-only myocardial perfusion imaging versus coronary angiography in the detection of coronary artery disease: A systematic review and meta-analysis. J Nucl Cardiol 2022;29:1339‐51.

    Article  PubMed  Google Scholar 

  156. Cantoni V, Green R, Cuocolo A. Prone-only SPECT myocardial perfusion imaging: An alternative standard in clinical practice? J Nucl Cardiol 2022;29:1352‐5.

    Article  PubMed  Google Scholar 

  157. Norouzi G, AsadZade A, Salimi Y, Khoshbakht S, Pirayesh E. Effect of proton pump inhibitors and H2 antagonists on gastric wall uptake in myocardial perfusion scan with 99mTc-sestamibi. J Nucl Cardiol 2022;29:1552‐61.

    Article  PubMed  Google Scholar 

  158. AlJaroudi W. Gastric wall uptake and attenuation artifact in 99m-Tc sestamibi SPECT: Hold the proton pump inhibitors! J Nucl Cardiol 2022;29:1562‐5.

    Article  PubMed  Google Scholar 

  159. Waqar F, Athar MW, Dwivedi AK, Ahmad S, Sanghvi S, Scott E, et al. Visual patterns of breast attenuation artifacts in women and men with an upright and supine cadmiun-zinc-telluride camera. J Nucl Cardiol 2022;29:1976‐84.

    Article  PubMed  Google Scholar 

  160. Cantoni V, Green R, Ricciardi C, Assante R, Zampella E, Nappi C, et al. A machine learning-based approach to directly compare the diagnostic accuracy of myocardial perfusion imaging by conventional and cadmium-zinc telluride SPECT. J Nucl Cardiol 2022;29:46‐55.

    Article  PubMed  Google Scholar 

  161. Chen X, Hendrik Pretorius P, Zhou B, Liu H, Johnson K, Liu YH et al. Cross-vender, cross-tracer, and cross-protocol deep transfer learning for attenuation map generation of cardiac SPECT. J Nucl Cardiol 2022.

  162. Singh A, Miller RJH. Deep learning-based attenuation map generation and correction; could it be useful clinically? J Nucl Cardiol 2021.

  163. Hagio T, Murthy VL. Deep learning: Opening a third eye to myocardial perfusion imaging. J Nucl Cardiol 2022.

  164. Eisenberg E, Miller RJH, Hu LH, Rios R, Betancur J, Azadani P, et al. Diagnostic safety of a machine learning-based automatic patient selection algorithm for stress-only myocardial perfusion SPECT. J Nucl Cardiol 2022;29:2295‐307.

    Article  PubMed  Google Scholar 

  165. Elwazir MY, Chareonthaitawee P. Can we REFINE stress-only SPECT MPI protocols using machine learning? J Nucl Cardiol 2022;29:2308‐10.

    Article  PubMed  Google Scholar 

  166. Miller RJH, Hauser MT, Sharir T, Einstein AJ, Fish MB, Ruddy TD, et al. Machine learning to predict abnormal myocardial perfusion from pre-test features. J Nucl Cardiol 2022;29:2393‐403.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Nakajima K, Nakata T, Doi T, Tada H, Maruyama K. Machine learning-based risk model using (123)I-metaiodobenzylguanidine to differentially predict modes of cardiac death in heart failure. J Nucl Cardiol 2022;29:190‐201.

    Article  PubMed  Google Scholar 

  168. Werner RA, Derlin T, Bengel FM. Personalized prediction of mode of cardiac death in heart failure using supervised machine learning in the context of cardiac innervation imaging. J Nucl Cardiol 2022;29:202‐3.

    Article  PubMed  Google Scholar 

  169. Diniz MA. Statistical methods for validation of predictive models. J Nucl Cardiol 2022.

Download references

Disclosures

The authors have no possible conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi G. Hage MD, FAHA, FACC, MASNC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlJaroudi, W.A., Hage, F.G. Review of cardiovascular imaging in the Journal of Nuclear Cardiology 2022: single photon emission computed tomography. J. Nucl. Cardiol. 30, 452–478 (2023). https://doi.org/10.1007/s12350-023-03216-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-023-03216-4

Keywords

Navigation