Skip to main content

Advertisement

Log in

Myocardial flow reserve estimation with contemporary CZT-SPECT and 99mTc-tracers lacks precision for routine clinical application

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

PET myocardial flow reserve (MFR) has established diagnostic and prognostic value. Technological advances have now enabled SPECT MFR quantification. We investigated whether SPECT MFR precision is sufficient for clinical categorization of patients.

Methods

Validation studies vs invasive flow measurements and PET MFR were reviewed to determine global SPECT MFR thresholds. Studies vs PET and a SPECT MFR repeatability study were used to establish imprecision in SPECT MFR measurements as the standard deviation of the difference between SPECT and PET MFR, or test-retest SPECT MFR. Simulations were used to evaluate the impact of SPECT MFR imprecision on confidence of clinically relevant categorization.

Results

Based on validation studies, the typical PET MFR categories were used for SPECT MFR classification (< 1.5, 1.5-2.0, > 2.0). Imprecision vs PET MFR ranged from 0.556 to 0.829, and test-retest imprecision was 0.781-0.878. Simulations showed correct classification of up to only 34% of patients when 1.5 ≤ true MFR ≤ 2.0. Categorization with high confidence (> 80%) was only achieved for extreme MFR values (< 1.0 or > 2.5), with correct classification in only 15% of patients in a typical lab with MFR of 1.8 ± 0.5.

Conclusions

Current SPECT-derived estimates of MFR lack precision and require further optimization for clinical risk stratification.

Chinese Abstract

背景

PET 心肌血流储备 (Myocardial Flow Reserve, MFR)诊断和预后价值已经明确。SPECT MFR 的量化随着技术的进步也已实现。我们探讨 SPECT MFR 精度能否满足对患者进行临床分类。

方法

回顾有创血流测量和PET-MFR对比的研究来确定SPECT的整体MFR阈值。PET和SPECT-MFR重复性研究用于确定SPECT-MFR测量的不精确性, 并以此作为SPECT和PET-MFR之间或SPECT-MFR的重测差异的标准差。模拟用来评估SPECT MFR的不精确性对临床相关分类可信度的影响。

结果

在验证研究中, SPECT-MFR分类采用典型PET-MFR分类 (< 1.5, 1.5-2.0, > 2.0)。对比PET-MFR, 不精确度的比值范围为0.556∼0.829, 重测不精确度为0.781∼0.878。模拟显示, 当 1.5≤真实 MFR≤2.0时, 正确分类的患者只有 34%。 在MFR值为1.8±0.5的典型实验模拟中, 只有15%的患者进行了正确的分类, 只有极端的MFR值 (< 1.0或 >2.5) 才能实现高置信度分类 (>80%)。

结论

目前SPECT估计得出的MFR缺乏精确性, 用于临床风险分层尚需要进一步优化。

French Abstract

Mise en contexte

L’évaluation de la réserve du flot myocardique (RFM) en TEP possède une valeur diagnostique et pronostique reconnue. Des avancées technologiques permettent maintenant une quantification de la RFM à l’aide de la SPECT.

Méthodologie

Des études de validation versus des mesures de flot invasives et de la RFM en TEP ont été analysées afin de déterminer les seuils globaux de la RFM en SPECT. Les études TEP et de répétabilité de la RFM en SPECT ont été utilisées afin d’établir le degré d’imprécision sur les mesures de la RFM en SPECT comme déviation standard de la différence entre la RFM évaluée en SPECT et en TEP, ou évaluation – réévaluation de la RFM en SPECT. Des simulations ont été utilisées afin d’évaluer l’impact de l’imprécision de la RFM en SPECT sur la confiance de catégorisation clinique.

Résultats

Basées sur les études de validation, les catégories de RFM en TEP typiques ont été utilisées pour la classification de la RFM en SPECT (< 1.5, 1.5–2.0, > 2.0). L’imprécision versus RFM en TEP variait de 0.556 à 0.829 et l’imprécision de l’évaluation-réévaluation était de 0.781–0.878. Les simulations ont démontré une classification correcte jusqu’à seulement 34% des patients lorsque la RFM vraie se situait entre 1.5 et 2.0. Une catégorisation avec un haut degré de confiance (> 80%) a été effectuée seulement pour les valeurs extrêmes de RFM (< 1.0 ou > 2.5) avec une classification correcte chez uniquement 15% des patients vus dans un laboratoire typique avec une RFM de 1.8 ± 0.5.

