Skip to main content
Log in

Electron delocalization-enhanced sulfur reduction kinetics on an MXene-derived heterostructured electrocatalyst

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) batteries mainly rely on the reversible electrochemical reaction of between lithium ions (Li+) and sulfur species to achieve energy storage and conversion, therefore, increasing the number of free Li+ and improving the Li+ diffusion kinetics will effectively enhance the cell performance. Here, Mo-based MXene heterostructure (MoS2@Mo2C) was developed by partial vulcanization of Mo2C MXene, in which the introduction of similar valence S into Mo-based MXene (Mo2C) can create an electron delocalization effect. Through theoretical simulations and electrochemical characterisation, it is demonstrated that the MoS2@Mo2C heterojunction can effectively promote ion desolvation, increase the amount of free Li+, and accelerate Li+ transport for more efficient polysulfide conversion. In addition, the MoS2@Mo2C material is also capable of accelerating the oxidation and reduction of polysulfides through its sufficient defects and vacancies to further enhance the catalytic efficiency. Consequently, the Li-S battery with the designed MoS2@Mo2C electrocatalyst performed for 500 cycles at 1 C and still maintained the ideal capacity (664.7 mAh·g−1), and excellent rate performance (567.6 mAh·g−1 at 5 C). Under the extreme conditions of high loading, the cell maintained an excellent capacity of 775.6 mAh·g−1 after 100 cycles. It also retained 838.4 mAh·g−1 for 70 cycles at a low temperature of 0 °C, and demonstrated a low decay rate (0.063%). These results indicate that the delocalized electrons effectively accelerate the catalytic conversion of lithium polysulfide, which is more practical for enhancing the behaviour of Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, J. N.; Wang, H. L.; Jia, S. Y.; Zhao, Q.; Zheng, Q.; Ma, Y. L.; Ma, T. Y.; Li, X. Recent advances in inhibiting shuttle effect of polysulfide in lithium-sulfur batteries. J. Energy Storage 2023, 72, 108372.

    Article  Google Scholar 

  2. Gu, H. F.; Yue, W. C.; Hu, J. Q.; Niu, X. F.; Tang, H.; Qin, F. J.; Li, Y.; Yan, Q.; Liu, X. M.; Xu, W. J. et al. Asymmetrically coordinated Cu-N1C2 single-atom catalyst immobilized on Ti3C2Tx MXene as separator coating for lithium-sulfur batteries. Adv. Energy Mater. 2023, 13, 2204014.

    Article  CAS  Google Scholar 

  3. Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.

    Article  CAS  Google Scholar 

  4. Yao, W. Q.; Xu, J.; Ma, L. B.; Lu, X. M.; Luo, D.; Qian, J.; Zhan, L.; Manke, I.; Yang, C.; Adelhelm, P. et al. Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries. Adv. Mater. 2023, 35, 2212116.

    Article  CAS  Google Scholar 

  5. Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state eelectrolytes. Adv. Energy Mater. 2023, 13, 2203540.

    Article  CAS  Google Scholar 

  6. Xiao, J. J.; Lin, S. X.; Cai, Z. H.; Muhmood, T.; Hu, X. B. Ultra-high conductive 3D aluminum photonic crystal as sulfur immobilizer for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 4776–4782.

    Article  CAS  Google Scholar 

  7. Ruan, J. F.; Sun, H.; Song, Y.; Pang, Y. P.; Yang, J. H.; Sun, D. L.; Zheng, S. Y. Constructing 1D/2D interwoven carbonous matrix to enable high-efficiency sulfur immobilization in Li-S battery. Energy Mater. 2021, 1, 100018.

    Article  CAS  Google Scholar 

  8. Dong, F.; Peng, C. X.; Xu, H. Y.; Zheng, Y. X.; Yao, H. F.; Yang, J. H.; Zheng, S. Y. Lithiated sulfur-incorporated, polymeric cathode for durable lithium-sulfur batteries with promoted redox kinetics. ACS Nano 2021, 15, 20287–20299.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, J. H.; Zheng, S. N.; Sun, D. L.; Li, J. D.; Liu, G. H. Graphene-wrapped microspheres decorated with nanoparticles as efficient cathode material for lithium-sulfur battery. J. Electroanal. Chem. 2021, 902, 115810.

