Skip to main content
Log in

Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium—sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The exploitation of new sulfiphilic and catalytic materials is considered as the promising strategy to overcome severe shuttle effect and sluggish kinetics conversion of lithium polysulfides within lithium-sulfur batteries. Herein, we design and fabricate monodisperse VN ultrafine nanocrystals immobilized on nitrogen-doped carbon hybrid nanosheets (VN@NCSs) via an one-step in-situ self-template and self-reduction strategy, which simultaneously promotes the interaction with polysulfides and the kinetics of the sulfur conversion reactions demonstrated by experimental and theoretical results. By virtue of the multifunctional structural features of VN@NCSs, the cell with ultrathin VN@NCSs (only 5 µm thickness) modified separator indicates improved electrochemical performances with long cycling stability over 1,000 cycles at 2 C with only 0.041% capacity decay per cycle and excellent rate capability (787.6 mAh·g−1 at 10 C). Importantly, it delivers an areal reversible capacity of 3.71 mAh·cm−2 accompanied by robust cycling life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.

    Article  CAS  Google Scholar 

  2. Yu, J.; Xiao, J. W.; Li, A. R.; Yang, Z.; Zeng, L.; Zhang, Q. F.; Zhu, Y. J.; Gou, L. Enhanced multiple anchoring and catalytic conversion of polysulfides by amorphous MoS3 nanoboxes for high-performance Li-S batteries. Angew. Chem., Int. Ed. 2020, 59, 13071–13078.

    Article  CAS  Google Scholar 

  3. Huang, Y. F.; Chen, S. X.; Wu, Z. L.; Wang, J.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Enhanced performance and electrocatalytic kinetics on porous carbon-coated SnS microflowers as efficient Li-S battery cathodes. Electrochim. Acta 2020, 343, 136148.

    Article  CAS  Google Scholar 

  4. Jana, M.; Xu, R.; Cheng, X. B.; Yeon, J. S.; Park, J. M. Huang, J. Q.; Zhang, Q.; Park, H. S. Rational design of two-dimensional nanomaterials for lithium-sulfur batteries. Energy Environ. Sci. 2020, 13, 1049–1075.

    Article  CAS  Google Scholar 

  5. Sun, F.; Qu, Z. B.; Wang, H.; Liu, X. Y.; Pei, T.; Han, R.; Gao, J. H.; Zhao, G. B.; Lu, Y. F. Vapor deposition of aluminium oxide into N-rich mesoporous carbon framework as a reversible sulfur host for lithium-sulfur battery cathode. Nano Res. 2021, 14, 131–138.

    Article  CAS  Google Scholar 

  6. Ye, H. L.; Sun, J. G.; Zhang, S. L.; Lin, H. B.; Zhang, T. R.; Yao, Q. F.; Lee, J. Y. Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li-S batteries. ACS Nano 2019, 13, 14208–14216.

    Article  CAS  Google Scholar 

  7. Cai, W. L.; Song, Y. Z.; Fang, Y. T.; Wang, W. W.; Yu, S. L.; Ao, H. S.; Zhu, Y. C.; Qian, Y. T. Defect engineering on carbon black for accelerated Li-S chemistry. Nano Res. 2020, 13, 3315–3320.

    Article  CAS  Google Scholar 

  8. Wang, Z. S.; Shen, J. D.; Ji, S. M.; Xu, X. J.; Zuo, S. Y.; Liu, Z. B.; Zhang, D. C.; Hu, R. Z.; Ouyang, L. Z.; Liu, J. et al. B,N-codoped graphitic nanotubes loaded with Co nanoparticles as superior sulfur host for advanced Li-S batteries. Small 2020, 16, 1906634.

    Article  CAS  Google Scholar 

  9. Wang, J. L.; Yan, X. F.; Zhang, Z.; Ying, H. J.; Guo, R. N.; Yang, W. T.; Han, W. Q. Facile preparation of high-content N-doped CNT microspheres for high-performance lithium storage. Adv. Funct. Mater. 2019, 29, 1904819.

