Skip to main content
Log in

Advances in composite forming through 25 years of ESAFORM

  • ESAFORM 25 Years On
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The increase in the number of structural applications of composite materials, especially in the aerospace and automotive industries, has led to a demand for robust models to simulate composite forming processes. The mechanical behaviour of composite materials during forming is relatively complex due to their fibre-matrix composition. Many research studies have been conducted in the past 25-plus years into experimental methods for the characterization of the mechanical behaviours that are exhibited by textile-reinforced composite material systems during forming and into the development of material models to be used in computer codes for forming simulations. These studies have been presented and discussed in the ESAFORM conferences since 1997 and especially in the 'Composite Forming Processes' mini-symposium launched in 2001. This article presents a survey of the research carried out in this context. Mechanical characterization tests specific to composite forming are presented as well as recent analysis techniques such as digital image correlation and X-ray tomography. Three-dimensional mechanical behaviour laws, in particular hypo- and hyperelastic, have been developed and extended to second gradient models. Specific shell approaches have been presented and their application to wrinkling analysis. Resin flow and permeability analysis is another area of research in composite forming processes which are discussed in this article. Research on certain processes is also presented, in particular thermoforming of thermoplastic composites, wet compression moulding, pultrusion, automated fibre placement and three-dimensional printing. This comprehensive review of the works of multiple research groups is a recognition of the breadth and depth of efforts that have been invested into the understanding of the manufacturability of textile-reinforced composite materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig.11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Lindberg J, Behre B, Dahlberg B (1961) Shearing and buckling of various commercial fabrics. Text Res J 31(2):99–122

    Article  Google Scholar 

  2. Grosberg P, Park BJ (1966) The mechanical properties of woven fabrics, part V: the initial modulus and the frictional restraint in shearing of plain weave fabrics. Text Res J 36:420–431

    Article  Google Scholar 

  3. Kawabata S, Niwa M, Kawai H (1973) 5—The finite-deformation theory of plain-weave fabrics. Part III: The shear-deformation theory. J Textile Institute 64(2):62–85

    Article  Google Scholar 

  4. McGuinness GB, OBradaigh CM (1997) Development of rheological models for forming flows and picture-frame shear testing of fabric reinforced thermoplastic sheets. J Non-Newtonian Fluid Mech 73:1–28

    Article  Google Scholar 

  5. Wang J, Page JR, Paton R (1998) Experimental investigation of the draping properties of reinforcement fabrics. Compos Sci Technol 58:229–237

    Article  Google Scholar 

  6. Lebrun G, Bureau MN, Denault J (2003) Evaluation of biasextension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos Struct 61:341–352

    Article  Google Scholar 

  7. Lomov SV, Verpoest I (2006) Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Compos Sci Technol 66:919–933

    Article  Google Scholar 

  8. Willems A, Lomov SV, Verpoest I, Vandepitte D (2008) Optical strain fields in shear and tensile testing of textile reinforcements. Compos Sci Technol 68(3–4):807–819

    Article  Google Scholar 

  9. Cao J, Akkerman R, Boisse P, Chen J et al (2008) Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos Part A 39:1037–1053

    Article  Google Scholar 

  10. Liu L, Chen J, Li X, Sherwood J (2005) Two-Dimensional Macro-Mechanics Shear Models of Woven Fabrics. Compos A 36(1):105–114

    Article  Google Scholar 

  11. Harrison P, Clifford MJ, Long AC (2004) Shear characterisation of viscous woven textile composites, a comparison between picture frame and bias-extension experiments. Compos Sci Technol 64:1453–1465

    Article  Google Scholar 

  12. Launay J, Hivet G, Duong AV, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Technol 68:506–515

    Article  Google Scholar 

  13. Wang P, Hamila N, Pineau P, Boisse P (2014) Thermomechanical analysis of thermoplastic composite prepregs using bias-extension test. J Thermoplast Compos Mater 27(5):679–698

    Article  Google Scholar 

  14. White K, Krogh C, Sherwood J (2019) Investigation of Shear Characterization of UHMWPE Unidirectional and Highly-Directional Cross-plies for Finite Element Simulation of Composite Processing, 22nd ESAFORM Conference on Material Forming, Victoria-Gastiez, Spain

  15. Krogh C, Dangora L, White K, Jakobsen J, Sherwood J (2019) 256 Shades of Gray: Application of Image Processing to Evaluate the Effect of Sample Geometry and Constant Shear Strain Rates in the Picture-Frame Test, 22nd ESAFORM Conference on Material Forming Victoria-Gastiez, Spain

  16. Komeili M, Milani AS (2016) (2016), On effect of shear-tension coupling in forming simulation of woven fabric reinforcements. Compos Part B Eng 99:17–29

    Article  Google Scholar 

  17. Yao Y, Peng X, Gong Y (2019) Influence of tension–shear coupling on draping of plain weave fabrics. J Mater Sci 54:6310–6322

    Article  Google Scholar 

  18. Alshahrani H. (2020), Characterization and finite element modeling of coupled properties during polymer composites forming processes. Mech Mater;144: 103370

  19. Boisse P, Hamila N, Madeo A (2016) Modelling the development of defects during composite reinforcements and prepreg forming. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374(2071):20150269

    Article  Google Scholar 

  20. Harrison P, Abdiwi F, Guo Z, Potluri P, Yu WR (2012) Characterising the shear–tension coupling and wrinkling behavior of woven. Compos Part A 43:903–914

    Article  Google Scholar 

  21. Nosrat-Nezami F, Gereke T, Eberdt C, Cherif C (2014) Characterisation of the shear–tension coupling of carbon-fibre fabric under controlled membrane tensions for precise simulative predictions of industrial preforming processes. Compos Part A 67:131–139

    Article  Google Scholar 

  22. Kashani MH, Rashidi A, Crawford BJ, Milani AS (2016) Analysis of a two-way tension-shear coupling in woven fabrics under combined loading tests: Global to local transformation of non-orthogonal normalized forces and displacements. Compos A 88:272–285

    Article  Google Scholar 

  23. Montazerian H, Rashidi A, Hoorfar M, Milani AS (2019) A frameless picture frame test with embedded sensor: Mitigation of imperfections in shear characterization of woven fabrics. Compos Struct 211:112–124

    Article  Google Scholar 

  24. Prodromou A, Chen J (1997) On the Relationship between Shear Angle and Wrinkling of Textile Composite Preforms. Compos Part A, Appl Sci Manuf 28:491–503

    Article  Google Scholar 

  25. Rozant O, Bourban P-E, Månson J-A (2000) Drapability of Dry Textile Fabrics for Stampable Thermoplastic Preforms. Compos Part A Appl Sci Manuf 31:1167–1177

    Article  Google Scholar 

  26. Sharma SB, Sutcliffe MPF, Chang SH (2003) Characterisation of material properties for draping of dry woven composite material. Compos Part A 34:1167–1175

    Article  Google Scholar 

  27. Huang J, Boisse P, Hamila N, Gnaba I, Soulat D, Wang P (2021) Experimental and numerical analysis of textile composite draping on a square box. Influence of the weave pattern. Compos Struct 267:113844

    Article  Google Scholar 

  28. Boisse P, Hamila N, Guzman-Maldonado E, Madeo A, Hivet G, Dell’Isola F (2017) The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review. IntJ Mater Form 10(4):473–492

    Article  Google Scholar 

  29. Peng XQ, Cao J (2005) A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Compos A 36(6):859–874

    Article  Google Scholar 

  30. Cao J, Composites Forming, Cao research lab, Northwestern, https://www.cao.mech.northwestern.edu/composites-forming/, Accessed February, 09 2022

  31. Boisse P, Cherouat A, Gelin JC, Sabhi H (1995) Experimental study and finite element simulation of a glass fiber fabric shaping process. Polym Compos 16(1):83–95

    Article  MATH  Google Scholar 

  32. Ten Thije RHW, Akkerman R, Huétink J (2007) Large deformation simulation of anisotropic material using an updated Lagrangian finite element medthod. Comp Meth Appl Mech Engin 196(33–34):3141–3150

    Article  MATH  Google Scholar 

  33. Dong L, Lekakou C, Bader MG (2001) Processing of composites: simulations of the draping of fabrics with updated material behaviour law. J Compos Mater 35(2):138–163

    Article  Google Scholar 

  34. Chen S, Harper LT, Endruweit A, Warrior NA (2015) Formability optimisation of fabric preforms by controlling material draw-in through in-plane constraints. Compos A 76:10–19

    Article  Google Scholar 

  35. Boisse P, Hamila N, Vidal-Sallé E, Dumont F (2011) Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffnesses. Compos Sci Technol 71(5):683–692

  36. Liang B, Hamila N, Peillon M, Boisse P (2014) Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations. Compos A 67:111–122

    Article  Google Scholar 

  37. Dangora LM, Mitchell CJ, Sherwood JA (2015) Predictive model for the detection of out-of-plane defects formed during textile-composite manufacture. Composites Part A 78:102–112

    Article  Google Scholar 

  38. Yu F, Chen S, Harper LT, Warrior NA (2021) Simulating the effect of fabric bending stiffness on the wrinkling behaviour of biaxial fabrics during preforming. Composites Part A 143:106308

    Article  Google Scholar 

  39. Döbrich O, Gereke T, Diestel O, Krzywinski S, Cherif C (2014) Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the mechanical behavior of textiles with a laminate formulation. J Ind Textil 44(1):70–84

    Article  Google Scholar 

  40. Dörr D, Schirmaier FJ, Henning F, Kärger L (2017) A viscoelastic approach for modeling bending behavior in finite element forming simulation of continuously fiber reinforced composites. Compos A 94:113–123

    Article  Google Scholar 

  41. Peirce FT (1930) The “handle” of cloth as a measurable quantity. J Textil Inst Trans 21(9):T377-416

    Article  Google Scholar 

  42. ISO (2011) Reinforcement fabrics — determination of conventional flexural stiffness —fixed-angle flexometer method ISO 4604

  43. De Bilbao E, Soulat D, Hivet G, Gasser A (2010) Experimental study of bending behavior of reinforcements. Exp Mech 50(3):333–351

    Article  Google Scholar 

  44. Soteropoulos D, Fetfatsidis K, Sherwood J, Langworthy J (2011) Digital Method of Analyzing the Bending Stiffness of Non-Crimp Fabrics. Proceedings of the 14th ESAForm Conference on Material Forming. April 27–29, 2011. Belfast, Ireland, AIP Conference Proceedings 1353(2011):913

  45. Liang B, Chaudet P, Boisse P. Curvature determination in the bending test of continuous fibre reinforcements. Strain 2017;53(1).

