Skip to main content
Log in

Analyses of the Deformation Mechanisms of Non-Crimp Fabric Composite Reinforcements during Preforming

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Two experimental devices are used for the analysis of the deformation mechanisms of biaxial non-crimp fabric composite reinforcements during preforming. The bias extension test, commonly use for the shear behaviour characterisation of woven fabrics, allows to highlight the sliding between the two plies of the reinforcement. This sliding is localized in areas of high gradient of shearing. This questions the use of bias extension test in determining the shear stiffness of the studied reinforcement. Then a hemispherical stamping experiment, representative of a preforming process, allows to quantify this sliding. The slippage is defined as the distance, projected onto the middle surface, of two points initially opposed on both sides of the reinforcement. For both experiments, the characteristic behavior of the non-crimp fabric reinforcement is highlighted by comparison with a woven textile reinforcement. This woven fabric presents only a very little sliding between warp and weft yarns during preforming. This aspect of the deformation kinematics of the non-crimp fabric reinforcement must be considered when simulating the preforming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Lomov, S.V., Belov, E.B., Bischoff, T., Ghosh, B.B., Truong Chi, T., Verpoest, I.: Carbon composites based on multiaxial multiply stitched preforms. Part 1. Geometry Preform. Compos. A 33, 1171–1183 (2002)

    Google Scholar 

  2. Wang, Y.: Mechanical properties of stitched multiaxial fabric reinforced composites from manual layup process. Appl. Compos. Mater. 9, 81–97 (2002)

    Article  CAS  Google Scholar 

  3. Lomov, S.V., Verpoest, I., Barburski, M., Laperre, J.: Carbon composites based on multiaxial multiply stitched preforms. Part 2. KES-F characterisation of the deformability of the performs at low loads. Compos. A 34, 359–370 (2003)

    Article  Google Scholar 

  4. Du, G.W., Ko, F.: Analysis of multiaxial warp-knit performs for composite reinforcement. Compos. Sci. Technol. 56, 256–260 (1996)

    Article  Google Scholar 

  5. Mattsson, D., Joffe, R., Varna, J.: Methodology of characterisation of internal structure parameters governing performance in NCF composites. Compos. B 38, 44–57 (2007)

    Article  Google Scholar 

  6. Koissin, V., Kustermans, J., Lomov, S.V., Verpoest, I., Van Den Broucke, B., Witzel, V.: Structurally stitched NCF performs: quasi-static response. Compos. Sci. Technol. 69, 2701–2710 (2009)

    Article  CAS  Google Scholar 

  7. Greve, L., Pickett, A.K.: Modelling damage and failure in carbon/epoxy non-crimp fabric including effects of fabric pre-shear. Compos. A 37, 1986–2001 (2006)

    Article  Google Scholar 

  8. Truong, T.T., Vettori, M., Lomov, S.V., Verpoest, I.: Carbone composites based on multiaxial multiply stitched preforms. Part 4. Mechanical properties of composites and damage observation. Compos. A 36, 1207–1221 (2005)

    Article  Google Scholar 

  9. Vallons, K., Zeng, M., Lomov, S.V., Verpoest, I.: Carbon composites based on multiaxial multiply stitched preforms. Part 6. Fatigue behaviour at low loads: stiffness degradation and damage development. Compos. A 38, 1345–1633 (2007)

    Article  Google Scholar 

  10. Kong, H., Mouritz, A.P., Paton, R.: Tensile extension properties and deformation mechanisms of multiaxial non-crimp fabrics. Compos. Struct. 66, 249–259 (2004)

    Article  Google Scholar 

  11. Lomov, S.V., Barburski, M., Stoilova, T.Z., Verpoest, I., Akkerman, R., Loendersloot, R., Ten Thije, R.H.W.: Carbon composites based on multiaxial multiply stitched preforms. Part 3: biaxial tension, picture frame and compression tests of the preforms. Compos. A 36, 1188–1206 (2005)

    Article  Google Scholar 

  12. Hu, J., Jiang, Y.: Modeling formability of multiaxial warp knitted fabrics on a hemisphere. Compos. A 33, 725–734 (2002)

    Article  Google Scholar 

  13. Yu, W.R., Harrison, P., Long, A.C.: Finite element forming simulation of non-crimp fabrics using a non-orthogonal constitutive equation. Compos. A 36, 1079–1093 (2005)

    Article  Google Scholar 

  14. Dumont, F., Weimer, C., Soulat, D., Launay, J., Chatel, S., Maison-Le-Poec, S.: Composites performs simulations for helicopters parts. Int. J. Mater. Form. suppl. 1, 847–850 (2008)

    Article  Google Scholar 

  15. Yu, W.R., Harrison, P., Long, A.C.: Ideal forming of non-crimp fabric performs through optimization of blank shape and blank holding force, Proc. Of 7th Esaform, 28th-30th April, Trondheim, Norway, 309–312 (2004)

