Skip to main content
Log in

Using synchroton radiation-based micro-computer tomography (SR μ-CT) for the measurement of fibre orientations in cellulose fibre-reinforced polylactide (PLA) composites

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The present work deals with the measurement of fibre orientation angles in composites. A study by Bax and Müssig [1] investigated the mechanical properties (tensile and impact characteristics) of injection-moulded flax and Cordenka-reinforced polylactide (PLA) composites with fibre mass fractions between 10 and 30 %. Raising the fibre content from 10 to 30 % resulted in an increase in tensile characteristics, but it was noted that a reinforcement with 10 % flax fibres led to poorer tensile strength as compared to the neat PLA matrix. This behaviour was not expected and needs clarification. Therefore, test specimens with a fibre content of 10 and 30 mass % were examined for their fibre orientations and void content. For the investigations, microcomputer tomography images were created by monochromatic synchrotron radiation. Fibre orientation angles of these micrographs were determined with an adapted measuring mask of the Fibreshape software. It could be shown that the fibre orientation in the composite is dependent on the fibre mass fraction and the type of fibre. No voids were found in all the investigated composites. The average fibre orientation angle of 10 % flax/PLA showed a larger deviation from the longitudinal axis of the test specimen than the other samples, and is made primarily responsible for the lower tensile strength of this composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The shape factor compares the surface of an object with the area of a circle [S = (circumference of the object)²/(4 * π * area of the object)].

References

  1. Bax B, Müssig J (2008) Impact and tensile properties of PLA/cordenka and PLA/flax composites. Compos Sci Technol 68(7–8):1601–1607

    Article  CAS  Google Scholar 

  2. John MJ, Thomas S (2008) Review: Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Article  CAS  Google Scholar 

  3. Holbery J, Houston D (2006) Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11):80–86

    Article  CAS  Google Scholar 

  4. Faruk O, Bledzki AK, Fink H-P, Sain M (2012) Biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37(11):1552–1596

    Article  CAS  Google Scholar 

  5. Ruys D, Crosky A, Evans WJ (2002) Natural bast fibre structure. Int J Mater Prod Technol 17(1–2):2–10

    Article  Google Scholar 

  6. Mueller (2005) Cotton fiber nonwovens for automotive composites. In: INJ Spring S. 34–40

  7. Ma H, Joo CW (2011): Influence of surface treatments on structural and mechanical properties of bamboo fiber-reinforced poly(lactic acid) biocomposites. In: J Compos Mater, In press

  8. Awal A, Cescutti G, Ghosh S, Müssig J (2011) Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT). Compos A Appl Sci Manuf 42(1):50–56

    Article  Google Scholar 

  9. Islam M, Pickering K, Foreman N (2010) Influence of alkali treatment on the interfacial and physico-mechanical properties of industrial hemp fibre reinforced polylactic acid composites. Compos A Appl Sci Manuf 41(5):596–603

    Article  Google Scholar 

  10. Graupner N (2009) Improvement of the mechanical properties of biodegradable hemp fiber reinforced poly(lactic acid) (PLA) composites by the admixture of man-made cellulose fibers. J Compos Mater 43(6):689–702

    Article  CAS  Google Scholar 

  11. Graupner N, Müssig J (2011) A comparison of the mechanical characteristics of kenaf and lyocell fibre reinforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites. Compos A Appl Sci Manuf 42:2010–2019

    Article  Google Scholar 

  12. Madsen B (2004) Properties of plant fibre yarn polymer composites -an experimental study. Dissertation, Technical University of Denmark, Department of Civil Engineering (BYG), DK

  13. Hu R-H, Jang M-H, Kim Y-J, Piao Y-J (2010) Fully degradable jute fiber reinforced polylactide composites applicable to car interior panel. Adv Mater Res 123–125:1151–1154

    Article  Google Scholar 

  14. Yu T, Li Y, Ren J (2009) Preparation and properties of short natural fiber reinforced poly(lactic acid) composites. In: Transactions of Nonferrous Metals Society of China, 19 (Supplement 3): 651–655

  15. Xiao-Yun W, Qiu-Hong W, Gu H (2010) Research on mechanical behaviors of the flax/polyactic acid composites. In: J Reinf Plast Compos, 29(17): 2561–2567

  16. Thomason JL (1999) The influence of fibre properties of the performance of glass-fibre-reinforced polyamide 6, 6. Compos Sci Technol 59(16):2315–2328

    Article  CAS  Google Scholar 

  17. Toll S, Andersson P-O (1993) Microstructure of long-and short-fiber reinforced injection molded polyamide. Polym Compos 14(2):116–125

    Article  CAS  Google Scholar 

  18. Akay M, Barkley D (1991) Fibre orientation and mechanical behaviour in reinforced thermoplastic injection mouldings. J Mater Sci 26(10):2731–2742