  46. Kawabata S (1980) The standardization and analysis of hand evaluation. The Textile Machinery Society of Japan, Osaka

    Google Scholar 

  47. Lomov SV, Verpoest I, Barburski M, Laperre J (2003) Carbon composites based on multiaxial multiply stitched preforms. Part 2. KES-F characterisation of the deformability of the preforms at low loads. Compos A 34(4):359–70

    Article  Google Scholar 

  48. Sachs U, Akkerman R (2017) Viscoelastic bending model for continuous fiber-reinforced thermoplastic composites in melt. Compos A Appl Sci Manuf 100:333–341

    Article  Google Scholar 

  49. Wang J, Long AC, Clifford MJ (2010) Experimental measurement and predictive modelling of bending behaviour for viscous unidirectional composite materials. Int J Material Form 3(2):1253–1266

    Article  Google Scholar 

  50. Martin TA, Bhattacharyya D, Collins IF (1995) Bending of fibre-reinforced thermoplastic sheets. Compos Manuf 6(34):177–187

    Article  Google Scholar 

  51. Margossian A, Bel S, Hinterhoelzl R (2015) Bending characterisation of a molten unidirectional carbon fibre reinforced thermoplastic composite using a Dynamic Mechanical Analysis system. Compos A 77:154–163

    Article  Google Scholar 

  52. Alshahrani H, Hojjati M (2017) A new test method for the characterization of the bending of textile prepregs. Compos A 97:128–140

    Article  Google Scholar 

  53. Dangora LM, Mitchell C, White KD, Sherwood JA, Parker JC (2018) Characterization of temperature-dependent tensile and flexural rigidities of a cross-ply thermoplastic lamina with implementation into a forming model. IntJ Mater Form 11(1):43–52

    Article  Google Scholar 

  54. Haanappel SP, Ten Thije RHW, Sachs U, Rietman B, Akkerman R (2014) Formability analyses of uni-directional and textile reinforced thermoplastics. Compos A 56:80–92

    Article  Google Scholar 

  55. Chen B, Colmars J, Naouar N, Boisse P (2021) A hypoelastic stress resultant shell approach for simulations of textile composite reinforcement forming. Composites Part A: Applied Science and Manufacturing 149:106558

    Article  Google Scholar 

  56. Boisse P, Colmars J, Hamila N, Naouar N, Steer Q (2018) Bending and wrinkling of composite fiber preforms and prepregs. A review and new developments in the draping simulations. Compos B Eng 141:234–249

    Article  Google Scholar 

  57. Robitaille F, Gauvin R (1998) Compaction of textile reinforcements for composites manufacturing. I: Review of experimental results. Polym Compos 19(2):198–216

    Article  Google Scholar 

  58. Chen B, Chou T-W (2000) Compaction of woven-fanric preforms: nesting and multi-layer deformation. Compos Sci Technol 60:2223–2231

    Article  Google Scholar 

  59. Comas-Cardona S, Le Grognec P, Binetruy C, Krawczak P (2007) Unidirectional compression of fibre reinforcements. Part 1: A non-linear elastic-plastic behaviour. Compos Sci Technol 67(3):507–514

    Article  Google Scholar 

  60. Endruweit A, Long AC (2010) Analysis of compressibility and permeability of selected 3d woven reinforcements. J Compos Mater 44(24):2833–2862

    Article  Google Scholar 

  61. Lomov SV, Gorbatikh L, Kotanjac Z, Koissin V, Houlle M, Rochez O, Karahan M, Mezzo L, Verpoest I (2011) Compressibility of carbon woven fabric with carbon nanotubes grown on the fibres. Compos Sci Technol 71(3):315–325

    Article  Google Scholar 

  62. Lomov SV, Wicks S, Gorbatikh L, Verpoest I, Wardle BL (2014) Compressibility of nanofiber-grafted alumina fabric and yarns: Aligned carbon nanotube forests. Compos Sci Technol 90:57–66

    Article  Google Scholar 

  63. Gutowski TG, Kingery J, Boucher D (1986) Experiments in composites consolidation: fiber deformation. Annual Technical Conference of the Society of Plastic Engineers. Brookfield: 1316–1320

  64. Lomov SV, Verpoest I (2000) Compression of woven reinforcements: a mathematical model. J Reinf Plast Compos 19(16):1329–1350

    Article  Google Scholar 

  65. Chen B, Cheng AH-D, Chou T-W (2001) A nonlinear compaction model for fibrous preforms. Compos A 32:701–707

    Article  Google Scholar 

  66. Chen ZR, Ye L (2006) A micromechanical compaction model for woven fabric preforms. Part II: Multilayer. Compos Sci Technol 66(16):3263–3272

    Article  Google Scholar 

  67. Chen ZR, Ye L, Kruckenberg T (2006) A micromechanical compaction model for woven fabric preforms. Part I: Single layer. Compos Sci Technol 66(16):3254–3262

    Article  Google Scholar 

  68. Bickerton, S., M. J. Buntain and A. A. Somashekar (2003) "The viscoelastic compression behavior of liquid composite molding preforms." Composites Part A, 431–444

  69. Kelly PA, Umer R, Bickerton S (2006) Viscoelastic response of dry and wet fibrous materials during infusion processes. Compos A 37(6):868–873

    Article  Google Scholar 

  70. Yong AXA, Aktas A, May D, Endruweit A, Lomov SV et al (2020) Experimental characterisation of textile compaction response: a benchmark exercise. Composites Part A 142:106243

    Article  Google Scholar 

  71. May D, Kühn F, Etchells M, Fauster E, Endruweit A, Lira C (2019) A reference specimen for compaction tests of fiber reinforcements. Advanced Manufacturing: Polymer & Composites Science 5(4):230–233

    Google Scholar 

  72. Sousa P, Lomov SV, Ivens J (2020) Methodology of dry and wet compressibility measurement. Composites Part A 128:105672

    Article  Google Scholar 

  73. Werlen V, Rytka C, Michaud V (2021) A numerical approach to characterize the viscoelastic behaviour of fibre beds and to evaluate the influence of strain deviations on viscoelastic parameter extraction. Composites Part a-Applied Science and Manufacturing 143:106315

    Article  Google Scholar 

  74. Steer Q, Colmars J, Boisse P (2018) Stitch Modeling of Non Crimp Fabric in Forming Simulations. 21st International ESAFORM Conference on Material Forming (ESAFORM), Univ Palermo, Palermo, ITALY

  75. Lomov SV (ed) (2011) Non-crimp fabric composites: manufacturing, properties and applications. Cambridge, Woodhead Publisher Ltd

    Google Scholar 

  76. Mikkelsen LP, Fæster S, Goutianos S, Sørensen BF (2021) Scanning electron microscopy datasets for local fibre volume fraction determination in non-crimp glass-fibre reinforced composites. Data in Brief 35:106868

    Article  Google Scholar 

  77. Straumit I, Hahn C, Winterstein E, Plank B, Lomov SV, Wevers M (2016) Computation of permeability of a non-crimp carbon textile reinforcement based on X-ray computed tomography images. Compos A 81:289–295

    Article  Google Scholar 

  78. Auenhammer RM, Mikkelsen LP, Asp LE, Blinzler BJ (2020) "Dataset of non-crimp fabric reinforced composites for an X-ray computer tomography aided engineering process." Data in Brief 33

  79. Auenhammer RM, Mikkelsen LP, Asp LE, Blinzler BJ (2021) Automated X-ray computer tomography segmentation method for finite element analysis of non-crimp fabric reinforced composites. Composite Structures 256:113136

    Article  Google Scholar 

  80. Korkiakoski S, Sarlin E, Suihkonen R, Saarela O (2017) Internal structure and fatigue performance of quasi-unidirectional non-crimp fabric reinforced laminates. J Compos Mater 51(24):3405–3423

    Article  Google Scholar 

  81. Wilhelmsson D, Gutkin R, Edgren F, Asp LE (2018) An experimental study of fibre waviness and its effects on compressive properties of unidirectional NCF composites. Compos A 107:665–674

    Article  Google Scholar 

  82. Kunze E, Galkin S, Bohm R, Gude M, Karger L (2020) The Impact of Draping Effects on the Stiffness and Failure Behavior of Unidirectional Non-Crimp Fabric Fiber Reinforced Composites. Materials 13(13):2959

    Article  Google Scholar 

  83. Rouf K, Worswick MJ, Montesano J (2021) A multiscale framework for predicting the mechanical properties of unidirectional non-crimp fabric composites with manufacturing induced defects. J Compos Mater 55(6):741–757

    Article  Google Scholar 

  84. Colin D, Bel S, Hans T, Hartmann M, Drechsler K (2020) Virtual Description of Non-Crimp Fabrics at the Scale of Filaments Including Orientation Variability in the Fibrous Layers. Appl Compos Mater 27(4):337–355

    Article  Google Scholar 

  85. Bel S, Boisse P, Dumont F (2012) Analyses of the Deformation Mechanisms of Non-Crimp Fabric Composite Reinforcements during Preforming. Appl Compos Mater 19:513–528

    Article  Google Scholar 

  86. Schirmaier FJ, Weidenmann KA, Karger L, Henning F (2016) Characterisation of the draping behaviour of unidirectional non-crimp fabrics (UD-NCF). Compos A 80:28–38

    Article  Google Scholar 

  87. Christ M, Herrmann A (2018) Definition and quantification of drapeability through the measurement of constituent effects. 13th International Conference on Textile Composites (TEXCOMP), Milan, ITALY

  88. Krieger H, Gries T, Stapleton SE (2018) Design of Tailored Non-Crimp Fabrics Based on Stitching Geometry. Appl Compos Mater 25(1):113–127

    Article  Google Scholar 

  89. Pourtier J, Duchamp B, Kowalski M, Wang P, Legrand X, Soulat D (2019) Two-way approach for deformation analysis of non-crimp fabrics in uniaxial bias extension tests based on pure and simple shear assumption. IntJ Mater Form 12(6):995–1008

    Article  Google Scholar 

  90. Habboush A, Shao HQ, Jiang JH, Chen NL (2020) Characterization and analysis of in-plane shear behavior for glass warp knitted non-crimp fabrics based on bias extension experiment. J Text Inst 111(3):394–404

    Article  Google Scholar 

  91. Ghazimoradi M, Trejo EA, Carvelli V, Butcher C, Montesano J (2021) Deformation characteristics and formability of a tricot-stitched carbon fiber unidirectional non-crimp fabric. Composites Part A 145:106366

    Article  Google Scholar 

  92. Krishnappa L, Ohlendorf JH, Brink M, Thoben KD (2021) Investigating the factors influencing the shear behaviour of 0/90° non-crimp fabrics to form a reference shear test. J Compos Mater 55(20):2739–2750

    Article  Google Scholar 

  93. Avgoulas EI, Mulvihill DM, Endruweit A, Sutcliffe MPF, Warrior NA, De Focatiis DSA, Long AC (2018) Frictional behaviour of non-crimp fabrics (NCFs) in contact with a forming tool. Tribol Int 121:71–77

    Article  Google Scholar 

  94. Schirmaier FJ, Dörr D, Henning F et al (2017) A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF). Compos A 102:322–335

    Article  Google Scholar 

  95. Trejo EA, Ghazimoradi M, Butcher C, Montesano J (2020) Assessing strain fields in unbalanced unidirectional non-crimp fabrics. Composites Part A 130:105758

    Article  Google Scholar 

  96. Grieser T, Mitschang P (2017) Investigation of the Compaction Behavior of Carbon Fiber NCF for Continuous Preforming Processes. Polym Compos 38(11):2609–2625

    Article  Google Scholar 

  97. Dangora L, Sherwood J, Petrov A, Gorczyca J, Mitchell JG (2013) Forming of Composites using Discontinuous Non-Crimp Fabrics. 28th Technical Conference of the American-Society-for-Composites. Penn State Univ, PA, USA