    Article  CAS  Google Scholar 

  10. Liu, G.; Sun, Q. J.; Li, Q.; Zhang, J. L.; Ming, J. Electrolyte issues in lithium-sulfur batteries: Development, prospect, and challenges. Energy Fuels 2021, 35, 10405–10427.

    Article  CAS  Google Scholar 

  11. Li, B.; Wang, P.; Xi, B. J.; Song, N.; An, X. G.; Chen, W. H.; Feng, J. K.; Xiong, S. L. In-situ embedding CoTe catalyst into 1D-2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Res. 2022, 15, 8972–8982.

    Article  CAS  Google Scholar 

  12. Deng, R. Y.; Wang, M.; Yu, H. Y.; Luo, S. R.; Li, J. H.; Chu, F. L.; Liu, B.; Wu, F. X. Recent advances and applications toward emerging lithium-sulfur batteries: Working principles and opportunities. Energy Environ. Mater. 2022, 5, 777–799.

    Article  CAS  Google Scholar 

  13. Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.

    Article  CAS  Google Scholar 

  14. Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.

    Article  Google Scholar 

  15. Du, Z. G.; Wu, C.; Chen, Y. C.; Zhu, Q.; Cui, Y. L. S.; Wang, H. Y.; Zhang, Y. Z.; Chen, X.; Shang, J. X.; Li, B. et al. High-entropy carbonitride MAX phases and their derivative MXenes. Adv. Energy Mater. 2022, 12, 2103228.

    Article  CAS  Google Scholar 

  16. Wang, Z. R.; Zhang, Y. C.; Jiang, H. Y.; Wei, C. L.; An, Y. L.; Tan, L. W.; Xiong, S. L.; Feng, J. K. Free-standing Na2C6O6/MXene composite paper for high-performance organic sodium-ion batteries. Nano Res. 2023, 16, 458–465.

    Article  Google Scholar 

  17. Wu, S. Y.; Li, X.; Zhang, Y. Z.; Guan, Q. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, J. T.; Wang, Y. L.; Zhan, L. et al. Interface engineering of MXene-based heterostructures for lithium-sulfur batteries. Nano Res. 2023, 16, 9158–9178.

    Article  CAS  Google Scholar 

  18. Du, Z. G.; Guo, Y.; Wang, H. Y.; Gu, J. N.; Zhang, Y. Z.; Cheng, Z. J.; Li, B.; Li, S. M.; Yang, S. B. High-throughput production of 1T MoS2 monolayers based on controllable conversion of Mo-based MXenes. ACS Nano 2021, 15, 19275–19283.

    Article  CAS  PubMed  Google Scholar 

  19. Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

    Article  CAS  Google Scholar 

  20. Yuan, T.; Sun, Y. Y.; Li, S. Q.; Che, H. Y.; Zheng, Q. F.; Ni, Y. J.; Zhang, Y. X.; Zou, J.; Zang, X. X.; Wei, S. H. et al. Moisture stable and ultrahigh-rate Ni/Mn-based sodium-ion battery cathodes via K+ decoration. Nano Res. 2023, 16, 6890–6902.

    Article  CAS  Google Scholar 

  21. Yuan, T.; Li, S. Q.; Sun, Y. Y.; Wang, J. H.; Chen, A. J.; Zheng, Q. F.; Zhang, Y. X.; Chen, L. W.; Nam, G.; Che, H. Y. et al. A high-rate, durable cathode for sodium-ion batteries: Sb-doped O3-type Ni/Mn-based layered oxides. ACS Nano 2022, 16, 18058–18070.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, W. P.; Zhang, J.; Chou, J.; Yin, Y. X.; You, Y.; Xin, S.; Guo, Y. G. Solidifying cathode-electrolyte interface for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2000791.

