Skip to main content
Log in

Defect engineering on carbon black for accelerated Li-S chemistry

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Rationally designing sulfur hosts with the functions of confining lithium polysulfides (LiPSs) and promoting sulfur reaction kinetics is critically important to the real implementation of lithium-sulfur (Li-S) batteries. Herein, the defect-rich carbon black (CB) as sulfur host was successfully constructed through a rationally regulated defect engineering. Thus-obtained defect-rich CB can act as an active electrocatalyst to enable the sulfur redox reaction kinetics, which could be regarded as effective inhibitor to alleviate the LiPS shuttle. As expected, the cathode consisting of sulfur and defect-rich CB presents a high rate capacity of 783.8 mA·h·g−1 at 4 C and a low capacity decay of only 0.07% per cycle at 2 C over 500 cycles, showing favorable electrochemical performances. The strategy in this investigation paves a promising way to the design of active electrocatalysts for realizing commercially viable Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. She, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

    Article  Google Scholar 

  2. Ousmane, I. A. M.; Li, R.; Wang, C.; Li, G. R.; Cai, W. L.; Liu, B. H.; Li, Z. P. Fabrication of oriented-macroporous-carbon incorporated with γ-Al2O3 for high performance lithium-sulfur battery. Microporous Mesoporous Mater. 2018, 266, 276–282.

    Article  CAS  Google Scholar 

  3. Yuan, H.; Peng, H. J.; Li, B. Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J. Q.; Zhang, Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802768.

    Article  CAS  Google Scholar 

  4. Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

    Article  Google Scholar 

  5. Ye, C.; Chao, D. L.; Shan, J. Q.; Li, H.; Davey, K.; Qiao, S. Z. Unveiling the advances of 2D materials for Li/Na-S batteries experimentally and theoretically. Matter 2020, 2, 323–244.

    Article  Google Scholar 

  6. Zhang, K. L.; Wang, L. B.; Cai, W. L.; Wang, C.; Li, G. R.; Li, Z. P.; Mao, W. T.; Qian, Y. T. A novel class of functional additives for cyclability enhancement of the sulfur cathode in lithium sulfur batteries. Inorg. Chem. Front. 2018, 5, 2013–2017.

    Article  CAS  Google Scholar 

  7. Song, Y. Z.; Sun, Z. T.; Fan, Z. D.; Cai, W. L.; Shao, Y. L.; Sheng, G.; Wang, M. L.; Song, L. X.; Liu, Z. F.; Zhang, Q. et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 2020, 70, 104555.

    Article  CAS  Google Scholar 

  8. Kong, L.; Jin, Q.; Zhang, X. T.; Li, B. Q.; Chen, J. X.; Zhu, W. C.; Huang, J. Q.; Zhang, Q. Towards full demonstration of high areal loading sulfur cathode in lithium-sulfur batteries. J. Energy Chem. 2019, 39, 17–22.

    Article  Google Scholar 

  9. Wang, S. Z.; Liao, J. X.; Yang, X. F.; Liang, J. N.; Sun, Q.; Liang, J. W.; Zhao, F. P.; Koo, A.; Kong, F. P.; Yao, Y. et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries. Nano Energy 2019, 57, 230–240.

    Article  CAS  Google Scholar 

  10. Chen, Y.; Zhang, W. X.; Zhou, D.; Tian, H. J.; Su, D. W.; Wang, C. Y.; Stockdale, D.; Kang, F. Y.; Li, B. H.; Wang, G. X. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano 2019, 13, 4731–4741.

    Article  CAS  Google Scholar 

  11. Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q. et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat 2019, 1, 533–541.

    Article  CAS  Google Scholar 

  12. Chen, X.; Hou, T. Z.; Li, B.; Yan, C.; Zhu, L.; Guan, C.; Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode. Energy Storage Mater. 2017, 8, 194–201.