  98. Lin WN, Jiang YM, Qi YX, Qiao CC, Liao QF, Yang C (2020) Study on shearing shrinkage properties of multilayered biaxial weft knitted fabrics. J Textile Inst 112(10):1678–1687

    Article  Google Scholar 

  99. Arnold SE, Sutcliffe MPF, Oram WLA (2016) Experimental measurement of wrinkle formation during draping of non-crimp fabric. Compos A 82:159–169

    Article  Google Scholar 

  100. Chen S, McGregor OPL, Harper LT, Endruweit A, Warrior NA (2016) Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern. Compos A 91:156–167

    Article  Google Scholar 

  101. Ali H, Noor S, Shao HQ, Jiang JH, Chen NL (2020) Characterization and analysis of wrinkling behavior of glass warp knitted non-crimp fabrics based on double-dome draping geometry. J Eng Fibers Fabr 15:1558925020958521

    Google Scholar 

  102. Kärger L, Galkin S, Kunze E, Gude M, Schäfer B (2021) Prediction of forming effects in UD-NCF by macroscopic forming simulation – Capabilities and limitations. Proceedings ESAFORM 2021. 24th International Conference on Material Forming, Liège, Belgique

  103. Mattner T, Wrensch M, Drummer D (2020) Shear behavior of woven and non-crimp fabric based thermoplastic composites at near-processing conditions. Composites Part B 185:107761

    Article  Google Scholar 

  104. Christ M, Miene A, Morschel U (2017) Measurement and Analysis of Drapeability Effects of Warp-Knit NCF with a Standardised, Automated Testing Device. Appl Compos Mater 24(4):803–820

    Article  Google Scholar 

  105. Mallach A, Hartel F, Heieck F, Fuhr JP, Middendorf P, Gude M (2017) Experimental comparison of a macroscopic draping simulation for dry non-crimp fabric preforming on a complex geometry by means of optical measurement. J Compos Mater 51(16):2363–2375

    Article  Google Scholar 

  106. Bardl G, Nocke A, Hubner M, Gereke T, Pooch M, Schulze M, Heuer H, Schiller M, Kupke R, Klein M, Cherif C (2018) Analysis of the 3D draping behavior of carbon fiber non-crimp fabrics with eddy current technique. Compos B 132:49–60

    Article  Google Scholar 

  107. Khan AM, Bardl G, Nocke A, Cherif C (2019) Quality analysis of 2D and 3D-draped carbon preforms by eddy current scanning. Composites Part B-Engineering 176:107110

    Article  Google Scholar 

  108. Denkena B, Schmidt C, Werner S, Schwittay D (2021) Development of a Shape Replicating Draping Unit for Continuous Layup of Unidirectional Non-Crimp Fabrics on Complex Surface Geometries. J Compos Sci 5:1–13

    Article  Google Scholar 

  109. Zhu SQ, Magnussen CJ, Judd EL, Frank MC, Peters FE (2017) "Automated Composite Fabric Layup for Wind Turbine Blades." Journal of Manufacturing Science and Engineering-Transactions of the Asme 139(6)

  110. Jagpal R, Butler R, Loukaides EG (2019) Towards flexible and defect-free forming of composites through distributed clamping. 2nd CIRP Conference on Composite Material Parts Manufacturing (CIRP-CCMPM), Univ Sheffield, Adv Mfg Res Ctr, Catcliffe, ENGLAND

  111. Krieger H, Gries T, Stapleton SE (2018) Shear and drape behavior of non-crimp fabrics based on stitching geometry. IntJ Mater Form 11(5):593–605

    Article  Google Scholar 

  112. Bohler P, Hartel F, Middendorf P (2013) Identification of forming limits for unidirectional carbon textiles in reality and mesoscopic simulation. 16th ESAFORM Conf.on Material Forming. Aveiro, Portugal.

  113. Zouari B, Dumont F, Daniel JL, Boisse P (2003) Analyses of woven fabric shearing by optical method and implementation in a finite element program. Proc. 6th ESAFORM Conf. Salerno: 875–887

  114. Daniel JL, Soulat D, Boisse P (2004) Shear and tension stiffness influence in composites forming modelling. Proceedings ESAFORM-2004. Trondheim: 301–304

  115. Hivet G, Dumont F, Launay J, Maurel V, Vacher P, Boisse P (2004) Optical analysis of woven fabric's shear behaviour. Proceedings ESAFORM-2004. Trondheim: 353–356

  116. Lomov SV, Willems A, Barburski M, Stoilova T, Verpoest I (2005) Strain field in the picture frame test: Large and small scale optical measurements. Procedings of the 8th ESAFORM Conference on Material Forming. Cluj-Napoca: 935–938

  117. Willems A, Vanderpitte D, Lomov SV, Verpoest I (2005) Biaxial tensile tests on a woven glass/PP fabric under optical strain measurement. Procedings of the 8th ESAFORM Conference on Material Forming. Cluj-Napoca: 1007–1010

  118. Lomov SV, Willems A, Verpoest I, Zhu Y, Barburski M, Stoilova T (2006) Picture frame test of woven fabrics with a full-field strain registration. Text Res J 76(3):243–252

    Article  Google Scholar 

  119. Zouari B, Daniel JL, Boisse P (2006) A woven reinforcement forming simulation method. Influence of the shear stiffness. Comput Struct 84:651–363

    Article  Google Scholar 

  120. Lomov SV, Boisse P, Deluycker E, Morestin F, Vanclooster K, Vandepitte D, Verpoest I, Willems A (2008) Full field strain measurements in textile deformability studies. Compos A 39:1232–1244

    Article  Google Scholar 

  121. Zouari R, Amar SB, Dogui A (2010) Experimental and numerical analyses of fabric off-axes tensile test. The Journal of The Textile Institute 101:58–68

    Article  Google Scholar 

  122. Zhu B, Yu TX, Tao XM (2007) Large deformation and slippage mechanism of plain woven composite in bias extension. Compos A 38(8):1821–1828

    Article  Google Scholar 

  123. Dridi S, Morestin F, Dogui A (2012) Use of digital image correlation to analyse the shearing deformation in woven fabric. Exp Tech 36(5):46–52

    Article  Google Scholar 

  124. Khan MA, Mabrouki T, Boisse P (2009) Numerical and experimental forming analysis of woven composites with double dome benchmark. IntJ Mater Form 2:201–204

    Article  Google Scholar 

  125. Allaoui S, Boisse P, Chatel S, Hamila N, Hivet G, Soulat D, Vidal-Salle E (2011) Experimental and numerical analyses of textile reinforcement forming of a tetrahedral shape. Compos A 42:612–622

    Article  Google Scholar 

  126. Carvelli V, Pazmino J, Lomov SV, Verpoest I (2012) Deformability of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Compos Sci Technol 73:9–18

    Article  Google Scholar 

  127. Pazmino J, Carvelli V, Lomov SV (2014) Formability of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Compos A 61:76–83

    Article  Google Scholar 

  128. Iwata A, Inoue T, Naouar N, Boisse P, Lomov SV (2019) Coupled meso-macro simulation of woven fabric local deformation during draping. Compos A 118:267–280

    Article  Google Scholar 

  129. Eberhardt CN, Clarke AR (2002) Automated reconstruction of curvilinear fibres from 3D datasets acquired by X-ray microtomography. J Microsc 206:41–53

    Article  MathSciNet  Google Scholar 

  130. Summerscales J, Russell PM, Lomov SV, Verpoest I, Parnas R (2004) The fractal dimension of X-ray tomographic sections of a woven composite. Advanced Composite Letters 13(2):115–123

    Article  Google Scholar 

  131. Badel P, Vidal-Salle E, Maire E, Boisse P (2008) Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Compos Sci Technol 68(12):2433–2440

    Article  Google Scholar 

  132. Djukic LP, Herszberg I, Schoeppner GA, Brownlow LA (2008) "Tow Visualisation in Woven Composites using X-Ray Computed Tomography." Rec. Adv.in Textile Composites (TexComp-9): 417–425

  133. Liu Y, Straumit I, Vasiukov D, Lomov SV, Panier S (2017) Prediction of linear and nonlinear behavior of 3D woven composite using mesoscopic voxel models reconstructed from X-ray micro-tomography. Compos Struct 179:568–579

    Article  Google Scholar 

  134. Graupner N, Beckmann F, Wilde F, Muessig J (2014) Using synchroton radiation-based micro-computer tomography (SR µ-CT) for the measurement of fibre orientations in cellulose fibre-reinforced polylactide (PLA) composites. J Mater Sci 49(1):450–460

    Article  Google Scholar 

  135. Naouar N, Vidal-Salle E, Schneider J, Maire E, Boisse P (2014) Meso-scale FE analyses of textile composite reinforcement deformation based on X-ray computed tomography. Compos Struct 116:165–176

    Article  Google Scholar 

  136. Pazmino J, Carvelli V, Lomov SV (2014) Micro-CT analysis of the internal deformed geometry of a non-crimp 3D orthogonal weave e-glass composite reinforcement. Compos B 65:147–157

    Article  Google Scholar 

  137. Barburski M, Straumit I, Zhang X, Wevers M, Lomov SV (2015) Micro-CT analysis of internal structure of sheared textile composite reinforcement. Compos A 73:45–54

    Article  Google Scholar 

  138. Naouar N, Vasiukov D, Park CH, Lomov SV, Boisse P (2020) Meso-FE modelling of textile composites and X-ray tomography. Journal of Material Science 55:16969–16989

    Article  Google Scholar 

  139. Naresh K, Khan KA, Umer R, Cantwell WJ (2020) "The use of X-ray computed tomography for design and process modeling of aerospace composites: A review." Mater Des 190

  140. Wijaya W, Ali MA, Umer R, Khan KA, Kelly PA, Bickerton S (2019) An automatic methodology to CT-scans of 2D woven textile fabrics to structured finite element and voxel meshes. Composites Part a-Applied Science and Manufacturing 125:105561

    Article  Google Scholar 

  141. Wijaya W, Kelly PA, Bickerton S (2020) A novel methodology to construct periodic multi-layer 2D woven unit cells with random nesting configurations directly from mu CT-scans. Composites Science and Technology 193:108125

    Article  Google Scholar 

  142. Mendoza A, Trullo R, Wielhorski Y (2021) Descriptive modeling of textiles using FE simulations and deep learning. Composites Science and Technology 213:108897

    Article  Google Scholar 

  143. Vidal-Salle E, Nguyen QT, Charmetant A, Breard J, Maire E, Boisse P (2010) Use of numerical simulation of woven reinforcement forming at mesoscale: Influence of transverse compression on the global response. IntJ Mater Form 3:699–702

    Article  Google Scholar 

  144. Madra A, Causse P, Trochu F, Adrie J, Maire E, Breitkopf P (2019) Stochastic characterization of textile reinforcements in composites based on X-ray microtomographic scans. Compos Struct 224:111031

    Article  Google Scholar 

  145. Vanaerschot A, Cox BN, Lomov SV, Vandepitte D (2016) Experimentally validated stochastic geometry description for textile composite reinforcements. Compos Sci Technol 122:122–129