    Article  CAS  Google Scholar 

  23. Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

    Article  CAS  Google Scholar 

  24. Li, G. R.; Qiu, W. L.; Gao, W. J.; Zhu, Y. J.; Zhang, X. M.; Li, H. Y.; Zhang, Y. G.; Wang, X.; Chen, Z. W. Finely-dispersed Ni2Co nanoalloys on flower-like graphene microassembly empowering a Biservice matrix for superior lithium-sulfur electrochemistry. Adv. Funct. Mater. 2022, 32, 2202853.

    Article  CAS  Google Scholar 

  25. Wang, J.; Li, L. G.; Hu, H. M.; Hu, H. F.; Guan, Q. H.; Huang, M.; Jia, L. J.; Adenusi, H.; Tian, K. V.; Zhang, J. et al. Toward dendrite-free metallic lithium anodes: From structural design to optimal electrochemical diffusion kinetics. ACS Nano 2022, 16, 17729–17760.

    Article  CAS  PubMed  Google Scholar 

  26. Kang, Q.; Zhuang, Z. C.; Liu, Y. J.; Liu, Z. H.; Li, Y.; Sun, B.; Pei, F.; Zhu, H.; Li, H. F.; Li, P. L. et al. Engineering the structural uniformity of gel polymer electrolytes via pattern-guided alignment for durable, safe solid-state lithium metal batteries. Adv. Mater. 2023, 35, 2303460.

    Article  CAS  Google Scholar 

  27. Liu, Y. T.; Elias, Y.; Meng, J. S.; Aurbach, D.; Zou, R. Q.; Xia, D. G.; Pang, Q. Q. Electrolyte solutions design for lithium-sulfur batteries. Joule 2021, 5, 2323–2364.

    Article  CAS  Google Scholar 

  28. Amine, R.; Liu, J. Z.; Acznik, I.; Sheng, T.; Lota, K.; Sun, H.; Sun, C. J.; Fic, K.; Zuo, X. B.; Ren, Y. et al. Regulating the hidden solvation-ion-exchange in concentrated electrolytes for stable and safe lithium metal batteries. Adv. Energy Mater. 2020, 10, 2000901.

    Article  CAS  Google Scholar 

  29. Kang, Q.; Li, Y.; Zhuang, Z. C.; Yang, H. J.; Luo, L. X.; Xu, J.; Wang, J.; Guan, Q. H.; Zhu, H.; Zuo, Y. Z. et al. Engineering a dynamic solvent-phobic liquid electrolyte interphase for long-life lithium metal batteries. Adv. Mater., in press, DOI: https://doi.org/10.1002/adma.202308799.

  30. Liu, J.; Zhou, Y. H.; Yan, T. Y.; Gao, X. P. Perspectives of high-performance Li-S battery electrolytes. Adv. Funct. Mater. 2024, 34, 2309625.

    Article  CAS  Google Scholar 

  31. Zhang, X.; Li, X. Y.; Zhang, Y. Z.; Li, X.; Guan, Q. H.; Wang, J.; Zhuang, Z. C.; Zhuang, Q.; Cheng, X. M.; Liu, H. T. et al. Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 2023, 33, 2302624.

    Article  CAS  Google Scholar 

  32. Zhao, Z. Q.; Pan, Y. K.; Yi, S.; Su, Z.; Chen, H. L.; Huang, Y. N.; Niu, B.; Long, D. H.; Zhang, Y. Y. Enhanced electron delocalization within coherent nano-heterocrystal ensembles for optimizing polysulfide conversion in high-energy-density Li-S batteries. Adv. Mater. 2024, 36, 2310052.

    Article  CAS  Google Scholar 

  33. Jia, L. J.; Hu, H. F.; Cheng, X. M.; Dong, H.; Li, H. H.; Zhang, Y. Z.; Zhang, H.; Zhao, X. Y.; Li, C. H.; Zhang, J. et al. Toward low-temperature Zinc-ion batteries: Strategy, progress, and prospect in vanadium-based cathodes. Adv. Energy Mater. 2024, 14, 2304010.

