Skip to main content
Log in

N, P, or S-doped carbon nanotubes as dual mimics of NADH oxidase and cytochrome c reductase

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Most nanozyme research is limited to oxidase and peroxidase. Here, we reported the N, P, or S doped carbon nanotubes (CNTs) for enzyme mimics of nicotinamide adenine dinucleotide (NADH) oxidase and cytochrome c (Cyt c) reductase. Through the doping of N element, the NADH oxidase-like activity of CNTs is highly improved, and the maximum initial velocity for N doped CNT (N-CNT) is increased by 4.28 times compared to that before the modification. Through the analysis of NADH oxidation products, we found that biologically active NAD+ was produced, and the oxygen was selectively reduced to water or hydrogen peroxide, which is consistent with natural NADH oxidase. Furthermore, we found for the first time that carbon nanotubes can promote the transfer of electrons from NADH to Cyt c, thereby can mimic the properties of Cyt c reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  Google Scholar 

  2. Feng, X. Y.; Song, Y.; Chen, J. S.; Xu, Z. W.; Dunn, S. J.; Lin, W. B. Rational construction of an artificial binuclear copper monooxygenase in a metal-organic framework. J. Am. Chem. Soc. 2021, 143, 1107–1118.

    Article  CAS  Google Scholar 

  3. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    Article  CAS  Google Scholar 

  4. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  CAS  Google Scholar 

  5. Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. ACS Nano 2021, 15, 2005–2037.

    Article  CAS  Google Scholar 

  6. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  Google Scholar 

  7. Yu, B.; Wang, W.; Sun, W. B.; Jiang, C. H.; Lu, L. H. Defect engineering enables synergistic action of enzyme-mimicking active centers for high-efficiency tumor therapy. J. Am. Chem. Soc. 2021, 143, 8855–8865.

    Article  CAS  Google Scholar 

  8. Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

    Article  CAS  Google Scholar 

  9. Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.

    Article  Google Scholar 

  10. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    Article  CAS  Google Scholar 

  11. Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

    Article  CAS  Google Scholar 

  12. Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Lanthanideboosted singlet oxygen from diverse photosensitizers along with potent photocatalytic oxidation. ACS Nano 2019, 13, 14152–14161.

    Article  CAS  Google Scholar 

  13. Singh, N.; Mugesh, G. CeVO4 nanozymes catalyze the reduction of dioxygen to water without releasing partially reduced oxygen species. Angew. Chem., Int. Ed. 2019, 55, 7797–7801.

    Article  Google Scholar 

  14. Song, H. Y.; Ma, C. L.; Wang, L.; Zhu, Z. G. Platinum nanoparticle-deposited multi-walled carbon nanotubes as a NADH oxidase mimic: Characterization and applications. Nanoscale 2020, 12, 19284–19292.

    Article  CAS  Google Scholar 

  15. Chen, M.; Wang, Z. H.; Shu, J. X.; Jiang, X. H.; Wang, W.; Shi, Z. H.; Lin, Y. W. Mimicking a natural enzyme system: Cytochrome c oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome c. Inorg. Chem. 2017, 56, 9400–9403.

    Article  CAS  Google Scholar 

  16. Wang, H.; Li, P. H.; Yu, D. Q.; Zhang, Y.; Wang, Z. Z.; Liu, C. Q.; Qiu, H.; Liu, Z.; Ren, J. S.; Qu, X. G. Unraveling the enzymatic activity of oxygenated carbon nanotubes and their application in the treatment of bacterial infections. Nano Lett. 2018, 18, 3344–3351.

    Article  CAS  Google Scholar 

  17. Negri, V.; Pacheco-Torres, J.; Calle, D.; López-Larrubia, P. Carbon nanotubes in biomedicine. Top. Curr. Chem. 2020, 378, 15.

    Article  CAS  Google Scholar 

  18. Song, Y. J.; Wang, X. H.; Zhao, C.; Qu, K. G.; Ren, J. S.; Qu, X. G. Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem.—Eur. J. 2010, 16, 3617–3621.

    Article  CAS  Google Scholar 

  19. He, Y. F.; Niu, X. H.; Shi, L. B.; Zhao, H. L.; Li, X.; Zhang, W. C.; Pan, J. M.; Zhang, X. F.; Yan, Y. S.; Lan, M. B. Photometric determination of free cholesterol via cholesterol oxidase and carbon nanotube supported Prussian blue as a peroxidase mimic. Microchim. Acta 2017, 184, 2181–2189.

    Article  CAS  Google Scholar 

  20. Cheng, N.; Li, J. C.; Liu, D.; Lin, Y. H.; Du, D. Single-atom nanozyme based on nanoengineered Fe-N-C catalyst with superior peroxidase-like activity for ultrasensitive bioassays. Small 2019, 15, 1901485.

    Article  CAS  Google Scholar 

  21. Zhang, T.; Li, H. D.; Liu, M. X.; Zhou, H.; Zhang, Z. C.; Yu, C.; Wang, C. Y.; Wang, G. X. Improved the specificity of peroxidase-like carbonized polydopamine nanotubes with high nitrogen doping for glutathione detection. Sens. Actuat. B Chem. 2021, 341, 129987.

    Article  CAS  Google Scholar 

  22. Zhang, Q.; He, X. X.; Han, A. L.; Tu, Q. X.; Fang, G. Z.; Liu, J. F.; Wang, S.; Li, H. B. Artificial hydrolase based on carbon nanotubes conjugated with peptides. Nanoscale 2016, 5, 16851–16856.

    Article  Google Scholar 

  23. Hu, Y. H.; Gao, X. J.; Zhu, Y. Y.; Muhammad, F.; Tan, S. H.; Cao, W.; Lin, S. C.; Jin, Z.; Gao, X. F.; Wei, H. Nitrogen-doped carbon nanomaterials as highly active and specific peroxidase mimics. Chem. Mater. 2018, 30, 6431–6439.