    Article  Google Scholar 

  146. Vanaerschot A, Cox BN, Lomov SV, Vandepitte D (2016) Multi-scale modelling strategy for textile composites based on stochastic reinforcement geometry. Comput Methods Appl Mech Eng 310:906–934

    Article  MathSciNet  MATH  Google Scholar 

  147. Straumit I, Lomov SV, Wevers M (2015) Quantification of the internal structure and automatic generation of voxel models of textile composites from X-ray computed tomography data. Compos A 69:150–158

    Article  Google Scholar 

  148. Karamov R, Martulli LM, Kerschbaum M, Sergeichev I, Swolfs Y, Lomov SV (2019) Micro-CT based structure tensor analysis of fibre orientation in random fibre composites versus high-fidelity fibre identification methods. Composite Structures 235:111818

    Article  Google Scholar 

  149. Kärger L, Galkin S, Dörr D, Poppe C (2020) Capabilities of Macroscopic Forming Simulation for Large-Scale Forming Processes of Dry and Impregnated Textiles. Procedia Manufacturing 47:140–147

    Article  Google Scholar 

  150. Xiao H, Bruhns OT, Meyers A (1997) (1997) Hypo-elasticity model based upon the logarithmic stress rate. J Elast 47:51–68

    Article  MATH  Google Scholar 

  151. Boisse P (2007) Finite element analysis of composite forming. In composites forming technologies, Woodhead publishing, pp.46–79, 2007

  152. Xue P, Peng X, Cao J (2003) A non-orthogonal constitutive model for characterizing woven composites. Compos A 34(2):183–193

    Article  Google Scholar 

  153. Peng X, Ding F (2011) Validation of a non-orthogonal constitutive model for woven composite fabrics via hemispherical stamping simulation. Compos A 42(4):400–407

    Article  Google Scholar 

  154. Yu WR, Harrison P, Long A (2005) Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation. Compos A 36(8):1079–1093

    Article  Google Scholar 

  155. Boisse P, Aimène Y, Dogui A, Dridi S, Gatouillat S, Hamila N, ..., Vidal-Sallé E (2010) Hypoelastic, hyperelastic, discrete and semi-discrete approaches for textile composite reinforcement forming. Int J Mater Form 3(2):1229-1240

  156. Khan MA, Mabrouki T, Vidal-Salle E, Boisse P (2010) Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark. J Mater Process Technol 210:378–388

    Article  Google Scholar 

  157. Boehler J-P (1987) Applications of Tensor Functions in Solid Mechanics; Springer: Berlin/Heidelberg, Germany; Volume 292

  158. Itskov M (2000) On the theory of fourth-order tensors and their applications in computational mechanics. Comput Methods Appl Mech Eng 189(2):419–438

    Article  MathSciNet  MATH  Google Scholar 

  159. Criscione JC, Douglas AS, Hunter WC (2001) Physically based strain invariant set for materials exhibiting transversely isotropic behaviour. J Mech Phys Solids 49:871–897

    Article  MATH  Google Scholar 

  160. Charmetant A, Orliac JG, Vidal-Sallé E, Boisse P (2012) Hyperelastic model for large deformation analyses of 3D interlock composite preforms. Compos Sci Technol 72(12):1352–1360

    Article  Google Scholar 

  161. Pazmino J, Mathieu S, Carvelli V, Boisse P, Lomov SV (2015) Numerical modelling of forming of a non-crimp 3D orthogonal weave E-glass composite reinforcement. Compos A 72:207–218

    Article  Google Scholar 

  162. Khiêm VN, Krieger H, Itskov M, Gries T, Stapleton SE (2018) An averaging based hyperelastic modeling and experimental analysis of non-crimp fabrics. Int J of Solids and Structures 154:43–54

    Article  Google Scholar 

  163. Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: Continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190(34):4379–4403

    Article  Google Scholar 

  164. Guzman-Maldonado E, Hamila N, Boisse P, Bikard J (2015) Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastics composites. Compos A 78:211–222

    Article  Google Scholar 

  165. Belnoue JH, Nixon-Pearson OJ, Ivanov D, Hallett SR (2016) A novel hyper-viscoelastic model for consolidation of toughened prepregs under processing conditions. Mech Mater 97:118–134

    Article  Google Scholar 

  166. Dörr D, Schirmaier FJ, Henning F, Kärger L (2017) On the relevance of modeling viscoelastic bending behavior in finite element forming simulation of continuously fiber reinforced thermoplastics. In AIP Conference Proceedings 1896(1):030003

    Article  Google Scholar 

  167. Dörr D, Henning F, Kärger L (2018) Nonlinear hyperviscoelastic modelling of intra-ply deformation behaviour in finite element forming simulation of continuously fibre-reinforced thermoplastics. Compos A 109:585–596

    Article  Google Scholar 

  168. Abdiwi F, Harrison P, Yu WR (2013) Modelling the shear-tension coupling of woven engineering fabrics. Adv Mater Sci Eng 2013:786769

    Article  Google Scholar 

  169. Ferretti M, Madeo A, Dell’Isola F, Boisse P (2014) Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Zeit.t Ange.Math.und Physik, 65(3), 587–612

  170. Boisse P, Hamila N, Madeo A (2018) The difficulties in modeling the mechanical behavior of textile composite reinforcements with standard continuum mechanics of Cauchy. Some possible remedies. Int J Solids Struct 154:55–65

    Article  Google Scholar 

  171. Mathieu S, Hamila N, Bouillon F, Boisse P (2015) Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness. Compo Sci Technol 117:322–333

    Article  Google Scholar 

  172. Madeo A, Ferretti M, Dell’Isola F, Boisse P (2015) Thick fibrous composite reinforcements behave as special second-gradient materials: three-point bending of 3D interlocks. Z Angew Math Phys 66(4):2041–2060

    Article  MathSciNet  MATH  Google Scholar 

  173. Dell’Isola F, Steigmann D (2015) A two-dimensional gradient-elasticity theory for woven fabrics. J Elast 118(1):113–125

    Article  MathSciNet  MATH  Google Scholar 

  174. Dell’Isola F, Cuomo M, Greco L, Della Corte A (2017) Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J Engin Mathematics 103(1):127–157

    Article  MathSciNet  MATH  Google Scholar 

  175. Barbagallo G, Madeo A, Morestin F, Boisse P (2017) Modelling the deep drawing of a 3D woven fabric with a second gradient model. Math Mech Solids 22(11):2165–2179

    Article  MathSciNet  MATH  Google Scholar 

  176. Steer Q, Colmars J, Naouar N, Boisse P (2021) Modeling and analysis of in-plane bending in fibrous reinforcements with rotation-free shell finite elements. Int. J. of Solids and Structures 222:111014

    Article  Google Scholar 

  177. Billoet JL, Cherouat A (2001) Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics. J Mater Process Technol 118:460–471

    Article  Google Scholar 

  178. Lee JS, Hong SJ, Yu W-R et al (2007) The effect of blank holder force on the stamp forming behavior of non-crimp fabric with a chain stitch. Compos Sci Technol 67:357–366

    Article  Google Scholar 

  179. Lin H, Wang J, Long AC et al (2007) Predictive modelling for optimization of textile composite forming. Compos Sci Technol 67:3242–3252

    Article  Google Scholar 

  180. Skordos AA, Monroy Aceves C, Sutcliffe MPF (2007) A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites. Compos A 38:1318–1330

    Article  Google Scholar 

  181. Jauffrès D, Sherwood J, Morris C, Chen J (2009) Discrete Mesoscopic Modeling for the Simulation of Woven-Fabric Reinforcement Forming. Int Journal of Forming 3:1205–1216

    Article  Google Scholar 

  182. Soulat D, Cheruet A, Boisse P (2006) Simulation of continuous fibre reinforced thermoplastic forming using a shell finite element with transverse stress. Comput Struct 84:888–903

    Article  Google Scholar 

  183. Hamila N, Boisse P, Sabourin F et al (2009) A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Meth Engng 79:1443–1466

    Article  MATH  Google Scholar 

  184. Liang B, Colmars J, Boisse P (2017) A shell formulation for fibrous reinforcement forming simulations. Compos A 100:81–96

    Article  Google Scholar 

  185. Wang P, Hamila N, Boisse P (2013) Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix. Compos B Eng 52:127–136

    Article  Google Scholar 

  186. Wang P, Legrand X, Boisse P, Hamila N, Soulat D (2015) Experimental and numerical analyses of manufacturing process of a composite square box part: Comparison between textile reinforcement forming and surface 3D weaving. Compos B Eng 78:26–34

    Article  Google Scholar 

  187. Chen B, Boisse P, Colmars J, Naouar N, Bai R, Chaudet P (2021) Analysis of the Forming of Interlock Textile Composites Using a Hypoelastic Approach. Applied Composite Materials, 1–16

  188. Bel S, Hamila N, Boisse P, Dumont F (2012) Finite element model for NCF composite reinforcement preforming: Importance of inter-ply sliding. Compos A 43(12):2269–2277

    Article  Google Scholar 

  189. Hübner M, Rocher J-E, Allaoui S et al (2016) Simulation-based investigations on the drape behavior of 3D woven fabrics made of commingled yarns. Int J Mater Form 9:591–599

    Article  Google Scholar 

  190. Dörr D, Joppich T, Kugele D et al (2019) A coupled thermomechanical approach for finite element forming simulation of continuously fiber-reinforced semi-crystalline thermoplastics. Composites Part A 125:105508

    Article  Google Scholar 

  191. Bai Renzi, Colmars Julien, Naouar Naim, Boisse Philippe (2020) A specific 3D shell approach for textile composite reinforcements under large deformation. Composites A 139:106135

    Article  Google Scholar 

  192. Bai R, Colmars J, Chen B, Naouar N, Boisse P (2022) The fibrous shell approach for the simulation of composite draping with a relevant orientation of the normals. Composite Structures 115202

  193. Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Int J Numer Meth Eng 2(3):419–451

    Article  Google Scholar 

  194. Schäfer B, Dörr D, Kärger L (2020) Reduced-Integrated 8-Node Hexahedral Solid-Shell Element for the Macroscopic Forming Simulation of Continuous Fibre-Reinforced Polymers. Proc Manufactur 47:134–139

    Article  Google Scholar 

  195. Chen QQ, Saouab A, Boisse P et al (2009) Woven thermoplastic composite forming simulation with solid-shell element method. Int J Simul Multidisci Des Optim 3:337–341

    Article  Google Scholar 

  196. Xiong H, Guzman Maldonado E, Hamila N et al (2018) A prismatic solid-shell finite element based on a DKT approach with efficient calculation of through the thickness deformation. Finite Elem Anal Des 151:18–33

    Article  Google Scholar 

  197. Schäfer B, Dörr D, Kärger L (2021) Potential and challenges of a solid-shell element for the macroscopic forming simulation of engineering textiles. ESAFORM 2021

  198. Zhu B, Yu TX, Teng J, Tao XM (2009) Theoretical Modeling of Large Shear Deformation and Wrinkling of Plain Woven Composite. J Compos Mater 43:125–138

    Article  Google Scholar 

  199. Lightfoot JS, Wisnom MR, Potter K (2013) Defects in woven preforms: formation mechanisms and the effects of laminate design and layup protocol. Composites A 51:99–107

