Skip to main content
Log in

The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review

  • Review
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

The bias-extension test is a rather simple experiment aiming to determine in-plane shear properties of textile composite reinforcements. However the mechanics during the test involves fibrous material at large shear strains and large rotations of the fibres. Several aspects are still being studied and are not yet modeled in a consensual manner. The standard analysis of the test is based on two assumptions: inextensibility of the fibers and rotations at the yarn crossovers without slippage. They lead to the development of zones with constant fibre orientations proper to the bias-extension test. Beyond the analysis of the test within these basic assumptions, the paper presents studies that have been carried out on the lack of verification of these hypothesis (slippage, tension in the yarns, effects of fibre bending). The effects of temperature, mesoscopic modeling and tension locking are also considered in the case of the bias-extension test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Wang P, Legrand X, Boisse P, Hamila N, Soulat D (2015) Experimental and numerical analyses of manufacturing process of a composite square box part: comparison between textile reinforcement forming and surface 3D weaving. Compos Part B 78:26–34

    Article  Google Scholar 

  2. Prodromou AG, Chen J (1997) On the relationship between shear angle and wrinkling of textile composite preforms. Compos Part A 28A:491–503

    Article  Google Scholar 

  3. Skordos AA, Aceves CM, Sutcliffe MP (2007) A simplified rate dependent model of forming and wrinkling of pre-impregnated woven composites. Compos A: Appl Sci Manuf 38(5):1318–1330

    Article  Google Scholar 

  4. Hallander P, Akermo M, Mattei C, Petersson M, Nyman T (2013) An experimental study of mechanisms behind wrinkle development during forming of composite laminates. Compos A: Appl Sci Manuf 50:54–64

    Article  Google Scholar 

  5. Boisse P, Hamila N, Vidal-Sallé E, Dumont F (2011) Simulation of wrinkling during textile composite reinforcement forming. influence of tensile, in-plane shear and bending stiffnesses. Compos Sci Technol 71:683–692

    Article  Google Scholar 

  6. Yu WR, Harrison P, Long A (2005) Finite element forming simulation for non-crimp fabrics using a non-orthogonal constitutive equation. Compos Part A 36:1079–1093

    Article  Google Scholar 

  7. Hamila N, Boisse P, Sabourin F, Brunet M (2009) A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int J Numer Method Eng 79:1443–1466

    Article  MATH  Google Scholar 

  8. Haanappel SP, ten Thije RHW, Sachs U, Rietman B, Akkerman R (2014) Formability analyses of uni-directional and textile reinforced thermoplastics. Compos Part A: Appl Sci Manuf 56:80–92

    Article  Google Scholar 

  9. Smith JR, Vaidya UK, Johnstone JK (2014) Analytical modeling of deformed plain woven thermoplastic composites. Int J Mater Form 7(4):379–393

    Article  Google Scholar 

  10. Hübner M, Rocher JE, Allaoui S, Hivet G, Gereke T, Cherif C (2015) Simulation-based investigations on the drape behavior of 3D woven fabrics made of commingled yarns. Int J Mater Form. doi:10.1007/s12289-015-1245-8

    Google Scholar 

  11. Bickerton S, Šimáček P, Guglielmi SE, Advani SG (1997) Investigation of draping and its effects on the mold filling process during manufacturing of a compound curved composite part. Compos A: Appl Sci Manuf 28(9):801–816

    Article  Google Scholar 

  12. Gascón L, García JA, LeBel F, Ruiz E, Trochu F (2015) A two-phase flow model to simulate mold filling and saturation in Resin Transfer Molding. Int J Mater Form. doi:10.1007/s12289-015-1225-z

    Google Scholar 

  13. Blais M, Moulin N, Liotier PJ, Drapier S (2015) Resin infusion-based processes simulation: coupled Stokes-Darcy flows in orthotropic preforms undergoing finite strain. Int J Mater Form. doi:10.1007/s12289-015-1259-2

    Google Scholar 

  14. Lopez E, Abisset-Chavanne E, Lebel F, Upadhyay R, Comas S, Binetruy C, Chinesta F (2015) Flow modeling of linear and nonlinear fluids in two and three scale fibrous fabrics. Int J Mater Form. doi:10.1007/s12289-015-1280-5