Conclusion

Les estimations de la RFM à partir des SPECT actuels manquent de précision et nécessitent davantage d’optimisation pour la stratification du risque clinique.

Spanish Abstract

Antecedentes

la reserva de flujo miocárdico (RFM) por PET tiene un valor diagnóstico y pronóstico bien establecido. Los avances tecnológicos ahora han permitido la cuantificación RFM por SPECT. Investigamos si la precisión de la RFM por SPECT es suficiente para la categorización clínica de pacientes.

Métodos

se revisaron los estudios de validación versus mediciones invasivas de flujo y RFM por PET para determinar los puntos de cohorte globales de la RFM por SPECT. Estudios versus PET y un estudio de repetibilidad de la RFM por SPECT fueron usados para establecer la imprecisión de las mediciones de RFM por SPECT como la desviación estándar de la diferencia entre la RFM por SPECT y PET, o estudio-repetir estudio de la RFM por SPECT. Se utilizaron simulaciones para evaluar el impacto de la imprecisión en la confianza de la categorización clínicamente relevante por la RFM por SPECT.

Resultados

basado en estudios de validación, las típicas categorías de la RFM por PET se utilizaron para la clasificación de la RFM por SPECT (< 1.5, 1.5–2.0, > 2.0). La imprecisión frente a la RFM por PET osciló entre 0.556 y 0.829, y la imprecisión de estudio-repetir estudio fue de 0.781–0.878. Las simulaciones mostraron una correcta clasificación de hasta solo el 34% de los pacientes cuando 1.5 ≤ RFM real ≤ 2.0. La categorización con alta confianza (> 80%) solo se logró para valores extremos de RFM (< 1.0 o > 2.5), con clasificación correcta en solo el 15% de los pacientes en un laboratorio típico con RFM de 1.8 ± 0.5.

Conclusiones

las estimaciones actuales de MFR derivadas de SPECT carecen de precisión y requieren una mayor optimización para la estratificación del riesgo clínico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

FFR:

Fractional flow reserve

ICA:

Invasive coronary angiography

LVEF:

Left ventricular ejection fraction

MBF:

Myocardial blood flow

MFR:

Myocardial flow reserve

MPI:

Myocardial perfusion imaging

NAC:

Non-attenuation corrected

SD:

Standard deviation

SSS:

Summed stress score

References

  1. Murthy VL, Di Carli MF. Non-invasive quantification of coronary vascular dysfunction for diagnosis and management of coronary artery disease. J Nucl Cardiol 2012;19:1060-75

    Article  Google Scholar 

  2. Murthy VL, Naya M, Foster CR et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation 2011;124:2215-24

    Article  Google Scholar 

  3. Ziadi MC, deKemp RA, Williams KA et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol 2011;58:740-48

    Article  Google Scholar 

  4. Ziadi MC, Beanlands RSB. The clinical utility of assessing myocardial blood flow using positron emission tomography. J Nucl Cardiol 2010;17:571-81

    Article  Google Scholar 

  5. Naya M, Murthy VL, Taqueti VR et al. Preserved coronary flow reserve effectively excludes high-risk coronary artery disease on angiography. J Nucl Med 2014;55:248-55

    Article  Google Scholar 

  6. Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: Design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887-02

    Article  Google Scholar 

  7. Erlandsson K, Kacperski K, van Gramberg D, Hutton BF. Performance evaluation of D-SPECT: A novel SPECT system for nuclear cardiology. Phys Med Biol 2009;54:2635-49

    Article  Google Scholar 

  8. Slomka PJ, Miller RJH, Hu L-H, Germano G, Berman DS. Solid-state detector SPECT myocardial perfusion imaging. J Nucl Med 2019;60:1194-04

    Article  CAS  Google Scholar 

  9. Zavadovsky KV, Mochula AV, Maltseva AN et al. The current status of CZT SPECT myocardial blood flow and reserve assessment: Tips and tricks. J Nucl Cardiol. 2021. https://doi.org/10.1007/s12350-021-02620-y

    Article  PubMed  Google Scholar 

  10. Wells RG, Marvin B, Poirier M, Renaud J, deKemp RA, Ruddy TD. Optimization of SPECT measurement of myocardial blood flow with corrections for attenuation, motion, and blood binding compared with PET. J Nucl Med 2017;58:2013-19