    Article  Google Scholar 

  200. Bloom LD, Wang J, Potter KD (2013) Damage Progression and Defect Sensitivity: An Experimental Study of Representative Wrinkles in Tension. Compos Part B Eng 45:449–458

    Article  Google Scholar 

  201. Lightfoot JS, Wisnom MR, Potter K (2013) A New Mechanism for the Formation of Ply Wrinkles Due to Shear between Plies. Compos Part A 49:139–147

    Article  Google Scholar 

  202. Sjölander J, Hallander P, Åkermo M (2016) Forming Induced Wrinkling of Composite Laminates: A Numerical Study on Wrinkling Mechanisms. Compos Part A 81:41–51

    Article  Google Scholar 

  203. Belnoue J-H, Nixon-Pearson OJ, Thompson AJ, Ivanov DS, Potter KD, Hallett SR (2018) Consolidation-Driven Defect Generation in Thick Composite Parts. J Manuf Sci Eng 140:071006

    Article  Google Scholar 

  204. Cao J, Boyce MC (1997) Wrinkling Behavior of Rectangular Plates under Lateral Constraint. Int J Solids Struct 34:153–176

    Article  MATH  Google Scholar 

  205. Friedl N, Rammerstorfer FG, Fischer FD (2000) Buckling of Stretched Strips. Comput Struct 78:185–190

    Article  Google Scholar 

  206. Huebner M, Diestel O, Sennewald C, Gereke T, Cherif C (2012) Simulation of the Drapability of Textile Semi-Finished Prod-ucts with Gradient-Drapability Characteristics by Varying the Fabric Weave. Fibres & Textiles in Eastern Europe, 20, 5(94): 88–93

  207. Guzman-Maldonado E, Wang P, Hamila N, Boisse P (2019) Experimental and Numerical Analysis of Wrinkling during Forming of Multi-Layered Textile Composites. Compos Struct 208:213–223

    Article  Google Scholar 

  208. Vanclooster K, Lomov SV, Verpoest I (2009) On the formability of multi-layered fabric composites, In: ICCM—17th Int. Conf. on Composite Materials, Edinburgh, UK

  209. Vanclooster K, Lomov SV, Verpoest I (2010) Simulation of Multi-Layered Composites Forming. IntJ Mater Form 3:695–698

    Article  Google Scholar 

  210. Ten Thije R, Akkerman R (2009) A Multi-Layer Triangular Membrane Finite Element for the Forming Simulation of Laminated Composites. Compos A 40:739–753

    Article  Google Scholar 

  211. Friedrich K, Almajid AA (2013) Manufacturing aspects of advanced polymer composites for automotive applications. Appl Compos Mater 20(2):107–128

    Article  Google Scholar 

  212. Henning F, Kärger L, Dörr D, Schirmaier FJ, Seuffert J, Bernath A (2019) Fast processing and continuous simulation of automotive structural composite components. Compos Sci Technol 171:261–279

    Article  Google Scholar 

  213. Joppich T, Doerr D, van der Meulen L, Link T, Hangs B, Henning F (2016) Layup and process dependent wrinkling behavior of PPS/CF UD tape-laminates during nonisothermal press forming into a complex component. AIP Conf Proc 1769:170011

    Google Scholar 

  214. Boisse P (2015) editor. Advances in composites manufacturing and process design. Woodhead publishing series in composites science and engineering, Vol. 56. Cambridge UK: Woodhead Publishing

  215. Schug A, Winkelbauer J, Hinterhölzl R, Drechsler K (2017) Thermoforming of glass fibre reinforced polypropylene: A study on the influence of different process parameters. In AIP Conference Proceedings 1896(1):030010

    Article  Google Scholar 

  216. de Luca P, Lefébure P, Pickett AK (1998) Numerical and experimental investigation of some press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEI-CETEX. Compos Part A 29(1–2):101–110

    Article  Google Scholar 

  217. Benkaddour A, Lebrun G, Laberge-Lebel L (2017) Thermostamping of [0/90]n carbon/peek laminates: influence of support configuration and demolding temperature on part consolidation. Polym Compos 22:42

    Google Scholar 

  218. Kärger L, Bernath A, Fritz F, Galkin S, Magagnato D, Oeckerath A, Schön A, Henning F (2015) Development and validation of a CAE chain for unidirectional fibre reinforced composite components. Compos Struct 132:350–358

    Article  Google Scholar 

  219. Kärger L, Galkin S, Zimmerling C, Dörr D, Linden J, Oeckerath A, Wolf A (2018) Forming optimisation embedded in a CAE chain to assess and enhance the structural performance of composite components. Compos Struct 192:143–152

    Article  Google Scholar 

  220. Dörr D, Brymerski W, Ropers S, Leutz D, Joppich T, Kärger L, Henning F (2017) A Benchmark Study of Finite Element Codes for Forming Simulation of Thermoplastic UD-Tapes. Special Issue Procedia CIRP 66:101–106

    Article  Google Scholar 

  221. Haanappel S (2013) Forming of UD fibre reinforced thermoplastics: a critical evaluation of intra-ply shear PhD thesis Enschede, the Netherlands: Universiteit Twente

  222. Hsiao S-W, Kikuchi N (1999) Numerical analysis and optimal design of composite thermoforming process. Comput Methods Appl Mech Eng 177(1–2):1–34

    MATH  Google Scholar 

  223. Boisse P, Gasser A, Hagege B, Billoet J-L (2005) Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level. J Mater Sci 40(22):5955–5962

    Article  Google Scholar 

  224. Lin H, Long AC, Sherburn M, Clifford MJ (2008) Modelling of mechanical behaviour for woven fabrics under combined loading. Int J Mater Form 1(1):899–902

    Article  Google Scholar 

  225. Guzman-Maldonado E, Hamila N, Naouar N, Moulin G, Boisse P (2016) Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization. Mater Des 93:431–442

    Article  Google Scholar 

  226. Machado M, Fischlschweiger M, Major Z (2016) A rate-dependent nonorthogonal constitutive model for describing shear behaviour of woven reinforced thermoplastic composites. Compos A 80:194–203

    Article  Google Scholar 

  227. Haanappel SP, Akkerman R (2014) Shear characterisation of uni-directional 550 fibre reinforced thermoplastic melts by means of torsion. Compos A 56:8–26

    Article  Google Scholar 

  228. Sachs (2014) Friction and bending in thermoplastic composites forming processes, Phd thesis, Universiteit Twente, Twente, Enschede, The Netheralands

  229. Machado M, Murenu L, Fischlschweiger M, Major Z (2016) Analysis of the thermomechanical shear behaviour of woven-reinforced thermoplastic-matrix composites during forming. Compos Part A 86:39–48

    Article  Google Scholar 

  230. Gong Y, Peng X, Yao Y, Guo Z (2016) An anisotropic hyperelastic constitutive model for thermoplastic woven composite prepregs. Compos Sci Technol 128:17–24

    Article  Google Scholar 

  231. Harrison P, Gomes R, Curado-Correia N (2013) Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry. Compos Part A 54:56–69

    Article  Google Scholar 

  232. Ropers S (2017) Bending behavior of thermoplastic composite sheets: viscoelasticity and temperature dependency in the draping process. AutoUni - Schriftenreihe Vol. 99. Wiesbaden and s.l.: Springer Fachmedien Wiesbaden

  233. Donderwinkel TG, Rietman B, Haanappel SP, Akkerman R (2016) Stamp forming optimization for formability and crystallinity. AIP Conf Proc 1769:170029

    Article  Google Scholar 

  234. Ropers S, Kardos M, Osswald TA (2016) A thermo-viscoelastic approach for the characterization and modeling of the bending behavior of thermoplastic composites. Compos A 90:22–32

    Article  Google Scholar 

  235. Dörr D (2019) Simulation of the thermoforming process of UD fiber-reinforced thermoplastic tape laminates. Doctoral thesis, Karlsruhe Institute of Technology (KIT), KITopen, Karlsruhe

  236. Kugele D, Dörr D, Wittemann F, Hangs B, Rausch J, Kärger L, Henning F (2017) Modeling of the non-isothermal crystallization kinetics of polyamide 6 composites during thermoforming. AIP Conf Proc. 1869. p. 030005. 20th ESAFORM, Dublin

  237. Dörr D, Faisst M, Joppich T, Poppe C, Henning F, Kärger L (2018) Modelling Approach for Anisotropic Inter-Ply Slippage in Finite Element Forming Simulation of Thermoplastic UD-Tapes, AIP Conference Proceedings 1960: 020005, ESAFORM 2018, Palermo

  238. George A, Hannibal P, Morgan M, Hoagland D, Stapleton SE (2019) Compressibility measurement of composite reinforcements for flow simulation of vacuum infusion. Polym Compos 40(3):961–973

    Article  Google Scholar 

  239. Hoagland D, George A (2017) Continuous permeability measurement during unidirectional vacuum infusion processing. J Reinf Plast Compos 36(22):1618–1628

    Article  Google Scholar 

  240. Merotte J, Simacek P, Advani SG (2010) Flow analysis during compression of partially impregnated fiber preform under controlled force. Compos Sci Technol 70(5):725–733

    Article  Google Scholar 

  241. Gangloff JJ, Simacek P, Sinha S, Advani SG (2014) A process model for the compaction and saturation of partially impregnated thermoset prepreg tapes. Compos A 64:234–244

    Article  Google Scholar 

  242. Endruweit A, Luthy T, Ermanni P (2002) Investigation of the influence of textile compression on the out-of-plane permeability of a bidirectional glass fibre fabric. Polym Compos 23(4):538–554

    Article  Google Scholar 

  243. Yong AXH, Aktas A, May D, Endruweit A, Advani S et al (2021) Out-of-plane permeability measurement for reinforcement textiles: A benchmark exercise. Composites Part A 148:106480

    Article  Google Scholar 

  244. Ouagne P, Breard J (2010) Continuous transverse permeability of fibrous media. Compos A 41:22–28

    Article  Google Scholar 

  245. Ouagne P, Ouahbi T, Park CH, Breard J, Saouab A (2013) Continuous measurement of fiber reinforcement permeability in the thickness direction: Experimental technique and validation. Compos B 45(1):609–618

    Article  Google Scholar 

  246. Kabachi MA, Stettler L, Arreguin S, Ermanni P (2021) Concurrent characterization of through-thickness permeability and compaction of fiber reinforcements. Composites Part A 141:106203

    Article  Google Scholar 

  247. Demaria C, Ruiz E, Trochu F (2007) In-plane anisotropic permeability characterization of deformed woven fabrics by unidirectional injection. Part II: Prediction model and numerical simulations. Polym Compos 28(6):812–827

    Article  Google Scholar 

  248. Verleye B, Croce R, Griebel M, Klitz M, Lomov SV, Morren G, Sol H, Verpoest I, Roose D (2008) Permeability of textile reinforcements: Simulation, influence of shear and validation. Compos Sci Technol 68(13):2804–2810

    Article  Google Scholar 

  249. Chen ZM, Pan SD, Zhou ZG, Lei T, Dong BF, Xu PF (2019) The effect of shear deformation on permeability of 2.5d woven preform. Materials 12(21):3594

    Article  Google Scholar 

  250. Endruweit A, Ermanni P (2004) The in-plane permeability of sheared textiles. Experimental observations and a predictive conversion model. Compos A 35:439–451