    Google Scholar 

  15. Lindberg J, Behre B, Dahlberg B (1961) Shearing and buckling of various commercial fabrics. Text Res J 31(2):99–122

    Article  Google Scholar 

  16. Grosberg P, Park BJ (1966) The mechanical properties of woven fabrics, part V: the initial modulus and the frictional restraint in shearing of plain weave fabrics. Text Res J 36:420–431

    Article  Google Scholar 

  17. Grosberg P, Leaf GAV, Park BJ (1968) The mechanical properties of woven fabrics, part VI: the elastic shear modulus of plain weave fabrics. Text Res J 38(11):1085–1100

    Article  Google Scholar 

  18. Spivak SM, Treloar LRG (1968) The behavior of fabrics in shear: part III: the relation between bias-extension and simple shear. Text Res J 38:963–971

    Article  Google Scholar 

  19. Skelton J (1976) Fundamental of fabric shear. Text Res J 46(12):862–869

    Article  Google Scholar 

  20. McGuinness GB, O_Bradaigh CM (1997) Development of rheological models for forming flows and picture-frame shear testing of fabric reinforced thermoplastic sheets. J Non-Newtonian Fluid Mech 73:1–28

    Article  Google Scholar 

  21. Wang J, Page JR, Paton R (1998) Experimental investigation of the draping properties of reinforcement fabrics. Compos Sci Technol 58:229–237

    Article  Google Scholar 

  22. Page J, Wang J (2000) Prediction of shear force and an analysis of yarn slippage. Compos Sci Technol 60:977–986

    Article  Google Scholar 

  23. Page J, Wang J (2002) Prediction of shear force using 3D non-linear FEM analyses for a plain weave carbon fabric in a bias-extension state. Finite Elem Anal Des 38:755–764

    Article  MATH  Google Scholar 

  24. Potter K (2002) Bias-extension measurements on cross-plied unidirectional prepreg. Compos Part A 33:63–73

    Article  Google Scholar 

  25. Cao J, Akkerman R, Boisse P, Chen J et al (2008) Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos Part A 39:1037–1053

    Article  Google Scholar 

  26. Hu JL, Zhang YT (1997) The KES shear test for fabrics. Text Res J 67(9):654–664

    Article  Google Scholar 

  27. Haanappel SP, Akkerman R (2014) Shear characterisation of uni-directional fibre reinforced thermoplastic melts by means of torsion. Compos Part A 56:8–26

    Article  Google Scholar 

  28. Nguyen M, Herszberg I, Paton R (1999) The shear properties of woven carbon fabric. Compos Struct 47:767–779

    Article  Google Scholar 

  29. Mohammed U, Lekakou C, Dong L, Bader MG (2000) Shear deformation and micromechanics of woven fabrics. Compos Part A: Appl Sci Manuf 31:299–308

    Article  Google Scholar 

  30. Hivet G, Duong AV (2011) A contribution to the analysis of the intrinsic shear behavior of fabrics. J Compos Mater 45(6):695–716

    Article  Google Scholar 

  31. Lebrun G, Bureau MN, Denault J (2003) Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos Struct 61:341–352

    Article  Google Scholar 

  32. Harrison P, Clifford MJ, Long AC (2004) Shear characterisation of viscous woven textile composites, a comparison between picture frame and bias-extension experiments. Compos Sci Technol 64:1453–1465

    Article  Google Scholar 

  33. Launay J, Hivet G, Duong AV, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Technol 68:506–515

    Article  Google Scholar 

  34. Mark C, Taylor HM (1956) The fitting of woven cloth to surfaces. J Text Instit 47:477–488

    Article  Google Scholar 

  35. Van Der Ween F (1991) Algorithms for draping fabrics on doubly curved surfaces. Int J Numer Methods Eng 31:1414–1426

    Google Scholar 

  36. Cherouat A, Borouchaki H, Billoet JL (2005) Geometrical and mechanical draping of composite fabric. Eur J Comput Mech 14(6–7):693–708

    MATH  Google Scholar 

  37. Lomov SV, Boisse P, Deluycker E, Morestin F, Vanclooster K, Vandepitte D, Verpoest I, Willems A (2008) Full-field strain measurements in textile deformability studies. Compos Part A 39(8):1232–1244