    Article  CAS  Google Scholar 

  34. Guan, S. Y.; Yuan, Z. L.; Zhuang, Z. C.; Zhang, H. H.; Wen, H.; Fan, Y. P.; Li, B. J.; Wang, D. S.; Liu, B. Z. Why do single-atom alloys catalysts outperform both single-atom catalysts and nanocatalysts on MXene. Angew. Chem., Int. Ed. 2024, 63, e202316550.

    Article  CAS  Google Scholar 

  35. Li, X.; Zuo, Y. Z.; Zhang, Y. Z.; Wang, J.; Wang, Y. L.; Yu, H. M.; Zhan, L.; Ling, L. C.; Du, Z. G.; Yang, S. B. Controllable sulfurization of MXenes to in-plane multi-heterostructures for efficient sulfur redox kinetics. Adv. Energy Mater. 2024, 14, 2303389.

    Article  CAS  Google Scholar 

  36. Zhu, Q.; Xu, H. F.; Shen, K.; Zhang, Y. Z.; Li, B.; Yang, S. B. Efficient polysulfides conversion on Mo2CTx MXene for highperformance lithium-sulfur batteries. Rare Met. 2022, 41, 311–318.

    Article  CAS  Google Scholar 

  37. Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

    Article  Google Scholar 

  38. Benchakar, M.; Natu, V.; Elmelegy, T. A.; Sokol, M.; Snyder, J.; Comminges, C.; Morais, C.; Célérier, S.; Habrioux, A.; Barsoum, M. W. On a two-dimensional MoS2/Mo2CTx hydrogen evolution catalyst obtained by the topotactic sulfurization of Mo2CTx MXene. J. Electrochem. Soc. 2020, 167, 124507.

    Article  CAS  Google Scholar 

  39. Li, H.; Zhang, Q.; Yap, C. C. R.; Tay, B. K.; Edwin, T. H. T.; Olivier, A.; Baillargeat, D. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater. 2012, 22, 1385–1390.

    Article  CAS  Google Scholar 

  40. Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

    Article  CAS  PubMed  Google Scholar 

  41. Sarycheva, A.; Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488.

    Article  CAS  Google Scholar 

  42. Halim, J.; Kota, S.; Lukatskaya, M. R.; Naguib, M.; Zhao, M. Q.; Moon, E. J.; Pitock, J.; Nanda, J.; May, S. J.; Gogotsi, Y. et al. Synthesis and characterization of 2D molybdenum carbide (MXene). Adv. Funct. Mater. 2016, 26, 3118–3127.

    Article  CAS  Google Scholar 

  43. Yan, Y. Y.; Li, H. T.; Cheng, C.; Yan, T. R.; Gao, W. P.; Mao, J.; Dai, K. H.; Zhang, L. Boosting polysulfide redox conversion of Li-S batteries by one-step-synthesized Co-Mo bimetallic nitride. J. Energy Chem. 2021, 61, 336–346.

    Article  CAS  Google Scholar 

  44. Xiao, Y. Y.; Liu, Y. T.; Qin, G. H.; Han, P. Y.; Guo, X. Y.; Cao, S. X.; Liu, F. S. Building MoSe2-Mo2C incorporated hollow fluorinated carbon fibers for Li-S batteries. Compos. Part B: Eng. 2020, 193, 108004.

    Article  CAS  Google Scholar 

  45. He, H. N.; Huang, D.; Gan, Q. M.; Hao, J. N.; Liu, S. L.; Wu, Z. B.; Pang, W. K.; Johannessen, B.; Tang, Y. G.; Luo, J. L. et al. Anion vacancies regulating endows MoSSe with fast and stable potassium ion storage. ACS Nano 2019, 13, 11843–11852.