    Article  Google Scholar 

  10. Li, W. D.; Wang, D. Z.; Song, Z. H.; Gong, Z. J.; Guo, X. S.; Liu, J.; Zhang, Z. H.; Li, G. C. Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Res. 2019, 12, 2908–2917.

    Article  CAS  Google Scholar 

  11. Zhang, J.; Ma, W. Z.; Feng, Z. Y.; Wu, F. F.; Wei, D. H.; Xi, B. J; Xiong, S. L. P-doped BN nanosheets decorated graphene as the functional interlayer for Li-S batteries. J. Energy Chem. 2019, 39, 54–60.

    Article  Google Scholar 

  12. Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.

    Article  Google Scholar 

  13. Zuo, X. T.; Zhen, M. M.; Wang, C. Ni@N-doped graphene nanosheets and CNTs hybrids modified separator as efficient polysulfide barrier for high-performance lithium sulfur batteries. Nano Res. 2019, 12, 829–836.

    Article  CAS  Google Scholar 

  14. Shi, N. X.; Xi, B. J.; Feng, Z. Y.; Wu, F. F.; Wei, D. H.; Liu, J.; Xiong, S. L. Insight into different-microstructured ZnO/graphene-functionalized separators affecting the performance of lithium-sulfur batteries. J. Mater. Chem. A 2019, 7, 4009–4018.

    Article  CAS  Google Scholar 

  15. Li, Z.; Ma, Z. L.; Wang, Y. Y.; Chen, R.; Wu, Z. J.; Wang, S. Y. LDHs derived nanoparticle-stacked metal nitride as interlayer for long-life lithium sulfur batteries. Sci. Bull. 2018, 63, 169–175.

    Article  CAS  Google Scholar 

  16. Li, Y. J.; Zhou, P.; Li, H.; Gao, T. T.; Zhou, L.; Zhang, Y. L.; Xiao, N.; Xia, Z. H.; Wang, L.; Zhang, Q. H. et al. A freestanding flexible single-atom cobalt-based multifunctional interlayer toward reversible and durable lithium-sulfur batteries. Small Methods 2020, 4, 190070.

    Article  Google Scholar 

  17. Ma, L. B.; Zhang, W. J.; Wang, L.; Hu, Y.; Zhu, G. Y.; Wang, Y. R.; Chen, R. P.; Chen, T.; Tie, Z. X.; Liu, J. et al. Strong capillarity, chemisorption, and electrocatalytic capability of crisscrossed nanostraws enabled flexible, high-rate, and long-cycling lithium-sulfur batteries. ACS Nano 2018, 12, 4868–4876.

    Article  CAS  Google Scholar 

  18. Lu, H. Y.; Zhang, C.; Zhang, Y. F.; Huang, Y. P.; Liu, M. K.; Liu, T. X. Simultaneous growth of carbon nanotubes on inner/outer surfaces of porous polyhedra: Advanced sulfur hosts for lithium-sulfur batteries. Nano Res. 2018, 11, 6155–6166.

    Article  CAS  Google Scholar 

  19. Wang, Y. Y.; Wang, Z. J.; Yu, X. L.; Li, B. H.; Kang, F. Y.; He, Y. B. Hierarchically structured carbon nanomaterials for electrochemical energy storage applications. J. Mater. Res. 2018, 33, 1058–1073.

    Article  CAS  Google Scholar 

  20. Chen, J. J.; Mao, Z. Y.; Zhang, L. X.; Wang, D. J.; Xu, R.; Bie, L. J.; Fahlman, B. D. Nitrogen-deficient graphitic carbon nitride with enhanced performance for lithium ion battery anodes. ACS Nano 2017, 11, 12650–12657.

    Article  CAS  Google Scholar 

  21. Wang, R.; Yang, J. L.; Chen, X.; Zhao, Y.; Zhao, W. G.; Qian, G. Y.; Li, S. N.; Xiao, Y. G.; Chen, H.; Ye, Y. S. et al. Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li-S battery. Adv. Energy Mater. 2020, 10, 1903550.

