Skip to main content
Log in

In-situ embedding CoTe catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Lithium-sulfur (Li-S) batteries have been widely investigated attributed to their advantages of high energy density and cost effectiveness. However, it is still limited by the uncontrolled shuttle effect of the sulfur cathode and the promiscuous dendrite growth over the lithium anode. To handle the above issues, the highly conductive CoTe catalyst is precisely loaded onto nitrogen-doped nanotube and graphene-like carbon (CoTe⊂NCGs), which is employed as a bi-functionally integrated host. On the lithium anode, the CoTe⊂NCGs with excellent lithiophilic property effectively regulate the uniform deposition of lithium and achieve the effect of suppressing the disorderly growth of lithium dendrites. On the sulfur cathode, the electrochemical conversion of lithium polysulfides (LiPSs) is catalyzed to mitigate the notorious shuttle effect. In view of the bifunctionality of CoTe⊂NCGs, the assembled full cell can be steadily stable even for 800 cycles at a high rate of 2 C, and the capacity decay rate is only 0.05% per cycle. The areal capacity of 6.0 mAh·cm−2 is well retained after 50 cycles under the conditions of high sulfur loading, poor electrolyte (a low electrolyte-to-sulfur ratio, E/S = 4.2), and low negative to positive capacity ratio (N/P=1.6:1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chung, S. H.; Manthiram, A. Current status and future prospects of metal-sulfur batteries. Adv. Mater. 2019, 31, 1901125.

    Article  Google Scholar 

  2. Li, S. L.; Zhang, W. F.; Zheng, J. F.; Lv, M. Y.; Song, H. Y.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2021, 11, 2000779.

    Article  CAS  Google Scholar 

  3. Liu, Y. T.; Liu, S.; Li, G. R.; Gao, X. P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 2021, 33, 2003955.

    Article  CAS  Google Scholar 

  4. Bhargav, A.; He, J. R.; Gupta, A.; Manthiram, A. Lithium-sulfur batteries: Attaining the critical metrics. Joule 2020, 4, 285–291.

    Article  Google Scholar 

  5. Xu, B. Y.; Li, X. Y.; Yang, C.; Li, Y. T.; Grundish, N. S.; Chien, P. H.; Dong, K.; Manke, I.; Fang, R. Y.; Wu, N. et al. Interfacial chemistry enables stable cycling of all-solid-state Li metal batteries at high current densities. J. Am. Chem. Soc. 2021, 143, 6542–6550.

    Article  CAS  Google Scholar 

  6. Zhao, Y. Y.; Ye, Y. S.; Wu, F.; Li, Y. J.; Li, L.; Chen, R. J. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries. Adv. Mater. 2019, 31, 1806532.

    Article  Google Scholar 

  7. Huang, J. Q.; Zhai, P. Y.; Peng, H. J.; Zhu, W. C.; Zhang, Q. Metal/nanocarbon layer current collectors enhanced energy efficiency in lithium-sulfur batteries. Sci. Bull. 2017, 62, 1267–1274.

    Article  CAS  Google Scholar 

  8. Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

    Article  Google Scholar 

  9. Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

    Article  CAS  Google Scholar 

  10. Wu, Q. P.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano 2019, 13, 9520–9532.

    Article  CAS  Google Scholar 

  11. Li, X. C.; Zhang, Y.; Wang, S. T.; Liu, Y.; Ding, Y.; He, G. H.; Jiang, X. B.; Xiao, W.; Yu, G. H. Scalable high-areal-capacity Li-S batteries enabled by sandwich-structured hierarchically porous membranes with intrinsic polysulfide adsorption. Nano Lett. 2020, 20, 6922–6929.

    Article  CAS  Google Scholar 

  12. Ma, L. B.; Chen, R. P.; Zhu, G. Y.; Hu, Y.; Wang, Y. R.; Chen, T.; Liu, J.; Jin, Z. Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries. ACS Nano 2017, 11, 7274–7283.

    Article  CAS  Google Scholar 

  13. Wang, P.; Xi, B. J.; Zhang, Z. C. Y.; Song, N.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Dual-functional MgO nanocrystals satisfying both polysulfides and Li regulation toward advanced lithium-sulfur full batteries. Small 2021, 17, 2103744.