    Article  Google Scholar 

  13. Zhang, G.; Zhang, Z. W.; Peng, H. J.; Huang, J. Q.; Zhang, Q. A toolbox for lithium-sulfur battery research: Methods and protocols. Small Methods 2017, 1 1700134.

    Article  CAS  Google Scholar 

  14. Yu, Z.; Zhang, J. J.; Wang, C.; Hu, R. X.; Du, X. F.; Tang, B.; Qu, H. T.; Wu, H.; Liu, X.; Zhou, X. H. et al. Flame-retardant concentrated electrolyte enabling a LiF-rich solid electrolyte interface to improve cycle performance of wide-temperature lithium-sulfur batteries. J. Energy Chem. 2020, 51, 154–160.

    Article  Google Scholar 

  15. Li, Z. H.; He, Q.; Xu, X.; Zhao, Y.; Liu, X. W.; Zhou, C.; Ai, D., Xia, L. X.; Mai, L. Q. 3D nitrogen-doped graphene/tin nanowires composite as a strong polysulfide anchor for lithium-sulfur batteries with enhanced rate performance and high areal capacity. Adv. Mater. 2018, 30, 1804089.

    Article  CAS  Google Scholar 

  16. Ye, C.; Jiao, Y.; Jin, H. Y.; Slattery, A. D.; Davey, K.; Wang, H. H; Qiao, S. Z. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16703–16707.

    Article  CAS  Google Scholar 

  17. Ye, Z. Q.; Jiang, Y.; Feng, T.; Wang, Z. H.; Li, L.; Wu, F.; Chen, R. J. Curbing polysulfide shuttling by synergistic engineering layer composed of supported Sn4P3 nanodots electrocatalyst in lithium-sulfur batteries. Nano Energy 2020, 70, 104532.

    Article  CAS  Google Scholar 

  18. Li, H. Y.; Fei, L. F.; Zhang, R.; Yu, S. L.; Zhang, Y. Y.; Shu, L. L.; Li, Y.; Wang, Y. FeCo alloy catalysts promoting polysulfide conversion for advanced lithium-sulfur batteries. J. Energy Chem. 2020, 49, 339–347.

    Article  Google Scholar 

  19. Li, G. R.; Cai, W. L.; Liu, B. H.; Li, Z. P. A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium-sulfur batteries. J. Power Sources 2015, 294, 187–192.

    Article  CAS  Google Scholar 

  20. Huang, J. Q.; Liu, X. F.; Zhang, Q.; Chen, C. M.; Zhao, M. Q.; Zhang, S. M.; Zhu, W. C.; Qian, W. Z.; Wei, F. Entrapment of sulfur in hierarchical porous graphene for lithium-sulfur batteries with high rate performance from −40 to 60 °C. Nano Energy 2013, 2, 314–321.

    Article  CAS  Google Scholar 

  21. Xin, S.; Gu, L.; Zhao, N. H.; Yin, Y. X.; Zhou, L. J.; Guo, Y. G.; Wan, L. J. Smaller sulfur molecules promise better lithium-sulfur batteries. J. Am. Chem. Soc. 2012, 134, 18510–18513.

    Article  CAS  Google Scholar 

  22. Song, J. X.; Xu, T.; Gordin, M. L.; Zhu, P. Y.; Lv, D. P.; Jiang, Y. B.; Chen, Y. S.; Duan, Y. H.; Wang, D. H. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 2014, 24, 1243–1250.

    Article  CAS  Google Scholar 

  23. Li, Q. C.; Song, Y. Z.; Xu, R. Z.; Zhang, L.; Gao, J.; Xia, Z.; Tian, Z. N.; Wei, N.; Rümmeli, M. H.; Zou, X. L. et al. Biotemplating growth of nepenthes-like n-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries. ACS Nano 2018, 12, 10240–10250.

