Skip to main content
Log in

Experimental Study of Bending Behaviour of Reinforcements

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

In composite reinforcement shaping, textile preform undergo biaxial tensile deformation, in plane shear deformation, transverse compaction and out-of-plane bending deformations. Bending deformations have been neglected in some simulation codes up to now, but taking into account them would give more accurate simulations of forming especially for stiff and thick textiles. Bending behaviour is specific because the reinforcements are structural parts and out of plane properties cannot be directly deduced from in-plane properties, like for continuous material. Because the standard tests are not adapted for stiff reinforcements with non linear behaviour a new flexometer using optical measurements has been developed to test such reinforcements. This new device enables to carry out a set of cantilever tests with different histories of load. A series of tests has been performed to validate the test method and to show the capacities of the new flexometer to identify non linear non elastic behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. but non necessarily linear

  2. but it can be elastic nevertheless

References

  1. Long A (2005) Design and manufacture of textile composites. Woodhead, Cambridge

    Google Scholar 

  2. Rudd C, Long A, Kendall K, Mangin C (1997) Liquid moulding technologies. Woodhead, Cambridge

    Google Scholar 

  3. Potter K (1999) The early history of the resin transfer moulding process for aerospace applications. Compos Part A Appl Sci Manuf 30(5):619–621

    Article  Google Scholar 

  4. Parnas, RS (2000) Liquid composite molding. Hanser Gardner, Cincinnati

    Google Scholar 

  5. Maison S, Thibout C, Garrigues C, Garcin J, Payen H, Sibois H, Coiffer C, Vautey P (1998) Technical developments in thermoplastic composites fuselages. SAMPE J 5:33–39

    Google Scholar 

  6. Soulat D, Cheruet A, Boisse P (2006) Simulation of continuous fibre reinforced thermoplastic forming using a shell finite element with transverse stress. Comput Struct 84:888–903

    Article  Google Scholar 

  7. Long A, Rudd CD (1994) A simulation of reinforcement deformation during the production of preforms for liquid moulding processes. In: ARCHIVE: proceedings of the institution of mechanical engineers. Part B: journal of engineering manufacture 1989–1996 (vols 203–210), vol 208, (42), pp 269–278

  8. Pillai K, Advani S (1994) The role of dual permeability of fiber preforms in resin transfer molding. In: Proceedings of the American society for composites ninth technical conference

  9. Rudd C, Long A, McGeehin P, Cucinella F, Bulmer L (1995) Processing and mechanical properties of bi-directional preforms for liquid composite moulding. Compos Manuf 6(3–4):211–219

    Article  Google Scholar 

  10. Advani S, Bruschke M, Parnas R (1994) Flow and rheology in polymeric composites manufacturing, chap. 12—resin transfer molding. Elsevier, Amsterdam

    Google Scholar 

  11. Rudd C, Middleton V, Owen M, Long A, McGeehin P, Bulmer L (1994) Modelling the processing and performance of preforms for liquid moulding processes. Compos Manuf 5(3):177–186

    Article  Google Scholar 

  12. Laroche D, Vu-Khanh T (1994) Forming of woven fabric composites. J Compos Mater 28(18):1825–1839

    Google Scholar 

  13. Mark C, Taylor H (1956) The fitting of woven cloth to surfaces. J Text Inst 47:477–488

    Google Scholar 

  14. Van Der Weeën F (1991) Algorithms for draping fabrics on doubly-curved surfaces. Int J Numer Methods Eng 31(7):1415–1426

    Article  Google Scholar 

  15. Cherouat A, Borouchaki H, Billoët J (2005) Geometrical and mechanical draping of composite fabric. Eur J Comput Mech 14:693–708

    MATH  Google Scholar 

  16. Boisse P, Zouari B, Gasser A (2005) A mesoscopic approach for the simulation of woven fibre composite forming. Compos Sci Technol 65(3–4):429–436

    Article  Google Scholar 

  17. Boisse P, Zouari B, Daniel J (2006) Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming. Compos Part A Appl Sci Manuf 37:2201–2212

    Article  Google Scholar 

  18. Zouari B, Daniel J, Boisse P (2006) A woven reinforcement forming simulation method. Influence of the shear stiffness. Comput Struct 84(5–6):351–363

    Article  Google Scholar 

  19. Boisse P, Hamila N, Helenon F, Hagege B, Cao J (2008) Different approaches for woven composite reinforcement forming simulation. Int J Mater Form 1(1):21–29

    Article  Google Scholar 

  20. Hamila N, Boisse P (2008) Simulations of textile composite reinforcement draping using a new semi-discrete three node finite element. Compos Part B Eng 39(6):999–1010

    Article  Google Scholar 

  21. Launay J, Hivet G, Duong A, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Technol 68(2):506–515

    Article  Google Scholar 

  22. Hamila N (2007) Simulation de la mise en forme des renforts composites mono et multi plis. Ph.D. thesis, Institut National des Sciences Appliquées de Lyon

  23. Wang J, Long A, Clifford M, Lin H (2007) Energy analysis of reinforcement deformations during viscous textile composite forming. In: Cueto E, Chinesta F (eds) AIP conference proceedings, vol 907. AIP, New York, pp 1098–1106