  16. Lee, J.S., Hong, S.J., Yu, W.-R., Kang, T.J.: The effect of blank holder force on the stamp forming behaviour of non-crimp fabric with a chain stitch. Compos. Sci. Technol. 67, 357–366 (2007)

    Article  Google Scholar 

  17. Harrison, P., Clifford, M.J., Long, A.C.: Shear characterisation of viscous woven textile composites: a comparison between, picture frame and bias extension experiments. Compos. Sci. Technol. 64, 1453–1465 (2004)

    Article  CAS  Google Scholar 

  18. Zhu, B., Yu, T.X., Tao, X.M.: Large deformation and slippage mechanism of plain woven composite in bias extension. Compos. A 38, 1821–1828 (2007)

    Article  Google Scholar 

  19. Cao, J., et al.: Characterization of mechanical behavior of woven fabrics: experimental methods and benchmark results. Compos. A 39, 1037–1053 (2008)

    Article  Google Scholar 

  20. Lomov, S.V., Boisse, P., De Luycker, E., Morestin, F., Vanclooster, K., Vandepitte, D., Verpoest, I., Willems, A.: Full-field strain measurements in textile deformability studies. Compos. A 39, 1232–1244 (2008)

    Article  Google Scholar 

  21. Launay, J., Hivet, G., Duong, A.V., Boisse, P.: Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos. Sci. Technol. 68, 506–515 (2008)

    Article  Google Scholar 

  22. Sharma, S.B., Sutcliffe, M.P.F., Chang, S.H.: Characterisation of material properties for draping of dry woven composite material. Compos. A 34, 1167–1175 (2003)

    Article  Google Scholar 

  23. Peng, X.Q., Cao, J., Chen, J., Xue, P., Lussier, D.S., Liu, L.: Experimental and numerical analysis on normalization of picture frame tests for composite materials. Compos. Sci. Technol. 64, 11–21 (2004)

    Article  Google Scholar 

  24. Potter, K.: Bias extension measurements on cross-plied unidirectional prepreg. Compos. A 33, 63–73 (2002)

    Article  Google Scholar 

  25. Wang, J., Page, J.R., Paton, R.: Experimental investigation of the draping properties of reinforcement fabrics. Compos. Sci. Technol. 58, 229–237 (1998)

    Article  Google Scholar 

  26. Boisse, P., Hamila, N., Vidal-Sallé, E., Dumont, F.: Simulation of wrinkling during textile composite reinforcement forming. Influence of tensile, in-plane shear and bending stiffness’s. Compos. Sci. Technol. 71, 683–692 (2011)

    Article  CAS  Google Scholar 

  27. Lebrun, G., Bureau, N.M., Denault, J.: Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos. Struct. 61, 341–352 (2003)

    Article  Google Scholar 

  28. Rozant, O., Bourban, P.E., Manson, J.A.E.: Drapability of dry textile fabrics for stampable thermoplastic preforms. Compos. A 31, 1167–1177 (2000)

    Article  Google Scholar 

  29. Prodromou, A.G., Chen, J.: On the relationship between shear angle and wrinkling of textile composite performs. Compos. A 28A, 491–503 (1997)

    Article  Google Scholar 

  30. Sidhu, R.M.J.S., Averill, R.C., Riaz, M., Pourboghrat, F.: Finite element analysis of textile composite preform stamping. Compos. Struct. 52, 483–497 (2001)

    Article  Google Scholar 

  31. Creech, G., Pickett, A.K.: Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis. J. Mat. Sci. 41, 6725–6736 (2006)

    Article  CAS  Google Scholar 

  32. Yu, W.R., Pourboghrat, F., Chung, K., Zampaloni, M., Kang, T.J.: Non-orthogonal constitutive equation for woven fabric reinforced thermoplastic composites. Compos. A 33, 1095–1105 (2002)

    Article  Google Scholar 

  33. Hamila, N., Boisse, P.: A meso-macro three node finite element for draping of textile composite performs. Appl. Compos. Mater. 14, 235–250 (2007)

    Article  CAS  Google Scholar 

  34. Hamila, N., Boisse, P., Sabourin, F., Brunet, M.: A semi-discrete shell finite element for textile composite reinforcement forming simulation. Int. J. Numer. Meth. Eng. 79, 1443–1466 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical assistance of P. Chaudet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Boisse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bel, S., Boisse, P. & Dumont, F. Analyses of the Deformation Mechanisms of Non-Crimp Fabric Composite Reinforcements during Preforming. Appl Compos Mater 19, 513–528 (2012). https://doi.org/10.1007/s10443-011-9207-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-011-9207-x

Keywords

Navigation