    Article  CAS  Google Scholar 

  22. Pender, J. P.; Guerrera, J. V.; Wygant, B. R.; Weeks, J. A.; Ciufo, R. A.; Burrow, J. N.; Walk, M. K.; Rahman, M. Z.; Heller, A.; Mullins, C. B. Carbon nitride transforms into a high lithium storage capacity nitrogen-rich carbon. ACS Nano 2019, 13, 9279–9291.

    Article  CAS  Google Scholar 

  23. Lin, C.; Qu, L. B.; Li, J. T.; Cai, Z. Y.; Liu, H. Y.; He, P.; Xu, X.; Mai, L. Q. Porous nitrogen-doped carbon/MnO coaxial nanotubes as an efficient sulfur host for lithium sulfur batteries. Nano Res. 2019, 12, 205–210.

    Article  CAS  Google Scholar 

  24. Han, J. M.; Fu, Q.; Xi, B. J.; Ni, X. Y.; Yan, C. L.; Feng, J. K.; Xiong, S. L. Loading Fe3O4 nanoparticles on paper-derived carbon scaffold toward advanced lithium-sulfur batteries. J. Energy Chem. 2021, 52, 1–11.

    Article  Google Scholar 

  25. Shen, J. D.; Xu, X. J.; Liu, J.; Liu, Z. B.; Li, F. K., Hu, R. Z.; Liu, J. W.; Hou, X. H.; Feng, Y. Z.; Yu, Y.; Zhu, M. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries. ACS Nano 2019, 13, 8986–8996.

    Article  CAS  Google Scholar 

  26. Chen, X. X.; Zeng, S. Y.; Muheiyati, H.; Zhai, Y. J.; Li, C. C.; Ding, X. Y.; Wang, L.; Wang, D. B.; Xu, L. Q.; He, Y. Y. et al. Double-shelled Ni-Fe-P/N-doped carbon nanobox derived from a Prussian blue analogue as an electrode material for K-ion batteries and Li-S batteries. ACS Energy Lett. 2019, 4, 1496–1504.

    Article  CAS  Google Scholar 

  27. Kong, L.; Peng, H. J.; Huang, J. Q.; Zhang, Q. Review of nanostructured current collectors in lithium-sulfur batteries. Nano Res. 2017, 10, 4027–4054.

    Article  CAS  Google Scholar 

  28. Liang, Y. C.; Oettinger, J. D.; Zhang, P.; Xu, B. Ni or FeO nanocrystal-integrated hollow (solid) N-doped carbon nanospheres: Preparation, characterization and electrochemical properties. Nanoscale 2020, 12, 15157–15168.

    Article  CAS  Google Scholar 

  29. Yang, J.; Zhang, Q. C.; Wang, Z. X.; Wang, Z.; Kang, L. X.; Qi, M.; Chen, M. X.; Liu, W.; Gong, W. B.; Lu, W. B. et al. Rational construction of self-standing sulfur-doped Fe2O3 anodes with promoted energy storage capability for wearable aqueous rechargeable NiCo-Fe batteries. Adv. Energy Mater. 2020, 10, 2001064.

    Article  CAS  Google Scholar 

  30. Zhang, H.; Gao, Q. M.; Li, Z. Y.; Xu, P.; Xiao, H.; Zhang, T. F.; Liang, X. A rGO-Based Fe2O3 and Mn3O4 binary crystals nanocomposite additive for high performance Li-S battery. Electrochim. Acta 2020, 343, 136079.

    Article  CAS  Google Scholar 

  31. Zhou, F.; Li, Z.; Lou, X.; Wu, T.; Jiang, B.; Lu, L. L.; Yao, H. B.; Antonietti, M.; Yu, S. H. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett. 2018, 18, 1035–1043.