    Article  Google Scholar 

  251. Hammami A, Trochu F, Gauvin R, Wirth S (1996) Directional permeability measurement of deformed reinforcement. J Reinf Plast Compos 15(6):552–562

    Article  Google Scholar 

  252. Lai C-L, Young W-B (1997) Permeability of fibre reinforcements after shear deformation. Proceedings of ICCM-11. Gold Coast, Australia. IV: 227–236

  253. Heardman E, Lecakou C, Bader MG (2001) In-plane permeability of sheared fabrics. Compos A 32:933–940

    Article  Google Scholar 

  254. Liotier PJ, Govignon Q, Swery E, Drapier S, Bickerton S (2015) Characterisation of woven flax fibres reinforcements: Effect of the shear on the in-plane permeability. J of Composite Materials 49(27):3415–3430

    Article  Google Scholar 

  255. Pierce RS, Falzon BG, Thompson MC (2018) Permeability characterization of sheared carbon fiber textile preform. Polym Compos 39(7):2287–2298

    Article  Google Scholar 

  256. Aranda S, Berg DC, Dickert M, Drechsel M, Ziegmann G (2014) Influence of shear on the permeability tensor and compaction behaviour of a non-crimp fabric. Compos B 65:158–163

    Article  Google Scholar 

  257. Walther J, Simacek P, Advani SG (2012) The effect of fabric and fiber tow shear on dual scale flow and fiber bundle saturation during liquid molding of textile composites. Int J of Material Forming 5(1):83–97

    Article  Google Scholar 

  258. Zeng XS, Endruweit A, Brown LP, Long AC (2015) Numerical prediction of in-plane permeability for multilayer woven fabrics with manufacture-induced deformation. Compos A 77:266–327

    Article  Google Scholar 

  259. Slade J, Sozer EM, Advani SG (2000) Fluid impregnation of deformed preforms. J Reinf Plast Compos 19(7):552–568

    Article  Google Scholar 

  260. Loix F, Badel P, Orgeas L, Geindreau C, Boisse P (2008) Woven fabric permeability: From textile deformation to fluid flow mesoscale simulations. Compos Sci Technol 68(7–8):1624–1630

    Article  Google Scholar 

  261. Pierce RS, Falzon BG (2017) Simulating Resin Infusion through Textile Reinforcement Materials for the Manufacture of Complex Composite Structures. Engineering 3(5):596–607

    Article  Google Scholar 

  262. Pierce RS, Falzon BG, Thompson MC (2017) A multi-physics process model for simulating the manufacture of resin-infused composite aerostructures. Compos Sci Technol 149:269–279

    Article  Google Scholar 

  263. Klunker F, Danzi M, Ermanni P (2015) Fiber deformation as a result of fluid injection: modeling and validation in the case of saturated permeability measurements in through thickness direction. J Compos Mater 49(9):1091–1105

    Article  Google Scholar 

  264. Hautefeuille A, Comas-Cardona S, Binetruy C (2019) Mechanical signature and full-field measurement of flow-induced large in-plane deformation of fibrous reinforcements in composite processing. Compos A 118:213–222

    Article  Google Scholar 

  265. Arbter R, Binetruy C, Bizet L, Bréard J et al (2011) Experimental determination of the permeability of textiles: A benchmark exercise. Compos A 42(9):1157–1168

    Article  Google Scholar 

  266. Vernet N, Ruiz E, Advani S, Alms JB et al (2014) Experimental determination of the permeability of engineering textiles: Benchmark II. Compos A 61:172–184

    Article  Google Scholar 

  267. May D, Aktas A, Advani SG, Berg DC et al (2019) In-plane permeability characterization of engineering textiles based on radial flow experiments: A benchmark exercise. Compos A 121:100–114

    Article  Google Scholar 

  268. May D, Syerko E, Schmidt T, Binetruy C, Rocha da Silva L, Lomov SV, Advani S (2021) Benchmarking virtual permeability predictions of real fibrous microstructure. 36th ASC Tech. VIRTUAL Conf.: 2123 - 2132

  269. Rubino F, Nisticò A, Tucci F, Carlone P (2020) Marine Application of Fiber Reinforced Composites: A Review. J Mar Sci Eng 8:26

    Article  Google Scholar 

  270. Bodaghi M, Lomov SV, Simacek P, Correia NC, Advani SG (2019) On the Variability of Permeability Induced by Reinforcement Distortions and Dual Scale Flow in Liquid Composite Moulding: A Review. Compos Part A 120:188–210

    Article  Google Scholar 

  271. Hindersmann A (2019) Confusion about Infusion: An Overview of Infusion Processes. Compos. Part A 126:105583

    Article  Google Scholar 

  272. Carlone P, Aleksendrić D (2015) Soft Computing in the Design and Manufacturing of Composite Materials; ISBN 9781782421795.

  273. Binétruy C, Hilaire B, Pabiot J (1997) The Interactions between Flows Occurring inside and Outside Fabric Tows during RTM. Compos Sci Technol 57(5):587–596

    Article  Google Scholar 

  274. Binetruy C, Hilaire B, Pabiot J (1998) Tow Impregnation Model and Void Formation Mechanisms during RTM. J Compos Mater 32:223–245

    Article  Google Scholar 

  275. Pillai KM, Advani SG (1998) A Model for Unsaturated Flow in Woven Fiber Preforms during Mold Filling in Resin Transfer Molding. J Compos Mater 32:1753–1783

    Article  Google Scholar 

  276. Parnas RS, Phelan FR (1991) The Effect of Heterogeneous Porous Media on Mold Filling in Resin Transfer Molding. J. Chem. Inf. Model

  277. DeParseval Y, Pillai KM, Advani SG (1997) A Simple Model for the Variation of Permeability Due to Partial Saturation in Dual Scale Porous Media. Transp Porous Media 27:243–264

    Article  Google Scholar 

  278. Kuentzer N, Simacek P, Advani SG, Walsh S (2006) Permeability Characterization of Dual Scale Fibrous Porous Media. Compos Part A 37:2057–2068

    Article  Google Scholar 

  279. Carlone P, Rubino F, Paradiso V, Tucci F (2018) Multi-Scale Modeling and Online Monitoring of Resin Flow through Dual-Scale Textiles in Liquid Composite Molding Processes. Int J Adv Manuf Technol 96:2215–2230

    Article  Google Scholar 

  280. Yeager M, Simacek P, Advani SG (2017) Role of Fiber Distribution and Air Evacuation Time on Capillary Driven Flow into Fiber Tows. Compos Part A 93:144–152

    Article  Google Scholar 

  281. Pillai KM (2002) Governing Equations for Unsaturated Flow through Woven Fiber Mats. Part 1. Isothermal Flows. Compos Part A 33:1007–1019

    Article  Google Scholar 

  282. Zhou F, Kuentzer N, Simacek P, Advani SG, Walsh S (2006) Analytic Characterization of the Permeability of Dual-Scale Fibrous Porous Media. Compos Sci Technol 66:2795–2803

    Article  Google Scholar 

  283. Zhou F, Alms J, Advani SG (2008) A Closed Form Solution for Flow in Dual Scale Fibrous Porous Media under Constant Injection Pressure Conditions. Compos Sci Technol 68:699–708

    Article  Google Scholar 

  284. Pillai KM, Advani SG (1998) Numerical Simulation of Unsaturated Flow in Woven Fiber Preforms during the Resin Transfer Molding Process. Polym Compos 19:71–80

    Article  Google Scholar 

  285. Carlone P, Palazzo GS (2014) Unsaturated and Saturated Flow Front Tracking in Liquid Composite Molding Processes Using Dielectric Sensors. Appl Compos Mater 22:543–557

    Article  Google Scholar 

  286. Imbert M, Comas-Cardona S, Abisset-Chavanne E, Prono D (2019) Introduction of Intra-Tow Release/Storage Mechanisms in Reactive Dual-Scale Flow Numerical Simulations. J Compos Mater 53:125–140

    Article  Google Scholar 

  287. Michaud V, Mortensen A (2001) Infiltration Processing of Fibre Reinforced Composites: Governing Phenomena. Compos Part A Appl Sci Manuf 32:981–996

    Article  Google Scholar 

  288. Michaud V (2016) A Review of Non-Saturated Resin Flow in Liquid Composite Moulding Processes. Transp Porous Media 115:581–601

    Article  MathSciNet  Google Scholar 

  289. Gascón L, García JA, Lebel F, Ruiz E, Trochu F (2015) Numerical Prediction of Saturation in Dual Scale Fibrous Reinforcements during Liquid Composite Molding. Compos. Part A 77

  290. Markicevic B, Djilali N (2006) Two-Scale Modeling in Porous Media: Relative Permeability Predictions. Phys. Fluids 18(3):033101

    Article  MathSciNet  MATH  Google Scholar 

  291. Modi D, Correia N, Johnson M, Long A, Rudd C, Robitaille F (2007) Active Control of the Vacuum Infusion Process. Compos Part A 38:1271–1287

    Article  Google Scholar 

  292. Mesogitis TS, Skordos AA, Long AC (2014) Uncertainty in the Manufacturing of Fibrous Thermosetting Composites: A Review. Compos Part A 57:67–75

    Article  Google Scholar 

  293. Park CH, Lee W (2011) Modeling Void Formation and Unsaturated Flow in Liquid Composite Molding Processes: A Survey and Review. J Reinf Plast Compos 30:957–977

    Article  Google Scholar 

  294. Varna J, Joffe R, Berglund LA, Lundström TS (1995) Effect of Voids on Failure Mechanisms in RTM Laminates. Compos Sci Technol 53:241–249

    Article  Google Scholar 

  295. Grossing H, Stadlmajer N, Fauster E, Fleischmann M, Schledjewski R (2016) Flow Front Advancement during Composite Processing: Predictions from Numerical Filling Simulation Tools in Comparison with Real-World Experiments. Polym Compos 37:2782–2793

    Article  Google Scholar 

  296. Nielsen DR, Pitchumani R (2002) Control of Flow in Resin Transfer Molding with Real-Time Preform Permeability Estimation. Polym Compos 23:1087–1110

    Article  Google Scholar 

  297. Lekanidis S, Vosniakos GC (2020) Machine Vision Support of VARI Process Automation in Composite Part Manufacturing. Int J Mechatronics Manuf Syst 13:169

    Google Scholar 

  298. Di Fratta C, Koutsoukis G, Klunker F, Ermanni P (2016) Fast Method to Monitor the Flow Front and Control Injection Parameters in Resin Transfer Molding Using Pressure Sensors. J Compos Mater 50:2941–2957

    Article  Google Scholar 

  299. Di Fratta C, Klunker F, Ermanni P (2013) A Methodology for Flow-Front Estimation in LCM Processes Based on Pressure Sensors. Compos Part A 47:1–11

    Article  Google Scholar 

  300. Rubino F, Paradiso V, Carlone P (2017) Flow Monitoring of Microwave Pre-Heated Resin in LCM Processes. In Proceedings of the AIP Conference Proceedings; Vol. 1896, p. 030017

  301. Tuncol G, Danisman M, Kaynar A, Sozer EM (2007) Constraints on Monitoring Resin Flow in the Resin Transfer Molding (RTM) Process by Using Thermocouple Sensors. Compos Part A 38:1363–1386