    Article  CAS  PubMed  Google Scholar 

  46. Chen, P.; Wang, T. Y.; He, D.; Shi, T.; Chen, M. F.; Fang, K.; Lin, H. Z.; Wang, J.; Wang, C. Y.; Pang, H. Delocalized isoelectronic heterostructured FeCoOxSy catalysts with tunable electron density for accelerated sulfur redox kinetics in Li-S batteries. Angew. Chem., Int. Ed. 2023, 62, e202311693.

    Article  CAS  Google Scholar 

  47. Zhu, Z.; Zeng, Y. X.; Pei, Z. H.; Luan, D. Y.; Wang, X.; Lou, X. W. Bimetal-organic framework nanoboxes enable accelerated redox kinetics and polysulfide trapping for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2023, 62, e202305828.

    Article  Google Scholar 

  48. Wang, H. L.; Zhou, Y. M.; Tao, S. Y. CoP-CoOOH heterojunction with modulating interfacial electronic structure: A robust biomass-upgrading electrocatalyst. Appl. Catal. B: Environ. 2022, 315, 121588.

    Article  CAS  Google Scholar 

  49. Xia, H. C.; Zan, L. X.; Yuan, P. F.; Qu, G.; Dong, H. L.; Wei, Y. F.; Yu, Y.; Wei, Z. Y.; Yan, W. F.; Hu, J. S. et al. Evolution of stabilized 1T-MoS2 by atomic-interface engineering of 2H-MoS2/Fe-Nx towards enhanced sodium ion storage. Angew. Chem., Int. Ed. 2023, 62, e202218282.

    Article  CAS  Google Scholar 

  50. Chu, K.; Luo, Y. J.; Shen, P.; Li, X. C.; Li, Q. Q.; Guo, Y. L. Unveiling the synergy of O-vacancy and heterostructure over MoO3−x/MXene for N2 electroreduction to NH3. Adv. Energy Mater. 2022, 12, 2103022.

    Article  CAS  Google Scholar 

  51. Li, X.; Guan, Q. H.; Zhuang, Z. C.; Zhang, Y. Z.; Lin, Y. H.; Wang, J.; Shen, C. Y.; Lin, H. Z.; Wang, Y. L.; Zhan, L. et al. Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 2023, 17, 1653–1662.

    Article  CAS  Google Scholar 

  52. Yao, W. Q.; Tian, C. X.; Yang, C.; Xu, J.; Meng, Y. F.; Manke, I.; Chen, N.; Wu, Z. L.; Zhan, L.; Wang, Y. L. et al. P-doped NiTe2 with Te-Vacancies in lithium-sulfur batteries prevents shuttling and promotes polysulfide conversion. Adv. Mater. 2022, 34, 2106370.

    Article  CAS  Google Scholar 

  53. Henderson, W. A.; Seo, D. M.; Han, S. D.; Borodin, O. Electrolyte solvation and ionic association. VII. Correlating Raman spectroscopic data with solvate species. J. Electrochem. Soc. 2020, 167, 110551.

    Article  CAS  Google Scholar 

  54. Chen, S. R.; Zheng, J. M.; Mei, D. H.; Han, K. S.; Engelhard, M. H.; Zhao, W. G.; Xu, W.; Liu, J.; Zhang, J. G. High-voltage lithium-metal batteries enabled by localized high-concentration electrolytes. Adv. Mater. 2018, 30, 1706102.

    Article  Google Scholar 

  55. Ren, X. D.; Chen, S. R.; Lee, H.; Mei, D. H.; Engelhard, M. H.; Burton, S. D.; Zhao, W. G.; Zheng, J. M.; Li, Q. Y.; Ding, M. S. et al. Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4, 1877–1892.

    Article  CAS  Google Scholar 

  56. Hou, L. P.; Li, Z.; Yao, N.; Bi, C. X.; Li, B. Q.; Chen, X.; Zhang, X. Q.; Zhang, Q. Weakening the solvating power of solvents to encapsulate lithium polysulfides enables long-cycling lithium-sulfur batteries. Adv. Mater. 2022, 34, 2205284.