    Article  CAS  Google Scholar 

  32. Shi, N. X.; Xi, B. J.; Feng, Z. Y.; Liu, J. C.; Wei, D. H.; Liu, J.; Feng, J. K.; Xiong, S. L. Strongly coupled W2C atomic nanoclusters on N/P-codoped graphene for kinetically enhanced sulfur host. Adv. Mater. Interfaces 2019, 6, 1802088.

    Article  Google Scholar 

  33. Sun, W. W.; Li, Y. J.; Liu, S. K.; Guo, Q. P.; Zhu, Y. H.; Hong, X. B.; Zheng, C. M.; Xie, K. Catalytic Co9S8 decorated carbon nanoboxes as efficient cathode host for long-life lithium-sulfur batteries. Nano Res. 2020, 13, 2143–2148.

    Article  CAS  Google Scholar 

  34. Yu, X. F.; Tian, D. X.; Li, W. C.; He, B.; Zhang, Y.; Chen, Z. Y.; Lu, A. H. One-pot synthesis of highly conductive nickel-rich phosphide/CNTs hybrid as a polar sulfur host for high-rate and long-cycle Li-S battery. Nano Res. 2019, 12, 1193–1197.

    Article  CAS  Google Scholar 

  35. Lv, L. P.; Guo, C. F.; Sun, W. W.; Wang, Y. Strong surface-bound sulfur in carbon nanotube bridged hierarchical Mo2C-based MXene nanosheets for lithium-sulfur batteries. Small 2019, 15, 1804338.

    Google Scholar 

  36. Li, H. H.; Ma, Y. A.; Zhang, H.; Diemant, T.; Behm, R. J.; Varzi, A.; Passerini, S. Metal-organic framework derived Fe7S8 nanoparticles embedded in heteroatom-doped carbon with lithium and sodium storage capability. Small Methods 2020, 4, 2000637.

    Article  CAS  Google Scholar 

  37. Zou, Y. H.; Gu, Y.; Hui, B.; Yang, X. F.; Liu, H. W.; Chen, S.; Cai, R. S.; Sun, J.; Zhang, X. L.; Yang, D. J. Nitrogen and sulfur vacancies in carbon shell to tune charge distribution of Co6Ni3S8 core and boost sodium storage. Adv. Energy Mater. 2020, 10, 1904147.

    Article  CAS  Google Scholar 

  38. Zeng, P.; Liu, C.; Zhao, X. F.; Yuan, C.; Chen, Y. G.; Lin, H. P.; Zhang, L. Enhanced catalytic conversion of polysulfides using bimetallic Co7Fe3 for high-performance lithium-sulfur batteries. ACS Nano 2020, 14, 11558–11569.

    Article  CAS  Google Scholar 

  39. Chen, K. N.; Cao, J.; Lu, Q. Q.; Wang, Q. R.; Yao, M. J.; Han, M. M.; Niu, Z. Q. Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. Nano Res. 2018, 11, 1345–1357.

    Article  CAS  Google Scholar 

  40. He, H. C.; Chen, C. M.; Chen, Z.; Li, P. C.; Ding, S. S.; Cai, M. Q.; Zhang, M. Ni3S2@S-carbon nanotubes synthesized using NiS2 as sulfur source and precursor for high performance sodium-ion half/full cells. Sci. China Mater. 2020, 63, 216–228.

    Article  CAS  Google Scholar 

  41. Li, X. X.; Ding, K.; Gao, B.; Li, Q. W.; Li, Y. Y.; Fu, J. J.; Zhang, X. M.; Chu, P. K.; Huo, K. F. Freestanding carbon encapsulated mesoporous vanadium nitride nanowires enable highly stable sulfur cathodes for lithium-sulfur batteries. Nano Energy 2017, 40, 655–662.

    Article  CAS  Google Scholar 

  42. Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

    Article  Google Scholar 

  43. Song, Y. Z.; Zhao, S. Y.; Chen, Y. R.; Cai, J. S.; Li, J.; Yang, Q. H.; Sun, J. Y.; Liu, Z. F. Enhanced sulfur redox and polysulfide regulation via porous VN-modified separator for Li-S batteries. ACS Appl. Mater. Interfaces 2019, 11, 5687–5694.