    Article  CAS  Google Scholar 

  11. Otaki Y, Manabe O, Miller RJH et al. Quantification of myocardial blood flow by CZT-SPECT with motion correction and comparison with 15O-water PET. J Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01854-1

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ficaro EP, Lee BC, Kritzman JN, Corbett JR. Corridor4DM: The Michigan method for quantitative nuclear cardiology. J Nucl Cardiol 2007;14:455-65

    Article  Google Scholar 

  13. Lee BC, Moody JB, Poitrasson-Rivière A et al. Automated dynamic motion correction using normalized gradient fields for 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2020;27:1982-98

    Article  Google Scholar 

  14. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 2007;34:1765-74

    Article  Google Scholar 

  15. Acampa W, Zampella E, Assante R et al. Quantification of myocardial perfusion reserve by CZT-SPECT: A head to head comparison with 82Rubidium PET imaging. J Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-020-02129-w

    Article  PubMed  Google Scholar 

  16. Agostini D, Roule V, Nganoa C et al. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: Head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging 2018;45:1079-90

    Article  CAS  Google Scholar 

  17. de Souza ACAH, Gonçalves BKD, Tedeschi AL, Lima RSL. Quantification of myocardial flow reserve using a gamma camera with solid-state cadmium-zinc-telluride detectors: Relation to angiographic coronary artery disease. J Nucl Cardiol 2019;28:876

    Article  Google Scholar 

  18. Ben Bouallègue F, Roubille F, Lattuca B et al. SPECT myocardial perfusion reserve in patients with multivessel coronary disease: Correlation with angiographic findings and invasive fractional flow reserve measurements. J Nucl Med 2015;56:1712-17

    Article  Google Scholar 

  19. Giubbini R, Bertoli M, Durmo R et al. Comparison between N13NH3-PET and 99mTc-Tetrofosmin-CZT SPECT in the evaluation of absolute myocardial blood flow and flow reserve. J Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01939-x

    Article  PubMed  Google Scholar 

  20. Wells RG, Radonjic I, Clackdoyle D et al. Test-retest precision of myocardial blood flow measurements with 99mTc-tetrofosmin and solid-state detector single photon emission computed tomography. Circ Cardiovasc Imaging 2020;13:e009769

    Article  Google Scholar 

  21. Murthy VL, Bateman TM, Beanlands RS et al. Clinical quantification of myocardial blood flow using PET: Joint Position Paper of the SNMMI Cardiovascular Council and the ASNC. J Nucl Med 2018;59:273-93

    Article  CAS  Google Scholar 

  22. Patel KK, Spertus JA, Chan PS et al. Myocardial blood flow reserve assessed by positron emission tomography myocardial perfusion imaging identifies patients with a survival benefit from early revascularization. Eur Heart J 2019;41:759-68

    Article  Google Scholar 

  23. Klein R, Ocneanu A, Renaud JM, Ziadi MC, Beanlands RSB, deKemp RA. Consistent tracer administration profile improves test-retest repeatability of myocardial blood flow quantification with (82)Rb dynamic PET imaging. J Nucl Cardiol 2016;25:1-13

    Google Scholar 

  24. Shrestha U, Sciammarella M, Alhassen F et al. Measurement of absolute myocardial blood flow in humans using dynamic cardiac SPECT and 99mTc-tetrofosmin: Method and validation. J Nucl Cardiol 2017;24:268-77

    Article  Google Scholar 

  25. Wells RG, Timmins R, Klein R et al. Dynamic SPECT measurement of absolute myocardial blood flow in a porcine model. J Nucl Med 2014;55:1685

    Article  CAS  Google Scholar 

  26. Moody JB, Murthy VL, Lee BC, Corbett JR, Ficaro EP. Variance estimation for myocardial blood flow by dynamic PET. IEEE Trans Med Imaging 2015;34:2343-53

    Article  Google Scholar 

  27. Leppo JA, Meerdink DJ. Comparison of the myocardial uptake of a technetium-labeled isonitrile analogue and thallium. Circ Res 1989;65:632-39

    Article  CAS  Google Scholar 

  28. Iida H, Eberl S, Kim K-M et al. Absolute quantitation of myocardial blood flow with (201)Tl and dynamic SPECT in canine: Optimisation and validation of kinetic modelling. Eur J Nucl Med Mol Imaging 2008;35:896-05