    Article  CAS  Google Scholar 

  14. Li, Z. H.; Zhou, C.; Hua, J. H.; Hong, X. F.; Sun, C. L.; Li, H. W.; Li, X X.; Mai, L. Q. Engineering oxygen vacancies in a polysulfide-blocking layer with enhanced catalytic ability. Adv. Mater. 2020, 32, 1907444.

    Article  CAS  Google Scholar 

  15. Liu, Y. P.; Ma, S. Y.; Liu, L. F.; Koch, J.; Rosebrock, M.; Li, T. R.; Bettels, F.; He, T.; Pfnür, H.; Bigall, N. C. et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries. Adv. Funct. Mater. 2020, 30, 2002462.

    Article  CAS  Google Scholar 

  16. Li, W. D.; Wang, D. Z.; Song, Z. H; Gong, Z. J.; Guo, X. S.; Liu, J.; Zhang, Z. H.; Li, G. C. Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Res. 2019, 12, 2908–2917.

    Article  CAS  Google Scholar 

  17. Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.

    Article  Google Scholar 

  18. Tian, W. Z.; Xi, B. J.; Feng, Z. Y.; Li, H. B.; Feng, J. K.; Xiong, S. L. Sulfiphilic few-layered MoSe2 nanoflakes decorated rGO as a highly efficient sulfur host for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901896.

    Article  Google Scholar 

  19. Yang, D. W.; Liang, Z. F.; Zhang, C. Q.; Biendicho, J. J.; Botifoll, M.; Spadaro, M. C.; Chen, Q. L.; Li, M. Y.; Ramon, A.; Moghaddam, A. O. et al. NbSe2 meets C2N: A 2D-2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2101250.

    Article  CAS  Google Scholar 

  20. Ye, C.; Jiao, Y.; Jin, H. Y.; Slattery, A. D.; Davey, K.; Wang, H. H.; Qiao, S. Z. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16703–16707.

    Article  CAS  Google Scholar 

  21. Song, N.; Xi, B. J.; Wang, P.; Ma, X. J.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Immobilizing VN ultrafine nanocrystals on N-doped carbon nanosheets enable multiple effects for high-rate lithium-sulfur batteries. Nano Res. 2022, 15, 1424–1432.

    Article  CAS  Google Scholar 

  22. Zhong, Y. R.; Yin, L. C.; He, P.; Liu, W.; Wu, Z. S.; Wang, H. L. Surface chemistry in cobalt phosphide-stabilized lithium-sulfur batteries. J. Am. Chem. Soc. 2018, 140, 1455–1459.

    Article  CAS  Google Scholar 

  23. Liu, G. Z.; Zhang, Z. C. Y.; Tian, W. Z.; Chen, W. H.; Xi, B. J.; Li, H. B.; Feng, J. K.; Xiong, S. L. Ni12P5 nanoparticles bound on graphene sheets for advanced lithium-sulfur batteries. Nanoscale 2020, 12, 10760–10770.

    Article  CAS  Google Scholar 

  24. Li, W. Y.; Yao, H. B.; Yan, K.; Zheng, G. Y.; Liang, Z.; Chiang, Y. M.; Cui, Y. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat. Commun. 2015, 6, 7436.

    Article  Google Scholar 

  25. Lu, Y. Y.; Tu, Z. Y.; Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961–969.

    Article  CAS  Google Scholar 

  26. Huang, Z. M.; Ren, J.; Zhang, W.; Xie, M. L.; Li, Y. K.; Sun, D.; Shen, Y.; Huang, Y. H. Protecting the Li-metal anode in a Li-O2 battery by using boric acid as an SEI-forming additive. Adv. Mater. 2018, 30, 1803270.

    Article  Google Scholar 

  27. Liang, J. W.; Li, X. N.; Zhao, Y.; Goncharova, L. V.; Wang, G. M.; Adair, K. R.; Wang, C. H.; Li, R. Y.; Zhu, Y. C.; Qian, Y. T. et al. In situ Li3PS4 solid-state electrolyte protection layers for superior longlife and high-rate lithium-metal anodes. Adv. Mater. 2018, 3, 1804684.

    Article  Google Scholar 

  28. Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

    Article  CAS  Google Scholar 

  29. Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Zhang, Z. Q.; Wu, X. J.; Yang, X. Q.; Zhou, Y. N. CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Mater. 2018, 14, 335–344.

    Article  Google Scholar 

  30. Qiu, H. L.; Tang, T. Y.; Asif, M., Huang, X. X.; Hou, Y. L. 3D porous Cu current collectors derived by hydrogen bubble dynamic template for enhanced Li metal anode performance. Adv. Funct. Mater. 2019, 29, 1808468.

