Skip to main content
Log in

Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level

  • Mechanical Behavior of Cellular Solids
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The determination of the mechanical properties of fabrics in biaxial tension and in-plane shearing is made from 3D finite element analyses of the unit woven cell. Compared to experimental tests these virtual tests have several advantages. They can easily be carried out for sets of varied parameters, they provide local information inside the woven material and above all they can be performed on woven materials that have not yet been manufactured. The 3D computations are not classical analyses because the yarns are made up of several thousands of fibres and their mechanical behaviour is very special. Several specific aspects of the analysis are detailed, especially the use of a hypoelastic law based on an objective derivative using the rotation of the fibre which allows a strict evolution of the directions of orthotropy according to the fibre direction. Examples of analyses are presented in biaxial tension and in-plane shear for woven reinforcements and in the case of the biaxial tension of a knitted fabric. The results obtained are in good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. DE LUCA, P. LEFEBURE and A. K. PICKETT, Composites: Part A 29 (1998) 101.

    Article  Google Scholar 

  2. S.-W. HSIAO and N. KIKUCHI, Comput. Meth. Appl. Mech. Engng. 177 (1999) 1.

    Article  Google Scholar 

  3. P. BOISSE, A. GASSER and G. HIVET, Composites Part A 32 (2001) 1395.

    Article  Google Scholar 

  4. A. G. PRODROMOU and J. CHEN, Ibid. 28 (1997) 491.

    Article  Google Scholar 

  5. T. M. MCBRIDE and J. CHEN, Compos. Sci. Technol. 57 (1997) 345.

    Article  Google Scholar 

  6. G. B. MCGUINNESS and C. M. O. O'BRADAIGH, Composites Part A 29(1–2) (1998) 115.

    Article  Google Scholar 

  7. K. BUET-GAUTIER and P. BOISSE, Experiment. Mech. 41 (2001) 260.

    Google Scholar 

  8. T. G. ROGERS, Composites 20 (1989) 21.

    Article  Google Scholar 

  9. A. J. M. SPENCER, Composites Part A 31 (2000) 1311.

    Article  Google Scholar 

  10. P. XUE, X. PENG and J. CAO, Ibid., 34 (2003) 183.

    Article  Google Scholar 

  11. S. KAWABATA, M. NIWA and H. KAWAI, J. Textile. Inst.. 64 (1973) 21.

    Google Scholar 

  12. T. V. SAGAR, P. POTLURI P. and J. W. S. HEARLE, Comput. Mater. Sci. 28 (2003) 49.

    Article  Google Scholar 

  13. B. BEN BOUBAKER, B. HAUSSY and J. F. GANGHOFFER, Comptes-rendus à l’Académie des Sciences de Paris, Série Mécanique 330 (2002) 871.

    Google Scholar 

  14. B. BEN BOUBAKER, B. HAUSSY and J. F. GANGHOFFER, Finite Element European Revue, to appear

  15. J. L. DANIEL, D. SOULAT and P. BOISSE, Proceedings of the Seventh International ESAFORM conference on Material Forming, Trondheim (Norway), (2004) 301.

  16. P. BOISSE, B. ZOUARI and A. GASSER, Compos. Sci. Technol. 65 (2005) 429.

    Article  Google Scholar 

  17. J. PAGE and J. WANG, ibid. 60 (2000) 977.

    Article  Google Scholar 

  18. U. MOHAMMED, C. LEKAKOU, L. DONG and M. BADER, Composites Part A 31 (2000) 299.

    Article  Google Scholar 

  19. M. NGUYEN, I. HERSZBERG and R. PATON, Compos. Structur.r 47 (1999) 767.

    Article  Google Scholar 

  20. P. HARRISON, M. J. CLIFFORD, A. C. LONG, Compos. Sci. Technol. 64 (2003) 1453.

    Article  Google Scholar 

  21. A. C. LONG, Int. J. Forming Process. 4(3–4) (2002) 285.

    Google Scholar 

  22. P. VACHER, S. DUMOULIN and R. ARRIEUX, ibid. 2(3–4) (1999) 395.

    Google Scholar 

  23. F. DUMONT, G. HIVET, R. ROTINAT, J. LAUNAY, P. BOISSE and P. VACHER, Mécanique et Industries 4 (2003) 627.

    Article  Google Scholar 

  24. D. S. SCHNUR and N. ZABARAS, Int. J Numer. Meth Engng. 33 (1992) 2039.

    Article  Google Scholar 

  25. A. GASSER, P. BOISSE and S. HANKLAR, Comput. Mater. Sci. 17 (2000) 7.

    Article  Google Scholar 

  26. D. P. FLANAGAN and T. BELYTSCHKO, Int. J Numer. Meth. Engng. 17 (1981) 679.

    Article  Google Scholar 

  27. Y. F. DAFALIAS, Trans. ASME, J. Ap. Mech. 50 (1983) 561.

    Google Scholar 

  28. P. GILORMINI, P. ROUDIER and P. ROUGEE, Comptes-rendus à l’Académie des Sciences de Paris 316(II), (1993) 1659.

    Google Scholar 

  29. J. K. DIENES, Acta Mechanica 32 (1979) 217.

    Article  Google Scholar 

  30. M. A. CRISFIELD, “Non Linear Finite Element Analysis of Solids and Structures, Volume II: Advanced Topics” (John Wiley & Sons, England, 1991).

    Google Scholar 

  31. R. JONES, “Mechanics of Composite Materials” (Taylor and Francis, London, 1998).

    Google Scholar 

  32. T. G. GUTOWSKI, SAMPE Quart. 16(4) (1985), 58.

    Google Scholar 

  33. C. BAOXING and T. W. CHOU, Compos. Sci. Technol. 59 (1999), 1519.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Boisse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boisse, P., Gasser, A., Hagege, B. et al. Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level. J Mater Sci 40, 5955–5962 (2005). https://doi.org/10.1007/s10853-005-5069-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-005-5069-7

Keywords

Navigation