    Article  Google Scholar 

  302. Wang P, Molimard J, Drapier S, Vautrin A, Minni JC (2012) Monitoring the Resin Infusion Manufacturing Process under Industrial Environment Using Distributed Sensors. J Compos Mater 46:691–706

    Article  Google Scholar 

  303. Schmachtenberg E, Schulte Zur Heide J, Töpker J (2005) Application of Ultrasonics for the Process Control of Resin Transfer Moulding (RTM). Polym Test 24:330–338

    Article  Google Scholar 

  304. Danisman M, Tuncol G, Kaynar A, Sozer EM (2007) Monitoring of Resin Flow in the Resin Transfer Molding (RTM) Process Using Point-Voltage Sensors. Compos Sci Technol 67:367–379

    Article  Google Scholar 

  305. Liebers N, Raddatz F, Schadow F (2016) Effective and flexible ultrasound sensors for cure monitoring for industrial composite production Nico Liebers , Florian Raddatz , Florian Schadow German Aerospace Centre ( DLR ), Institute of Composite Structures and Adaptive

  306. Konstantopoulos S, Fauster E, Schledjewski R (2014) Monitoring the Production of FRP Composites: A Review of in-Line Sensing Methods. Express Polym Lett 8:823–840

    Article  Google Scholar 

  307. Khoun L, De Oliveira R, Michaud V, Hubert P (2011) Investigation of Process-Induced Strains Development by Fibre Bragg Grating Sensors in Resin Transfer Moulded Composites. Compos Part A 42:274–282

    Article  Google Scholar 

  308. Matsuzaki R, Kobayashi S, Todoroki A, Mizutani Y (2011) Full-Field Monitoring of Resin Flow Using an Area-Sensor Array in a VaRTM Process. Compos Part A 42:550–559

    Article  Google Scholar 

  309. Molimard J, Vacher S, Vautrin A (2011) Monitoring LCM Process by FBG Sensor under Birefringence. Strain 47:364–373

    Article  Google Scholar 

  310. Lawrence JM, Hsiao KT, Don RC, Simacek P, Estrada G, Sozer EM, Stadtfeld HC, Advani SG (2002) An Approach to Couple Mold Design and On-Line Control to Manufacture Complex Composite Parts by Resin Transfer Molding. Compos - Part A 33:981–990

    Article  Google Scholar 

  311. Barooah P, Berker B, Sun JQ (2003) Lineal Sensors for Liquid Injection Molding of Advanced Composite Materials 1–29

  312. Fink BK, Gillespie JW, Walsh S, DeSchepper DC, McCullough RL, Don RC (1995) Advances in Resin Transfer Molding Flow Monitoring Using SMARTweave Sensors. Proceedings of ASME, int. mechanical engineering congress and exposition. San Francisco, CA; pp. 999–1015

  313. Bradley JE, Diaz-Perez J, Gillespie Jr, JW, Fink BK (1998) On-Line Process Monitoring and Analysis of Large Thick-Section Composite Parts Utilizing SMARTweave in-Situ Sensing Technology. Int. SAMPE Symp. Exhib. 43

  314. Vaidya UK, Jadhav NC, Hosur MV, Gillespie JW, Fink BK (2000) Assessment of Flow and Cure Monitoring Using Direct Current and Alternating Current Sensing in Vacuum-Assisted Resin Transfer Molding. Smart Mater Struct 9:727–736

    Article  Google Scholar 

  315. Dominauskas A, Heider D, Gillespie JW (2003) Electric Time-Domain Reflectometry Sensor for Online Flow Sensing in Liquid Composite Molding Processing. Compos Part A 34:67–74

    Article  Google Scholar 

  316. Teixidó H, Caglar B, Revol V, Michaud V (2021) In-Operando Dynamic Visualization of Flow through Porous Preforms Based on X-Ray Phase Contrast Imaging. Compos. Part A 149:106560

    Article  Google Scholar 

  317. Larson NM, Zok FW (2018) Insights from In-Situ X-Ray Computed Tomography during Axial Impregnation of Unidirectional Fiber Beds. Compos Part A 107:124–134

    Article  Google Scholar 

  318. Larson NM, Cuellar C, Zok FW (2019) X-Ray Computed Tomography of Microstructure Evolution during Matrix Impregnation and Curing in Unidirectional Fiber Beds. Compos Part A 117:243–259

    Article  Google Scholar 

  319. Parmar H, Khan T, Tucci F et al (2021) Advanced robotics and additive manufacturing of composites: towards a new era in Industry 4.0. Mater. Manuf. Process. 1–35

  320. Frketic J, Dickens T, Ramakrishnan S (2017) Automated manufacturing and processing of fiber-reinforced polymer (FRP) composites: An additive review of contemporary and modern techniques for advanced materials manufacturing. Addit Manuf 14:69–86

    Google Scholar 

  321. Grant C (2006) Automated processes for composite aircraft structure. Ind Rob 33:117–121

    Article  Google Scholar 

  322. Vernejoux C, Fischer X, Deseur S (2021) Duc E (2021) Influence of Automated Fiber Placement Parameters on Thermoplastic Composite Blanks Used on Stamp Forming Process. ESAFORM 02:1–11

    Google Scholar 

  323. Debout P, Chanal H, Duc E (2011) Tool path smoothing of a redundant machine: Application to Automated Fiber Placement. CAD Comput Aided Des 43:122–132

    Article  Google Scholar 

  324. Liu Y-N, Yuan C, Liu C et al (2019) Study on the resin infusion process based on automated fiber placement fabricated dry fiber preform. Sci Rep 9:7440

    Article  Google Scholar 

  325. Crosky A, Grant C, Kelly D et al (2015) Fibre placement processes for composites manufacture. In: Advances in Composites Manufacturing and Process Design. Elsevier, pp 79–92

  326. Esperto V, Gambardella A, Pasquino G et al (2021) (2021) Modeling and Simulation of the Robotic Layup of Fibrous Preforms for Liquid Composite Molding. ESAFORM 02:1–10

    Google Scholar 

  327. Parandoush P, Lin D (2017) A review on additive manufacturing of polymer-fiber composites. Compos Struct 182:36–53

    Article  Google Scholar 

  328. Sánchez DM, de la Mata M, Delgado FJ et al (2020) Development of carbon fiber acrylonitrile styrene acrylate composite for large format additive manufacturing. Mater Des 191:108577

    Article  Google Scholar 

  329. Chacón JM, Caminero MA, Núñez PJ et al (2019) Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties. Compos Sci Technol 181:107688

    Article  Google Scholar 

  330. Chang B, Li X, Parandoush P et al (2020) Additive manufacturing of continuous carbon fiber reinforced poly-ether-ether-ketone with ultrahigh mechanical properties. Polym Test 88:106563

    Article  Google Scholar 

  331. Rafiee M, Farahani RD, Therriault D (2020) Multi-Material 3D and 4D Printing: A Survey. Adv Sci 7:1–26

    Article  Google Scholar 

  332. Bergmann J, Dormann H, Lange R (2016) Interpreting process data of wet pressing process Part. 1. Theoretical approach. Journal of Composite Materials 50(17):2399–2407

    Article  Google Scholar 

  333. Stanglmaier, Stefan Josef (2017) Empirische Charakterisierung und Modellierung des Imprägnierprozesses lokal verstärkter Kohlenstofffaserhalbzeuge im RTM- und Nasspress-Verfahren für die Großserie.

  334. Bergmann J, Dormann H, Lange R (2016) Interpreting process data of wet pressing process. Part 2. Verification with real values. In Journal of Composite Materials 50(17):2409–2419

    Article  Google Scholar 

  335. Bockelmann P (2017) Process Control in Compression Molding of Composites. Dissertation. München

  336. Poppe C, Dörr D, Henning F, Kärger L (2018) Experimental and numerical investigation of the shear behaviour of infiltrated woven fabrics. In Composites Part A 114:327–337

    Article  Google Scholar 

  337. Albrecht, Fabian; Poppe, Christian; Fial, Julian; Rosenberg, Philipp; Middendorf, Peter; Henning, Frank (Eds.) (2020) Impact of process routing on part infiltration during wet compression moulding (WCM). With assistance of Fabian Albrecht, Christian Poppe, Julian Fial, Philipp Rosenberg, Peter Middendorf, Frank Henning. Sampe Europa. Amsterdam

  338. Poppe Christian, Rosenkranz Tobias, Dörr Dominik, Kärger Luise (2019) Comparative experimental and numerical analysis of bending behaviour of dry and low viscous infiltrated woven fabrics. Composites Part A 124:105466

    Article  Google Scholar 

  339. Ivanov DS, Lomov SV (2014) Compaction behaviour of dense sheared woven preforms. Experimental observations and analytical predictions. Composites Part A 64:167–176

    Article  Google Scholar 

  340. Boisse P, Bai R, Colmars J, Hamila N, Liang B, Madeo A (2018) The Need to Use Generalized Continuum Mechanics to Model 3D Textile Composite Forming. Appl Compos Mater 25(4):761–771

    Article  Google Scholar 

  341. Xiong Hu, Hamila N, Boisse P (2019) Consolidation Modeling during Thermoforming of Thermoplastic Composite Prepregs. Materials 12(18):2853

    Article  Google Scholar 

  342. Poppe Christian T, Krauß Constantin, Albrecht Fabian, Kärger Luise (2021) A 3D process simulation model for wet compression moulding. Composites Part A 145:106379

    Article  Google Scholar 

  343. Dereims A, Drapier S, Bergheau J-M, de Luca P (2015) 3D robust iterative coupling of Stokes, Darcy and solid mechanics for low permeability media undergoing finite strains. In Fini Elem Anal Des 94:1–15

    Article  MathSciNet  Google Scholar 

  344. Rudd, Long, Kendall, Mangin (1997) Liquid moulding technologies. Resin transfer moulding, structural reaction injection moulding and related processing techniques. With assistance of C. D. Rudd. Cambridge: Woodhead.

  345. Poppe, Christian; Dörr, Dominik; Henning, Frank; Kärger, Luise (2018) A 2D modeling approach for fluid propagation during FE-forming simulation of continuously reinforced composites in wet compression moulding. In. Proceedings of the 21st international esaform conference on material forming: ESAFORM 2018. Palermo, Italy, 23–25 April 2018 (AIP Conference Proceedings), p. 20022.