    Article  CAS  ADS  Google Scholar 

  19. Taha IMA (2007) Processing and characterisation of selected discontinous natural fibres and their polymer composites. Dissertation, Institut für Polymerwerkstoffe und Kunststofftechnik, TU Clausthal, Fakultät für Materialwissenschaften, Clausthal, D

  20. Walther T, Donath T, Terzic K, Meine H, Thömen H, Beckmann F (2006) Microstructural investigations on natural fiber composites and medium density fiberboard (MDF), In: Deutsches Elektronen Synchroton (Hrsg.), HASYLAB Annual Report, S. 455–456. Hamburg, D

  21. Lux J, Delisée C, Thibault X (2006) 3D characterization of wood based fibrous materials: an application. Imag Anal Stereol 25(1):25–35

    Article  Google Scholar 

  22. Shen H, Nutt S, Hull D (2004) Direct observation and measurement of fiber architecture in short fiber-polymer composite foam through micro-ct imaging. Compos Sci Technol 64(13–14):2113–2120

    Article  CAS  Google Scholar 

  23. Cendre E, Feih S, Stampanoni M (2003) Characterisation of glassfiber polymer composites using X-ray synchrotron micro-tomography, In: Paul Scherrer Institut (Hrsg.), PSI -Scientific Report 2003/Volume VII, S. 56–57. Villigen, CH

  24. Alemdar A, Zhang H, Sain M, Cescutti G, Müssig J (2008) Determination of fiber size distributions of injection moulded polypropylene/natural fibers using X-ray microtomography. Adv Eng Mater 10(12):126–130

    Article  CAS  Google Scholar 

  25. Ganster J, Fink H-P (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13(3):271–280

    Article  CAS  Google Scholar 

  26. Beckmann F, Herzen J, Haibel A, Müller B, Schreyer A (2008): High density resolution in synchrotron-radiation-based attenuation-contrast microtomograph. In: Proceedings of SPIE, P. 7078–7081D

  27. Schmid HG, Dvorak M, Müller J, Müssig J (2004) Characterizing flock fibers using quantitative image analysis. In: Flock -English issue 30(1):6–12

    Google Scholar 

  28. Schmid HG, Müssig J (2004): Characterisation of polyamide fibre width using quantitative image analysis. In: Melliand English, 85(10): E 110

  29. Beckermann G, Pickering K (2009) Engineering and evaluation of hemp fibre reinforced polypropylene composites: micro-mechanics and strength prediction modelling. Compos A Appl Sci Manuf 40(2):210–217

    Article  Google Scholar 

  30. Thomason JL (2007) The influence of fibre length and concentration on the properties of glass fibre reinforced polypropylene: 7. Interface strength and fibre strain in injection moulded long fibre PP at high fibre content. Compos A Appl Sci Manuf 38(1):210–216

    Article  Google Scholar 

  31. Fara S, Pavan A (2004) Fibre orientation effects on the fracture of short fibre polymer composites: On the existence of a critical fibre orientation on varying internal material variables. J Mater Sci 39(11):3619–3628

    Article  CAS  ADS  Google Scholar 

  32. Kelly A, Tyson WR (1964) Fiber strengthened materials. In: Zackay VF (ed) High-strength materials. John Wiley & Sons, Berkeley, USA

    Google Scholar 

  33. Burgstaller C, Rüt W, Stadlbauer W, Pilz G, Lang RW (2009) Utilizing unbleached cellulosic fibres in polypropylene matrix composites for injection moulding applications. In J Biobased Mater Bioenergy 3(3):226–231

    Article  CAS  Google Scholar 

  34. Deutsches Institut für Normung (1977) DIN EN 61:1977: Glasfaser-verstärkte Kunststoffe -Zugversuch. Deutsche Norm.—in German

  35. Beckmann F (1998) Entwicklung, Aufbau und Anwendung eines Verfahrens der Phasenkontrast-Mikrotomographie mit Röntgen-Synchrotonstrahlung. Dissertation, University of Dortmund.—in German

Download references

Acknowledgements

Our special thank is expressed to DESY (Deutsches Elektronen-Synchroton, Hamburg, Germany) who funded the project called ‘Using μ-CT for the measurement of fibre orientations in biodegradable cellulose fibre-reinforced poly(lactic acid) (PLA) composites’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Graupner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graupner, N., Beckmann, F., Wilde, F. et al. Using synchroton radiation-based micro-computer tomography (SR μ-CT) for the measurement of fibre orientations in cellulose fibre-reinforced polylactide (PLA) composites. J Mater Sci 49, 450–460 (2014). https://doi.org/10.1007/s10853-013-7724-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7724-8

Keywords

Navigation