    Article  CAS  Google Scholar 

  57. Xu, J.; Yu, F. T.; Hua, J. L.; Tang, W. Q.; Yang, C.; Hu, S. Z.; Zhao, S. L.; Zhang, X. S.; Xin, Z.; Niu, D. F. Donor dominated triazine-based microporous polymer as a polysulfide immobilizer and catalyst for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 392, 123694.

    Article  CAS  Google Scholar 

  58. Wang, Y. L.; Song, J.; Wong, W. Y. Constructing 2D sandwich-like MOF/MXene heterostructures for durable and fast aqueous Zinc-ion batteries. Angew. Chem., Int. Ed. 2023, 62, e202218343.

    Article  CAS  Google Scholar 

  59. Hua, W. X.; Li, H.; Pei, C.; Xia, J. Y.; Sun, Y. F.; Zhang, C.; Lv, W.; Tao, Y.; Jiao, Y.; Zhang, B. S. et al. Selective catalysis remedies polysulfide shuttling in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2101006.

    Article  CAS  Google Scholar 

  60. Zhou, C.; Hong, M.; Hu, N. T.; Yang, J. H.; Zhu, W. H.; Kong, L. W.; Li, M. Bi-metallic coupling-induced electronic-state modulation of metal phosphides for kinetics-enhanced and dendrite-free Li-S batteries. Adv. Funct. Mater. 2023, 33, 2213310.

    Article  CAS  Google Scholar 

  61. Zhang, L.; Qian, T.; Zhu, X. Y.; Hu, Z. L.; Wang, M. F.; Zhang, L. Y.; Jiang, T.; Tian, J. H.; Yan, C. L. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries. Chem. Soc. Rev. 2019, 48, 5432–5453.

    Article  CAS  PubMed  Google Scholar 

  62. Yao, W. Q.; Xu, J.; Cao, Y. J.; Meng, Y. F.; Wu, Z. L.; Zhan, L.; Wang, Y. L.; Zhang, Y. L.; Manke, I.; Chen, N. et al. Dynamic intercalation-conversion site supported ultrathin 2D mesoporous SnO2/SnSe2 hybrid as bifunctional polysulfide immobilizer and lithium regulator for lithium-sulfur chemistry. ACS Nano 2022, 16, 10783–10797.

    Article  CAS  PubMed  Google Scholar 

  63. Luo, D.; Li, C. J.; Zhang, Y. G.; Ma, Q. Y.; Ma, C. Y.; Nie, Y. H.; Li, M.; Weng, X. F.; Huang, R.; Zhao, Y. et al. Design of quasi-MOF nanospheres as a dynamic electrocatalyst toward accelerated sulfur reduction reaction for high-performance lithium-sulfur batteries. Adv. Mater. 2022, 34, 2105541.

    Article  CAS  Google Scholar 

  64. Zhao, C.; Xu, G. L.; Yu, Z.; Zhang, L. C.; Hwang, I.; Mo, Y. X.; Ren, Y. X.; Cheng, L.; Sun, C. J.; Ren, Y. et al. A high-energy and long-cycling lithium-sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 2021, 16, 166–173.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. U1710252), the Natural Science Foundation of Jiangsu Province (BK. 20210130), Innovative and Entrepreneurial Doctor in Jiangsu Province (No. JSSCBS20211428), China Postdoctoral Science Foundation (No. 2023M731084), Shanghai Sailing Program of China (No. 23YF1408900) and the Fundamental Research Funds for the Central Universities (No. JKD01231701). J. W. acknowledged the funding provided by the Alexander von Humboldt Foundation and the basic funding of the Helmholtz Association. Dr. Y. Z. Z. thanks the Shanghai Super Postdoctoral Incentive Program. We also thank the support from Nano-X, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongzheng Zhang, Jitong Wang or Licheng Ling.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zuo, Y., Li, X. et al. Electron delocalization-enhanced sulfur reduction kinetics on an MXene-derived heterostructured electrocatalyst. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6682-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6682-6

Keywords

Navigation