  346. Correia NC, Robitaille F, Long AC, Rudd CD, Šimáček P, Advani SG (2004) Use of Resin Transfer Molding Simulation to Predict Flow, Saturation, and Compaction in the VARTM Process. J Fluids Eng 126(2):210

    Article  Google Scholar 

  347. Celle, Pierre; Drapier, Sylvain; Bergheau, Jean-Michel (2008) Numerical aspects of fluid infusion inside a compressible porous medium undergoing large strain. In Rev. europ. de méc. num. 17 (5–6–7), pp. 819–827

  348. Celle P, Drapier S, Bergheau J-M (2008) Numerical modelling of liquid infusion into fibrous media undergoing compaction. European Journal of Mechanics - A/Solids 27(4):647–661

    Article  MATH  Google Scholar 

  349. Pillai KM, Tucker CL, Phelan FR (2001) Numerical simulation of injection/compression liquid composite molding. Part 2. Preform compression. Composites Part A 32(2):207–220

    Article  Google Scholar 

  350. Tan H, Pillai KM (2012) Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding III. Reactive flows. Composites Part A 43(1):29–44

    Article  Google Scholar 

  351. Seuffert J, Kärger L, Henning F (2018) Simulating Mold Filling in Compression Resin Transfer Molding (CRTM) Using a Three-Dimensional Finite-Volume Formulation. Journal of Composites Science 2(2):23

    Article  Google Scholar 

  352. Engmann J, Servais C, Burbidge AS (2005) Squeeze flow theory and applications to rheometry: A review. In Journal of Non-Newtonian Fluid Mechanics 132(1–3):1–27

    Article  MATH  Google Scholar 

  353. Tucker C, Dessenberger R (1994) Governing equations for flow and heat transfer in stationary fiber beds. In Flow and Rheology in Polymer Composites Manufacturing, pp. 237–257

  354. Bodaghi Masoud, Simacek Pavel, Advani Suresh G, Correia Nuno C (2018) A model for fibre washout during high injection pressure resin transfer moulding. J Reinf Plastics and Composites 37(13):865–876

    Article  Google Scholar 

  355. Bodaghi M, Simacek P, Correia N, Advani SG (2020) Experimental parametric study of flow-induced fiber washout during high-injection-pressure resin transfer molding. Polymer Composites 41(3):1053–1065

    Article  Google Scholar 

  356. Seong DG, Kim S, Um MK, Song YS (2018) Flow-induced deformation of unidirectional carbon fiber preform during the mold filling stage in liquid composite molding process. J Compos Mater 52(9):1265–1277

  357. MacMinn Christopher W, Dufresne Eric R, Wettlaufer John S (2016) Large Deformations of a Soft Porous Material. Phys Rev Applied. 5(4):044020

    Article  Google Scholar 

  358. Hautefeuille A, Comas-Cardona S, Binetruy C (2020) Consolidation and compression of deformable impregnated fibrous reinforcements: Experimental study and modeling of flow-induced deformations. In Composites Part A 131:105768

    Article  Google Scholar 

  359. Poppe, Christian; Albrecht, Fabian; Krauß, Constantin; Kärger, Luise (2021) Towards numerical prediction of flow-induced fiber displacements during wet compression molding (WCM). In ESAFORM 2021.

  360. Howald AM, Meyer LS. Shaft for fishing rods. US2571717, 1951.

  361. Vedernikov A, Safonov A, Tucci F, Carlone P, Akhatov I (2020) Pultruded materials and structures: A review. J Compos Mater 54:4081–4117

    Article  Google Scholar 

  362. Ducoulombier N, Demont L, Chateau C, Bornert M, Caron JF (2020) Additive manufacturing of anisotropic concrete: A flow-based pultrusion of continuous fibers in a cementitious matrix. Procedia Manuf 47:1070–1077

    Article  Google Scholar 

  363. Baran I, Tutum CC, Hattel JH (2013) The internal stress evaluation of pultruded blades for a darrieus wind turbine. Key Eng Mater 554–557:2127–2137

    Article  Google Scholar 

  364. Tucci F, Vedernikov A (2021) Design Criteria for Pultruded Structural Elements. Encycl. Mater. Compos., Elsevier Ltd, p. 51–68

  365. Cowen G, Measuria U, Turner RM. (1986) Section pultrusions of continuous fibre reinforced thermoplastics. I Mech E Conf. Publ. Institution Mech. Eng, p. 105–12

  366. Offringa A (1988) Design and application of a pultrusion for multiple use in the Fokker 100. Compos Struct 10:199–209

    Article  Google Scholar 

  367. Minchenkov K, Vedernikov A, Safonov A, Akhatov I (2021) Thermoplastic pultrusion: A review Polymers (Basel) 13:1–36

    Google Scholar 

  368. Kim YR, McCarthy SP, Fanucci JP (1991) Study of resin flow during injection-pultrusion process. Annu. Tech. Conf. - ANTEC, Conf. Proc., vol. 37, p. 1966–9

  369. Cho B-G, McCarthy SP, Fanucci JP, Nolet SC (1992) Performance of nylon-6 composites produced by the reaction injection pultrusion process. Int SAMPE Electron Conf 24:645–659

    Google Scholar 

  370. Becker H, Fischer G, Muller U (1993) Push-pull injection moulding of industrial products. Kunststoffe, Ger Plast 83:3–4

    Google Scholar 

  371. Strauß S, Boysen S, Senz A, Wilhelm F, Rilli N (2021) Analysis of the mechanical composite properties of ii-chamber variations in the closed injection pultrusion process. Esaform 2021(02):1–13. https://doi.org/10.25518/esaform21.970

    Article  Google Scholar 

  372. Strauß S (2020) Development of a flexible injection and impregnation chamber for pultrusion of high reactive resins. Procedia Manuf 47:956–961

    Article  Google Scholar 

  373. Nasonov Y, Safonov A, Gusev S, Akhatov I (2020) Effect of additives on cure kinetics of pultrusion resins. Procedia Manuf 47:920–924

    Article  Google Scholar 

  374. Baran I (2017) Analysis of the local fiber volume fraction variation in pultrusion process. AIP Conf Proc 1896(1):030029

    Article  MathSciNet  Google Scholar 

  375. Tucci F, Rubino F, Paradiso V, Carlone P, Valente R (2017) Modelling and simulation of cure in pultrusion processes. AIP Conf Proc 1896(1):070003

    Article  Google Scholar 

  376. Carlone P, Palazzo GS (2008) Viscous pull force evaluation in the pultrusion process by a finite element thermo-chemical rheological model. Int J Mater Form 1:831–834

    Article  Google Scholar 

  377. Baran I, Carlone P, Hattel JH, Palazzo GS, Akkerman R (2014) The effect of product size on the pulling force in pultrusion. Key Eng Mater 611–612:1763–1770

    Article  Google Scholar 

  378. Tucci F, Esperto V, Rubino F, Carlone P (2020) Experimental measurement of the resistant load in injection pultrusion processes. Procedia Manuf 47:148–153

    Article  Google Scholar 

  379. Tucci F, Rubino F, Carlone P (2018) Strain and temperature measurement in pultrusion processes by fiber Bragg grating sensors. AIP Conf Proc; 1960

  380. Yuksel O, Baran I, Ersoy N, Akkerman R (2018) Analysis of residual transverse stresses in a thick UD glass/polyester pultruded profile using hole drilling with strain gage and digital image correlation. AIP Conf Proc 1960

  381. Baran I, Hattel JH, Akkerman R (2014) Investigation of the spring-in of a pultruded l-shaped profile for various processing conditions and thicknesses. Key Eng Mater 611–612:273–279

    Article  Google Scholar 

  382. Baran I, Hattel JH, Akkerman R (2014) The effect of mandrel configuration on the warpage in pultrusion of rectangular hollow profiles. Key Eng Mater 611–612:250–256

    Article  Google Scholar 

  383. Hackett RM, Prasad SN (1989) Pultrusion process modeling. In: Newaz GM, editor. Adv. Thermoplast. Matrix Compos. Mater. (3rd edn.), Philadelphia: ASTM STP 1044, American Society for Testing and Materials, Philadelphia, Pennsylvania, 62–70.

  384. Batch GL, Macosko CW (1993) Heat transfer and cure in pultrusion: Model and experimental verification. AIChE J 39:1228–1241

    Article  Google Scholar 

  385. Carlone P, Palazzo GS, Pasquino R (2006) Pultrusion manufacturing process development by computational modelling and methods. Math Comput Model 44:701–709

    Article  MATH  Google Scholar 

  386. Tucci F, Bezerra R, Rubino F, Carlone P (2020) Multiphase flow simulation in injection pultrusion with variable properties. Mater Manuf Process 35:152–162

    Article  Google Scholar 

  387. Sumerak JE (1985) Understanding Pultrusion Process Variables. Mod Plast 62

  388. Shanku R, Vaughan JG, Roux JA (1997) Rheological characteristics and cure kinetics of EPON 862/W epoxy used in pultrusion. Adv Polym Technol 16:297–311

    Article  Google Scholar 

  389. Jeswani AL, Roux JA (2008) Modeling of processing for slot and discrete port tapered resin injection pultrusion. J Thermophys Heat Transf 22:749–757

    Article  Google Scholar 

  390. Rahatekar SS, Roux JA (2003) Numerical simulation of pressure variation and resin flow in injection pultrusion. J Compos Mater 37:1067–1082

    Article  Google Scholar 

  391. Safonov AA, Carlone P, Akhatov I (2018) Mathematical simulation of pultrusion processes: A review. Compos Struct 184:153–177

    Article  Google Scholar 

  392. Tucci F, Rubino F, Esperto V, Carlone P (2019) Integrated modeling of injection pultrusion. AIP Conf. Proc. 2113(1):060006

    Article  Google Scholar 

  393. Carlone P, Rubino F, Palazzo GS (2016) Thermo-chemical, mechanical and resin flow integrated analysis in pultrusion. AIP Conf Proc 1769

  394. Sandberg M, Rasmussen FS, Hattel JH, Spangenberg J (2019) Simulation of resin-impregnation, heat-transfer and cure in a resin-injection pultrusion process. AIP Conf Proc 2113

  395. Carlone P, Baran I, Akkerman R, Palazzo GS (2015) Computational analysis of the interaction between impregnation, forming and curing in pultrusion. Key Eng Mater 651–653:889–894

    Article  Google Scholar 

  396. Vedernikov A, Safonov A, Tucci F, Carlone P, Akhatov I (2021) Modeling Spring-In of L-Shaped Structural Profiles Pultruded at Different Pulling Speeds. Polymers 13

  397. Tutum CC, Baran I, Hattel JH (2013) Utilizing multiple objectives for the optimization of the pultrusion process based on a thermo-chemical simulation. Key Eng Mater 554–557:2165–2174

    Article  Google Scholar 

  398. Vedernikov A, Tucci F, Safonov A, Carlone P, Gusev S, Akhatov I (2020) Investigation on the shape distortions of pultruded profiles at different pulling speed. Procedia Manuf 47:1–5

    Article  Google Scholar 

  399. Vedernikov A, Tucci F, Carlone P, Gusev S, Konev S, Firsov D et al (2021) Effects of pulling speed on structural performance of L-shaped pultruded profiles. Compos Struct 255:112967

    Article  Google Scholar 

  400. Vedernikov A, Safonov A, Tucci F, Carlone P, Akhatov I (2021) Analysis of Spring-in Deformation in L-shaped Profiles Pultruded at Different Pulling Speeds: Mathematical Simulation and Experimental Results. ESAFORM 2021:1–10

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to their colleagues, Dr. Dominik Dörr, Dr. Christian Poppe, Bastian Schäfer, Dr. Fausto Tucci, Dr. Felice Rubino, for their support in gathering the relevant literature to make this review paper as complete as possible on the brevity of the pages.

Funding

This work has not received any specific funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Boisse.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boisse, P., Akkerman, R., Carlone, P. et al. Advances in composite forming through 25 years of ESAFORM. Int J Mater Form 15, 39 (2022). https://doi.org/10.1007/s12289-022-01682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12289-022-01682-8

Keywords

Navigation