    Article  CAS  Google Scholar 

  44. Wang, P.; Zhang, Z. A.; Hong, B.; Zhang, K.; Li, J.; Lai, Y. Q. Multifunctional porous VN nanowires interlayer as polysulfides barrier for high performance lithium sulfur batteries. J. Electroanal. Chem. 2019, 832, 475–479.

    Article  CAS  Google Scholar 

  45. Li, J.; Gou, Y.; Wen, P.; Zhu, J. H.; Jiao, C. M.; Zhong, L. B.; Wang, J. Y.; Narayana, A. L.; Li, J. S.; Qiu, Y. J. Constructing a sandwich-structured interlayer with strong polysulfides adsorption ability for high-performance lithium-sulfur batteries. Mater. Today Energy 2019, 14, 100339.

    Article  Google Scholar 

  46. Yuan, J.; Hu, X.; Chen, J. X.; Liu, Y. J.; Huang, T. Z.; Wen, Z. H. In situ formation of vanadium nitride quantum dots on N-doped carbon hollow spheres for superior lithium and sodium storage. J. Mater. Chem. A 2019, 7, 9289–9296.

    Article  CAS  Google Scholar 

  47. Fan, Y. N.; Ma, F.; Liang, J. S.; Chen, X.; Miao, Z. P.; Duan, S.; Wang, L.; Wang, T. Y.; Han, J. T.; Gao, R. G. et al. Accelerated polysulfide conversion on hierarchical porous vanadium-nitrogen-carbon for advanced lithium-sulfur batteries. Nanoscale 2020, 12, 584–590.

    Article  CAS  Google Scholar 

  48. Li, X. L.; Tang, R. W.; Hu, K.; Zhang, L. Y.; Ding, Z. Q. Hierarchical porous carbon aerogels with VN modification as cathode matrix for high performance lithium-sulfur batteries. Electrochim. Acta 2016, 210, 734–742.

    Article  CAS  Google Scholar 

  49. Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z.; Wang, K.; Yang, W. J. et al. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 2020, 32, 1905658.

    Article  CAS  Google Scholar 

  50. Ma, F.; Wan, Y. Y.; Wang, X. M.; Wang, X. C.; Liang, J. S.; Miao, Z. P.; Wang, T. Y.; Ma, C.; Lu, G.; Han, J. T. et al. Bifunctional atomically dispersed Mo-N2/C nanosheets boost lithium sulfide deposition/decomposition for stable lithium-sulfur batteries. ACS Nano 2020, 14, 10115–10126.

    Article  CAS  Google Scholar 

  51. Tian, D.; Song, X. Q.; Wang, M. X.; Wu, X.; Qiu, Y.; Guan, B.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q.; Sun, K. N. MoN supported on graphene as a bifunctional interlayer for advanced Li-S batteries. Adv. Energy Mater. 2019, 9, 1901940.

    Article  CAS  Google Scholar 

  52. Tian, W. Z.; Xi, B. J.; Mao, H. Z.; Zhang, J. H.; Feng, J. K.; Xiong, S. L. Systematic exploration of the role of a modified layer on the separator in the electrochemistry of lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2018, 10, 30306–30313.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports provided by the National Natural Science Foundation of China (Nos. 21971145, 21871164 and U1764258), the Taishan Scholar Project Foundation of Shandong Province (No. ts20190908), the Natural Science Foundation of Shandong Province (No. ZR2019MB024), and Young Scholars Program of Shandong University (No. 2017WLJH15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baojuan Xi or Shenglin Xiong.

Electronic Supplementary Material

12274_2021_3681_MOESM1_ESM.pdf

Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium—sulfur batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Xi, B., Wang, P. et al. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium—sulfur batteries. Nano Res. 15, 1424–1432 (2022). https://doi.org/10.1007/s12274-021-3681-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3681-8

Keywords

Navigation