    Article  Google Scholar 

  29. Cuddy-Walsh SG, Wells RG. Patient-specific estimation of spatially variant image noise for a pinhole cardiac SPECT camera. Med Phys 2018;45:2033-47

    Article  Google Scholar 

  30. Kennedy JA, Israel O, Frenkel A. 3D iteratively reconstructed spatial resolution map and sensitivity characterization of a dedicated cardiac SPECT camera. J Nucl Cardiol 2014;21:443-52

    Article  Google Scholar 

  31. Lee BC, Moody JB, Poitrasson-Rivière A et al. Blood pool and tissue phase patient motion effects on 82rubidium PET myocardial blood flow quantification. J Nucl Cardiol 2019;26:1918-29

    Article  Google Scholar 

  32. Otaki Y, Lassen ML, Manabe O et al. Short-term repeatability of myocardial blood flow using 82Rb PET/CT: The effect of arterial input function position and motion correction. J Nucl Cardiol. 2019. https://doi.org/10.1007/s12350-019-01888-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Poitrasson-Rivière A, Moody JB, Hagio T et al. Reducing motion-correction-induced variability in 82rubidium myocardial blood-flow quantification. J Nucl Cardiol 2020;27:1104-13

    Article  Google Scholar 

  34. Bailly M, Thibault F, Courtehoux M, Metrard G, Ribeiro MJ. Impact of attenuation correction for CZT-SPECT measurement of myocardial blood flow. J Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-020-02075-7

    Article  PubMed  Google Scholar 

  35. Byrne C, Kjaer A, Olsen NE, Forman JL, Hasbak P. Test–retest repeatability and software reproducibility of myocardial flow measurements using rest/adenosine stress Rubidium-82 PET/CT with and without motion correction in healthy young volunteers. J Nucl Cardiol. 2020. https://doi.org/10.1007/s12350-020-02140-1

    Article  PubMed  Google Scholar 

  36. Kitkungvan D, Johnson NP, Roby AE, Patel MB, Kirkeeide R, Gould KL. Routine clinical quantitative rest stress myocardial perfusion for managing coronary artery disease: Clinical relevance of test-retest variability. JACC Cardiovasc Imaging 2017;10:565–577

    Article  Google Scholar 

  37. Johnson NP, Gould KL. Regadenoson vs dipyridamole hyperemia for cardiac PET imaging. JACC Cardiovasc Imaging 2015;8:438-47

    Article  Google Scholar 

Download references

Acknowledgements

JNC thanks Weihua Zhou, PhD for providing the Chinese abstract, Raymond Taillefer, MD for providing the French abstract, and Erick Alexanderson, MD for providing the Spanish abstract.

Disclosures

J.M. Renaud, A. Poitrasson-Riviere, T. Hagio and J.B. Moody are employees of INVIA Medical Imaging Solutions. J.M. Renaud is a consultant for Jubilant DraxImage and receives royalties from sales and licensing of FlowQuant software. E.P. Ficaro is an owner and stockholder of INVIA Medical Imaging Solutions, which produces Corridor4DM, a clinical software package for nuclear cardiology analysis. V.L. Murthy is supported by R01AG059729 from the National Institute on Aging, U01DK123013 from the National Institute of Diabetes and Digestive and Kidney Disease, and R01HL136685 from the National Heart, Lung, and Blood Institute as well as the Melvyn Rubenfire Professorship in Preventive Cardiology. Dr. Murthy has received research grants and speaking honoraria from Siemens Medical Imaging. He serves as a scientific advisor for Ionetix and owns stock options in the same. Dr. Murthy also owns stock in General Electric and Cardinal Health. He has received expert witness payments on behalf of Jubilant DraxImage and a speaking honorarium from 2Quart Medical. Dr. Murthy receives non-financial research support from INVIA Medical Imaging Solutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer M. Renaud MSc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors of this article have provided a PowerPoint file, available for download at SpringerLink, which summarises the contents of the paper and is free for re-use at meetings and presentations. Search for the article DOI on SpringerLink.com.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Renaud, J.M., Poitrasson-Rivière, A., Hagio, T. et al. Myocardial flow reserve estimation with contemporary CZT-SPECT and 99mTc-tracers lacks precision for routine clinical application. J. Nucl. Cardiol. 29, 2078–2089 (2022). https://doi.org/10.1007/s12350-021-02761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-021-02761-0

Keywords

Navigation