    Article  Google Scholar 

  38. Pazmino J, Carvelli V, Lomov SV, Van Mieghem B, Lava P (2014) 3D digital image correlation measurements during shaping of a non-crimp 3D orthogonal woven E-glass reinforcement. Int J Mater Form 7(4):439–446

    Article  Google Scholar 

  39. Zouari B, Daniel JL, Boisse P (2006) A woven reinforcement forming simulation method. influence of the shear stiffness. Comput Struct 84(5–6):351–363

    Article  Google Scholar 

  40. Peng XQ, Cao J, Chen J, Xue P, Lussier DS, Liu L (2004) Experimental and numerical analysis on normalization of picture frame tests for composite materials. Compos Sci Technol 64:11–21

    Article  Google Scholar 

  41. Harrison P, Wiggers J, Long AC (2008) Normalization of shear test data for rate independent compressible fabrics. J Compos Mater 42:2315–2344

    Article  Google Scholar 

  42. Härtel F, Harrison P (2014) Evaluation of normalisation methods for uniaxial bias-extension tests. Compos Part A 67:61–69

    Article  Google Scholar 

  43. Cao J, Cheng HS, Yu TX et al. (2004) A cooperative benchmark effort on testing of woven composites, In: Proceedings of the 7th int. ESAFORM conference on material forming, Trondheim, Norway, p. 305–8

  44. Hamila N, Boisse P (2007) A Meso–Macro three node finite element for draping of textile composite preforms. Appl Compos Mater 14:235–250

    Article  Google Scholar 

  45. Hamila N, Boisse P (2008) Simulations of textile composite reinforcement draping using a new semi-discrete three node finite element. Compos Part B 39:999–1010

    Article  Google Scholar 

  46. Hivet G, Vidal-Sallé E, Boisse P (2013) Analysis of the stress components in a textile composite reinforcement. J Compos Mater 47(3):269–285

    Article  Google Scholar 

  47. Basar Y, Weichert D (2000) Nonlinear continuum mechanics of solids: fundamental mathematical and physical concepts. Springer Science & Business Media

  48. Guzman-Maldonado E (2016) Modélisation et simulation de la mise en forme des matériaux composites préimprégnés à matrice thermoplastique et à fibres continues. Ph. D thesis, Université de Lyon

  49. Marquardt DW (1963) An algorithm for least squares estimation of nonlinear parameters. J Soc Indus Appl Math 11(2):431–441

    Article  MathSciNet  MATH  Google Scholar 

  50. Schnur DS, Zabaras N (1992) An inverse method for determining elastic material properties and a material interface. Int J Num Meth Eng 33:2039–2057

    Article  MATH  Google Scholar 

  51. Wang P, Hamila N, Boisse P (2013) Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix. Compos Part B: Eng 52:127–136

    Article  Google Scholar 

  52. Wang P, Hamila N, Pineau P, Boisse P (2014) Thermomechanical analysis of thermoplastic composite prepregs using bias-extension test. J Thermoplast Compos Mater 27(5):679–698

    Article  Google Scholar 

  53. Gupta YN, Chakraborty A, Pandey GD, Setua DK (2004) Thermal and thermooxidative degradation of engineering thermoplastics and life estimation. J Appl Polym Sci 92:1737–1748

    Article  Google Scholar 

  54. Guzman-Maldonado E, Hamila N, Boisse P, Bikard J (2015) Thermomechanical analysis, modelling and simulation of the forming of pre-impregnated thermoplastics composites. Compos Part A 78:211–222

    Article  Google Scholar 

  55. Guzman-Maldonado E, Hamila N, Naouar N, Moulin G, Boisse P (2016) Simulation of thermoplastic prepreg thermoforming based on a visco-hyperelastic model and a thermal homogenization. Mater Des 93:431–442

    Article  Google Scholar 

  56. Nosrat-Nezami F, Gereke T, Eberdt C, Cherif C (2014) Characterisation of the shear–tension coupling of carbon-fibre fabric under controlled membrane tensions for precise simulative predictions of industrial preforming processes. Compos Part A 67:131–139

    Article  Google Scholar 

  57. Lomov SV, Verpoest I (2006) Model of shear of woven fabric and parametric description of shear resistance of glass woven reinforcements. Compos Sci Technol 66:919–933

    Article  Google Scholar 

  58. Harrison P, Abdiwi F, Guo Z, Potluri P, Yu WR (2012) Characterising the shear–tension coupling and wrinkling behaviour of woven. Compos Part A 43:903–914