    Article  Google Scholar 

  31. Luo, R.; Zhang, Z. C. Y.; Zhang, J.; Xi, B. J.; Tian, F.; Chen, W. H.; Feng, J. K. Xiong, S. L. Bimetal CoNi active sites on mesoporous carbon nanosheets to kinetically boost lithium-sulfur batteries. Small 2021, 17, 2100414.

    Article  CAS  Google Scholar 

  32. Wang, J. N.; Yi, S. S.; Liu, J. W.; Sun, S. Y.; Liu, Y. P.; Yang, D. W.; Xi, K.; Gao, G. X.; Abdelkader, A.; Yan, W. et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries. ACS Nano 2020, 14, 9819–9831.

    Article  CAS  Google Scholar 

  33. Wang, P.; Sun, F. H.; Xiong, S. L.; Zhang, Z. C. Y.; Duan, B.; Zhang, C. H.; Feng, J. K.; Xi, B. J. WSe2 flakelets on N-doped graphene for accelerating polysulfide redox and regulating Li plating. Angew. Chem., Int. Ed. 2022, 134, e202116048.

    Google Scholar 

  34. He, J. R.; Manthiram, A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor. Adv. Energy Mater. 2020, 10, 1903241.

    Article  CAS  Google Scholar 

  35. Shi, H. D.; Ren, X. M.; Lu, J. M.; Dong, C.; Liu, J.; Yang, Q. H.; Chen, J.; Wu, Z. S. Dual-functional atomic zinc decorated hollow carbon nanoreactors for kinetically accelerated polysulfides conversion and dendrite free lithium sulfur batteries. Adv. Energy Mater. 2020, 10, 2002271.

    Article  CAS  Google Scholar 

  36. Li, Y. J.; Gao, T. T.; Ni, D. Y.; Zhou, Y.; Yousaf, M.; Guo, Z. Q.; Zhou, J. H.; Zhou, P.; Wang, Q.; Guo, S. J. Two birds with one stone: Interfacial engineering of multifunctional Janus separator for lithium-sulfur batteries. Adv. Mater. 2022, 34, 2107638.

    Article  CAS  Google Scholar 

  37. Wang, P.; Xi, B. J.; Huang, M.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Emerging catalysts to promote kinetics of lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2002893.

    Article  CAS  Google Scholar 

  38. Huang, T.; Sun, Y. J.; Wu, J. H.; Jin, J.; Wei, C. H.; Shi, Z. X.; Wang, M. L.; Cai, J. S.; An, X. T.; Wang, P. et al. A dual-functional fibrous skeleton implanted with single-atomic Co−Nx dispersions for longevous Li-S full batteries. ACS Nano 2021, 15, 14105–14115.

    Article  CAS  Google Scholar 

  39. Gao, Q.; Huang, C. Q.; Ju, Y. M.; Gao, M. R.; Liu, J. W.; An, D.; Cui, C. H.; Zheng, Y. R.; Li, W. X.; Yu, S. H. Phase-selective syntheses of cobalt telluride nanofleeces for efficient oxygen evolution catalysts. Angew. Chem., Int. Ed. 2017, 56, 7769–7773.

    Article  CAS  Google Scholar 

  40. Song, X. Q.; Tian, D.; Qiu, Y.; Sun, X.; Jiang, B.; Zhao, C. H.; Zhang, Y.; Xu, X. Z.; Fan, L. S.; Zhang, N. Q. Efficient polysulfide trapping and conversion on N-doped CoTe2 via enhanced dual-anchoring effect. Small 2021, 17, 2102962.

    Article  CAS  Google Scholar 

  41. Yu, B.; Huang, A. J.; Srinivas, K.; Zhang, X. J.; Ma, F.; Wang, X. Q.; Chen, D. J.; Wang, B.; Zhang, W. L.; Wang, Z. G. et al. Outstanding catalytic effects of 1T′−MoTe2 quantum dots@3D graphene in shuttle-free Li-S batteries. ACS Nano 2021, 15, 13279–13288.

    Article  CAS  Google Scholar 

  42. He, J. R.; Bhargav, A.; Manthiram, A. In situ grown 1T′−MoTe2 nanosheets on carbon nanotubes as an efficient electrocatalyst and lithium regulator for stable lithium-sulfur full cells. Adv. Energy Mater. 2022, 12, 11169–11186.