    Chapter  Google Scholar 

  24. Yu W, Zampaloni M, Pourboghrat F, Chung K, Kang T (2005) Analysis of flexible bending bahavior of woven preform using non-orthogonal constitutive equation. Compos Part A Appl Sci Manuf 36(6):839–850

    Article  Google Scholar 

  25. Peirce F (1937) The geometry of cloth structure. J Text Inst 28:45–96

    Article  Google Scholar 

  26. ASTM (2002) Standard test method for stiffness of fabrics, chap. D1388-96(2002). American Society for Testing and Materials, Philadelphia

    Google Scholar 

  27. ISO (1978) Textiles glass-woven fabrics—determination of conventional flexural stifness—fixed angle flexometer method, chap. iSO 4604:1978. ISO

  28. Kawabata S (1980) The standardization and analysis of hand evaluation. The Textile Machinery Society of Japan, Osaka

    Google Scholar 

  29. Hivet G, Boisse P (2005) Consistent 3d geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3d finite element analysis. Finite Elem Anal Des 42:25–49

    Article  Google Scholar 

  30. Lomov S, Belov E, Bischoff T, Ghosh S, Truong Chi T, Verpoest I (2002) Carbon composites based on multiaxial multiply stitched preforms, part 1. Geometry of the preform. Compos Part A Appl Sci Manuf 33(9):1171–1183

    Article  Google Scholar 

  31. Boisse P, Buet K, Gasser A, Launay J (2001) Meso/macro-mechanical behaviour of textile reinforcements for thin composites. Compos Sci Technol 61(3):395–401

    Article  Google Scholar 

  32. Boisse P, Gasser A, Hivet G (2001) Analyses of fabric tensile behaviour: determination of the biaxial tension-strain surfaces and their use in forming simulations. Compos Part A Appl Sci Manuf 32(10):1395–1414

    Article  Google Scholar 

  33. Lomov S, Verpoest I, Barbuski M, Laperre J (2003) Carbon composites based on multiaxial multiply stitched preforms. Part 2. kes-f characterisation of the deformability of the preforms at low load. Compos Part A Appl Sci Manuf 34:359–370

    Article  Google Scholar 

  34. Ghosh T, Batr S, Barke R (1990) The bending behaviour of plain-woven fabrics. Part i: a critical review. J Text Inst 81:245–254

    Article  Google Scholar 

  35. Peirce F (1930) The ’handle’ of cloth as a measurable quantity. J Text Inst 21:377–416

    Article  Google Scholar 

  36. Grosberg P (1966) The mechanical properties of woven fabrics part ii: the bending of woven fabrics. Text Res J 36(3):205–214

    Article  Google Scholar 

  37. Ngo Ngoc C, BRUNIAUX P, JM C (2002) Modelling friction for yarn/fabric simulation application to bending hysteresis. In: Proceedings 14th European simulation symposium

  38. Lahey JT, Heppler GR (2004) Mechanical modeling of fabrics in bending. ASME, New York

    Google Scholar 

  39. Grosberg P, Kedia S (1966) The mechanical properties of woven fabrics part i: the initial load extension modulus of woven fabrics. Text Res J 36(1):71–79

    Article  Google Scholar 

  40. Clapp T, Peng H, Gosh T, Eischen J (1990) Indirect measurement of the moment-curvature relationship for fabrics. Text Res J 60(9):525–533

    Article  Google Scholar 

  41. Lomov S, Boisse P, Deluycker E, Morestin F, Vanclooster K, Vandepitte D, Verpoest I, Willems A (2008) Full-field strain measurements in textile deformability studies. Compos Part A Appl Sci Manuf 39(8):1232–1244

    Article  Google Scholar 

  42. Bailey D (1995) Pixel calibration techniques. In: New Zealand image and vision computing 95 Workshop, pp 37–42

  43. Bailey D (1990) A rank based edge enhancement filter. In: New Zealand image processing workshop, pp 42–47

  44. de Bilbao E, Soulat D, Hivet G, Launay J, Gasser A (2008) Bending test of composite reinforcements. In: ESAFORM 2008

  45. Dahl P (1976) Solid friction damping of mechanical vibrations. AIAA J 14(12):1675–1682

    Article  Google Scholar 

  46. Prodromou AG, Chen J (1997) On the relationship between shear angle and wrinkling of textile composite preforms. Compos Part A Appl Sci Manuf 28(5):491–503

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Laurence Schacher of the Laboratoire de Physique et Mécanique Textiles de Mulhouse (ENSISA) to have allowed us to perform the KES bending tests. The authors acknowledge also the support of the ITOOL European project: “Integrated Tool for Simulation of Textile Composites”, European Specific Targeted, Research Project, SIXTH FRAMEWORK PROGRAMME, Aeronautics and Space, http://www.itool.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. de Bilbao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Bilbao, E., Soulat, D., Hivet, G. et al. Experimental Study of Bending Behaviour of Reinforcements. Exp Mech 50, 333–351 (2010). https://doi.org/10.1007/s11340-009-9234-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11340-009-9234-9

Keywords

Navigation