    Article  Google Scholar 

  59. Sharma SB, Sutcliffe MPF, Chang SH (2003) Characterisation of material properties for draping of dry woven composite material. Compos Part A 34:1167–1175

    Article  Google Scholar 

  60. Harrison P (2012) Normalisation of biaxial bias-extension test results considering shear tension coupling. Compos Part A 43(9):1546–1554

    Article  Google Scholar 

  61. Potter KD (1979) The influence of accurate stretch data for reinforcements on the production of complex structural mouldings. Composites 10:161–173

    Article  Google Scholar 

  62. Zhu BA, Yu TX, Tao XM (2007) Large deformation and slippage mechanism of plain woven composite in bias-extension. Compos Part A 38:1821–1828

    Article  Google Scholar 

  63. Bel S, Boisse P, Dumont F (2012) Analyses of the deformation mechanisms of non-crimp fabric composite reinforcement during preforming. Appl Compos Mater 19:513–528

    Article  Google Scholar 

  64. Creech G, Pickett AK (2006) Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis. J Mater Sci 41:6725–6736

    Article  Google Scholar 

  65. Lee J, Hong S, Yu W, Kang T (2007) The effect of blank holder force on the stamp forming behaviour of non-crimp fabric with a chain stitch. Compos Sci Technol 67(3–4):357–366

    Article  Google Scholar 

  66. Bel S, Hamila N, Boisse P, Dumont F (2012) NCF composite reinforcement preforming: Importance of inter-ply sliding. Compos Part A 43:2269–2277

    Article  Google Scholar 

  67. Lomov SV, Barburski M, Stoilova TZ, Verpoest I, Akkerman R, Loendersloot R et al (2005) Carbon composites based on multiaxial multiply stitched preforms. part 3: biaxial tension, picture-frame and compression tests of the preforms. Compos Part A 36:1188–1206

    Article  Google Scholar 

  68. Schirmaier F, Weidenmann KA, Kaerger L, Henning F (2015) Characterization of the draping behaviour of sewed unidirectional non-crimp fabrics (UD-NCF). Compos Part A 80(2016):28–38

    Google Scholar 

  69. Boisse P, Bussy P, Ladeveze P (1990) A new approach in non-linear mechanics: the large time increment method. Int J Numer Method Eng 29:647–663

    Article  MATH  Google Scholar 

  70. ten Thije RHW, Akkerman R (2008) Solutions to intra-ply shear locking in finite element analyses of fibre reinforced materials. Compos Part A 39:1167–1176

    Article  Google Scholar 

  71. Yu X, Cartwright B, McGuckin D, Ye L, Mai YW (2006) Intraply shear locking in finite element analyses of woven fabric forming processes. Compos Part A 37:790–803

    Article  Google Scholar 

  72. Hamila N, Boisse P (2013) Locking in simulation of composite reinforcement deformations. analysis and treatment. Compos Part A 53:109–117

    Article  Google Scholar 

  73. Belytschko T, Bachrach WE (1986) Efficient implementation of quadrilaterals with high coarse-mesh accuracy. Comput Meth Appl Mech Eng 54:279–301

    Article  MathSciNet  MATH  Google Scholar 

  74. Dvorkin EN, Bathe KJ (1984) A continuum mechanics based four-node shell element for general nonlinear analysis. Eng Comput 1:77–88

    Article  Google Scholar 

  75. Belytschko T, Liu WK, Moran B et al. (2000) Non linear finite elements for continua and structures. John Wiley & Sons Inc

  76. Ferretti M, Madeo A, dell’Isola F, Boisse P (2014) Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Z Angew Math Phys 65(3):587–612

    Article  MathSciNet  MATH  Google Scholar 

  77. d’Agostino V, Giorgio I, Greco L, Madeo A, Boisse P (2015) Continuum and discrete models for structures including (quasi-) inextensible elasticae with a view to the design and modeling of composite reinforcements, Int. J Solids Struct 59:1–17

    Article  Google Scholar 

  78. Aimène Y, Vidal-Sallé E, Hagège B, Sidoroff F, Boisse P (2010) A hyperelastic approach for composite reinforcement large deformation analysis. J Compos Mater 44:5–26