    Article  Google Scholar 

  43. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  44. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  45. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

    Article  Google Scholar 

  46. Sheppard, D.; Xiao, P. H.; Chemelewski, W.; Johnson, D. D.; Henkelman, G. A generalized solid-state nudged elastic band method. J. Chem. Phys. 2012, 136, 074103.

    Article  Google Scholar 

  47. Ouyang, T.; Ye, Y. Q.; Wu, C. Y.; Xiao, K.; Liu, Z. Q. Heterostructures composed of N-doped carbon nanotubes encapsulating cobalt and β-Mo2C nanoparticles as bifunctional electrodes for water splitting. Angew. Chem. 2019, 131, 4977–4982.

    Article  Google Scholar 

  48. Karim, M. R.; Shinoda, H.; Nakai, M.; Hatakeyama, K.; Kamihata, H.; Matsui, T.; Taniguchi, T.; Koinuma, M.; Kuroiwa, K.; Kurmoo, M. et al. Electrical conductivity and ferromagnetism in a reduced graphene-metal oxide hybrid. Adv. Funct. Mater. 2013, 23, 323–332.

    Article  CAS  Google Scholar 

  49. Wu, Q. P.; Yao, Z. G.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Built-in catalysis in confined nanoreactors for high-loading Li-S batteries. ACS Nano 2020, 14, 3365–3377.

    Article  CAS  Google Scholar 

  50. Song, X. Q.; Tian, D.; Qiu, Y.; Sun, X.; Jiang, B.; Zhao, C. H.; Zhang, Y.; Fan, L. S.; Zhang, N. Q. Improving poisoning resistance of electrocatalysts via alloying strategy for high-performance lithium-sulfur batteries. Energy Storage Mater. 2021, 41, 248–254.

    Article  Google Scholar 

  51. Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H. et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “goldilocks” principle. Adv. Energy Mater. 2016, 6, 1501636.

    Article  Google Scholar 

  52. Zhang, L. L.; Chen, X.; Wan, F.; Niu, Z. Q.; Wang, Y. J.; Zhang, Q.; Chen, J. Enhanced electrochemical kinetics and polysulfide traps of indium nitride for highly stable lithium-sulfur batteries. ACS Nano 2018, 12, 9578–9586.

    Article  CAS  Google Scholar 

  53. Song, J. X.; Yu, Z. X.; Gordin, M. L.; Wang, D. H. Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett. 2016, 16, 864–870.

    Article  CAS  Google Scholar 

  54. Salhabi, E. H. M.; Zhao, J. L.; Wang, J. Y.; Yang, M.; Wang, B.; Wang, D. Hollow multi-shelled structural TiO2−x with multiple spatial confinement for long-life lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 9078–9082.

    Article  CAS  Google Scholar 

  55. Zhang, S. L.; Ao, X.; Huang, J.; Wei, B.; Zhai, Y. L.; Zhai, D.; Deng, W. Q.; Su, C. L.; Wang, D. S.; Li, Y. D. Isolated single-atom Ni−N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett. 2021, 21, 9691–9698.

    Article  CAS  Google Scholar 

  56. Pang, Q.; Kwok, C. Y.; Kundu, D.; Liang, X.; Nazar, L. F. Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries. Joule 2019, 3, 136–148.

    Article  CAS  Google Scholar 

  57. Wei, Y. Y.; Wang, B. Y.; Zhang, Y.; Zhang, M.; Wang, Q.; Zhang, Y.; Wu, H. Rational design of multifunctional integrated host configuration with lithiophilicity-sulfiphilicity toward high-performance Li-S full batteries. Adv. Funct. Mater. 2021, 31, 2006033.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports provided by the National Natural Science Foundation of China (Nos. U21A2077 and 21971145), the Taishan Scholar Project Foundation of Shandong Province (No. ts20190908), the Natural Science Foundation of Shandong Province (Nos. ZR2021ZD05 and ZR2019MB024), and Anhui Kemi Machinery Technology Co., Ltd. for providing a Teflonlined stainless steel autoclave.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baojuan Xi or Shenglin Xiong.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wang, P., Xi, B. et al. In-situ embedding CoTe catalyst into 1D–2D nitrogen-doped carbon to didirectionally regulate lithium-sulfur batteries. Nano Res. 15, 8972–8982 (2022). https://doi.org/10.1007/s12274-022-4537-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4537-6

Keywords

Navigation