    Article  CAS  Google Scholar 

  24. Wang, Y. Z.; Adekoya, D.; Sun, J. Q.; Tang, T. Y.; Qiu, H. L.; Xu, L.; Zhang, S. Q.; Hou, Y. L. Manipulation of edge-site Fe-N2 moiety on holey Fe, N codoped graphene to promote the cycle stability and rate capacity of Li-S batteries. Adv. Funct. Mater. 2018, 29, 1807485.

    Article  CAS  Google Scholar 

  25. Jia, Y.; Chen, J.; Yao, X. D. Defect electrocatalytic mechanism: Concept, topological structure and perspective. Mater. Chem. Front. 2018, 2, 1250–1268.

    Article  CAS  Google Scholar 

  26. Wang, W.; Shang, L., Chang, G. J.; Yan, C. Y.; Shi, R.; Zhao, Y. X.; Waterhouse, G. I. N.; Yang, D. J.; Zhang, T. R. Intrinsic carbon-defect-driven electrocatalytic reduction of carbon dioxide. Adv. Mater. 2019, 31, 1808276.

    Article  CAS  Google Scholar 

  27. Shen, A. L.; Zou, Y. Q.; Wang, Q.; Dryfe, R. A. W.; Huang, X. B.; Dou, S.; Dai, L. M.; Wang, S. Y. Oxygen reduction reaction in a droplet on graphite: Direct evidence that the edge is more active than the basal plane. Angew. Chem., Int. Ed. 2014, 53, 10804–10808.

    Article  CAS  Google Scholar 

  28. Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  29. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  30. Yu, J.; Wang, Y. L.; Zhao, C. F.; Chen, S. M.; Zhang, S. J. A 3D molecular cantilever based on interfacial self-assembly and the cobra-like actuation of long-chain imidazolium ionic liquids. Nanoscale 2019, 11, 7277–7286.

    Article  CAS  Google Scholar 

  31. Cai, W. L.; Li, G. R.; Zhang, K. L.; Zhou, J. B.; Qian, Y. T.; Du, J. A scalable in situ surfactant-free synthesis of a uniform MnO/graphene composite for highly reversible lithium storage. Dalton Trans. 2016, 45, 19221–19225.

    Article  CAS  Google Scholar 

  32. Tao, L.; Wang, Q.; Dou, S.; Ma, Z. L.; Huo, J.; Wang, S. Y.; Dai, L. M. Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 2016, 52, 2764–2767.

    Article  CAS  Google Scholar 

  33. Zhao, Y. Y.; Cai, W. L.; Fang, Y. T.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Sulfur-deficient TiS2−x, for promoted polysulfide redox conversion in lithium-sulfur batteries. ChemElectroChem 2019, 6, 2231–2237.

    Article  CAS  Google Scholar 

  34. Liu, J.; Jiao, M. G.; Mei, B. B.; Tong, Y. X.; Li, Y. P.; Ruan, M. B.; Song, P.; Sun, G. Q.; Jiang, L. H.; Wang, Y. et al. Carbon-supported divacancy-anchored platinum single-atom electrocatalysts with superhigh Pt utilization for the oxygen reduction reaction. Angew. Chem. 2019, 131, 1175–1179.

    Article  Google Scholar 

  35. Zhang, Y. Q.; Tao, L.; Xie, C.; Wang, D. D.; Zou, Y. Q.; Chen, R.; Wang, Y. Y.; Jia, C. K.; Wang, S. Y. Defect engineering on electrode materials for rechargeable batteries. Adv. Mater. 2020, 32, 1905923.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2017YFA0206703), the National Natural Science Foundation of China (No. 21671183), and the Project of State Key Laboratory of Environment-Friendly Energy Materials (SWUST, Nos. 19FKSY16 and 18ZD320304).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yingze Song or Yongchun Zhu.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, W., Song, Y., Fang, Y. et al. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 13, 3315–3320 (2020). https://doi.org/10.1007/s12274-020-3009-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3009-0

Keywords

Navigation