    Article  Google Scholar 

  79. Charmetant A, Orliac JG, Vidal-Sallé E, Boisse P (2012) Hyperelastic model for large deformation analyses of 3D interlock composite preforms. Compos Sci Technol 72:1352–1360

    Article  Google Scholar 

  80. Madeo A, Ferretti M, dell’Isola F, Boisse P (2015) Thick fibrous composite reinforcements behave as special second gradient materials: three point bending of 3D interlocks. Z Angew Math Phys 66(4):2041–2060

    Article  MathSciNet  MATH  Google Scholar 

  81. Cazzani C, Antonio MM, Turco E (2014) Isogeometric analysis: a powerful numerical tool for the elastic analysis of historical masonry arches. Contin Mech Thermodyn 28(1-2):139–156

    Article  MathSciNet  MATH  Google Scholar 

  82. Greco FL, Cuomo M (2015) An isogeometric implicit G1 mixed finite element for Kirchhoff space rods. Comput Methods Appl Mech Eng 298(1)2016, 325–349

  83. Mathieu S, Hamila N, Bouillon F, Boisse P (2015) Enhanced modeling of 3D composite preform deformations taking into account local fiber bending stiffness. Compos Sci Technol 117:322–333

    Article  Google Scholar 

  84. Dell’Isola F, Steigmann D (2015) A two-dimensional gradient-elasticity theory for woven fabrics. J Elast 118(1):113–125

    Article  MathSciNet  MATH  Google Scholar 

  85. Steigmann D, Dell’Isola F (2015) Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech Sinica 31(3):373–382

    Article  MathSciNet  MATH  Google Scholar 

  86. Eremeyev VA, Holm A (2015) On the direct approach in the theory of second gradient plates, shell and membrane theories in mechanics and biology. Springer International Publishing, 147–154

  87. Madeo A, Barbagallo G, D’Agostino MV, Boisse P (2016) Continuum and discrete models for unbalanced woven fabrics. Int J Solids Struct. doi:10.1016/j.ijsolstr.2016.02.005

    Google Scholar 

  88. Barbagallo G, Madeo A, Azehaf I et al. (2016) Bias extension test on an unbalanced woven composite reinforcement: experiments and modeling via a second gradient continuum approach. J Compos Mater, accepted 2016

  89. Durville D (2010) Simulation of the mechanical behaviour of woven fabrics at the scale of fibers. Int J Mater Form 3(2):1241–1251

    Article  Google Scholar 

  90. Gatouillat S, Bareggi A, Vidal-Salle E, Boisse P (2013) Meso modelling for composite preform shaping - simulation of the loss of cohesion of the woven fibre network. Compos Part A 54:135–144

    Article  Google Scholar 

  91. Boisse P, Gasser A, Hagege B, Billoet JL (2005) Analysis of the mechanical behaviour of woven fibrous material using virtual tests at the unit cell level, Int. J Mater Sci 40:5955–5962

    Article  Google Scholar 

  92. Boisse P (2007) Finite element analysis of composite forming. composites forming technologies, Woodhead publishing, 46–79

  93. Badel P, Vidal-Salle E, Boisse P (2008) Large deformation analysis of fibrous materials using rate constitutive equations. Comput Struct 86:1164–1175

    Article  Google Scholar 

  94. Charmetant A, Vidal-Salle E, Boisse P (2011) Hyperelastic modelling for mesoscopic analyses of composite reinforcements. Compos Sci Technol 71:1623–1631

    Article  Google Scholar 

  95. de Bilbao E, Soulat D, Hivet G, Gasser A (2010) Experimental study of bending behaviour of reinforcements. Exp Mech 50(3):333–351

    Article  Google Scholar 

  96. Liang B, Hamila N, Peillon M, Boisse P (2014) Analysis of thermoplastic prepreg bending stiffness during manufacturing and of its influence on wrinkling simulations. Compos Part A 67:111–122

    Article  Google Scholar 

  97. Syerko E, Comas-Cardona S, Binetruy C (2015) Models for shear properties/behavior of dry fibrous materials at various scales: a review. Int J Mater Form 8(1):1–23

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Boisse.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boisse, P., Hamila, N., Guzman-Maldonado, E. et al. The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review. Int J Mater Form 10, 473–492 (2017). https://doi.org/10.1007/s12289-016-1294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-016-1294-7

Keywords

Navigation