    Article  CAS  Google Scholar 

  24. Lin, S. C.; Zhang, Y. H.; Cao, W.; Wang, X. Y.; Qin, L.; Zhou, M.; Wei, H. Nucleobase-mediated synthesis of nitrogen-doped carbon nanozymes as efficient peroxidase mimics. Dalton Trans. 2019, 48, 1993–1999.

    Article  CAS  Google Scholar 

  25. Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

    Article  Google Scholar 

  26. Wang, H.; Chen, J. X.; Dong, Q.; Jia, X. N.; Li, D.; Wang, J.; Wang, E. K. Cadmium sulfide as bifunctional mimics of NADH oxidase and cytochrome c reductase takes effect at physiological pH. Nano Res. 2022, 15, 5256–5261.

    Article  CAS  Google Scholar 

  27. Li, W.; Jing, X. Y.; Ma, Y. S.; Chen, M. L.; Li, M. J.; Jiang, K.; Wang, D. H. Phosphorus-doped carbon sheets decorated with SeS2 as a cathode for aqueous Zn-SeS2 battery. Chem. Eng. J. 2021, 420, 129920.

    Article  CAS  Google Scholar 

  28. Wu, W. W.; Wang, Q. Q.; Chen, J. X.; Huang, L.; Zhang, H.; Rong, K.; Dong, S. J. Biomimetic design for enhancing the peroxidase mimicking activity of hemin. Nanoscale 2019, 11, 12603–12609.

    Article  CAS  Google Scholar 

  29. Xiong, W.; Wang, Z. N.; He, S. L.; Hao, F.; Yang, Y. Z.; Lv, Y.; Zhang, W. B.; Liu, P. L.; Luo, H. A. Nitrogen-doped carbon nanotubes as a highly active metal-free catalyst for nitrobenzene hydrogenation. Appl. Catal. B Environ. 2020, 260, 118105.

    Article  CAS  Google Scholar 

  30. Zhao, Y.; Wang, L.; Huang, L. Y.; Maximov, M. Y.; Jin, M. L.; Zhang, Y. G.; Wang, X.; Zhou, G. F. Biomass-derived oxygen and nitrogen co-doped porous carbon with hierarchical architecture as sulfur hosts for high-performance lithium/sulfur batteries. Nanomaterials 2017, 7, 402.

    Article  Google Scholar 

  31. Laudenbach, J.; Schmid, D.; Herziger, F.; Hennrich, F.; Kappes, M.; Muoth, M.; Haluska, M.; Hof, F.; Backes, C.; Hauke, F. et al. Diameter dependence of the defect-induced Raman modes in functionalized carbon nanotubes. Carbon 2017, 112, 1–7.

    Article  CAS  Google Scholar 

  32. Wooten, M.; Gorski, W. Facilitation of NADH electro-oxidation at treated carbon nanotubes. Anal. Chem. 2010, 82, 1299–1304.

    Article  CAS  Google Scholar 

  33. Sakamoto, M.; Uchimura, T.; Komagata, K. Comparison of H2O-forming NADH oxidase from Leuconostoc mesenteroides subsp. mesenteroides NRIC 1541T and H2O2-forming NADH oxidase from Sporolactobacillus inulinus NRIC 1133T. J. Fermen. Bioeng. 1996, 82, 531–537.

    Article  CAS  Google Scholar 

  34. Wallen, J. R.; Mallett, T. C.; Okuno, T.; Parsonage, D.; Sakai, H.; Tsukihara, T.; Claiborne, A. Structural analysis of Streptococcus pyogenes NADH oxidase: Conformational dynamics involved in formation of the C(4a)-peroxyflavin intermediate. Biochemistry 2015, 54, 6815–6829.

    Article  CAS  Google Scholar 

  35. Higuchi, M.; Yamamoto, Y.; Kamio, Y. Molecular biology of oxygen tolerance in lactic acid bacteria: Functions of NADH oxidases and Dpr in oxidative stress. J. Biosci. Bioeng. 2000, 90, 484–493.

    Article  CAS  Google Scholar 

  36. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13.

    Article  CAS  Google Scholar 

  37. Starkov, A. A.; Fiskum, G. Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J. Neurochem. 2003, 86, 1101–1107.

    Article  CAS  Google Scholar 

  38. Wan, J. M.; Kalpage, H. A.; Vaishnav, A.; Liu, J.; Lee, I.; Mahapatra, G.; Turner, A. A.; Zurek, M. P.; Ji, Q. Q.; Moraes, C. T. et al. Regulation of respiration and apoptosis by cytochrome c threonine 58 phosphorylation. Sci. Rep. 2019, 9, 15815.

    Article  Google Scholar 

  39. Zhao, H. Z.; Du, Q.; Li, Z. S.; Yang, Q. Z. Mechanisms for the direct electron transfer of cytochrome c induced by multi-walled carbon nanotubes. Sensors 2012, 12, 10450–10462.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

H. W., J. X. C., Q. D., X. S., Q. L., D. L., and E. K. W. thank the support from the National Key Research and Development Program of China (No. 2019YFA0709202), Natural Science Foundation of Jilin Province (No. 20220101055JC), the International Cooperation Project of Jilin Scientific and Technological Development Program (No. 20190701059GH), and the National Natural Science Foundation of China (No. 31301177).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Li or Jin Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, J., Dong, Q. et al. N, P, or S-doped carbon nanotubes as dual mimics of NADH oxidase and cytochrome c reductase. Nano Res. 16, 6615–6621 (2023). https://doi.org/10.1007/s12274-023-5393-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5393-8

Keywords

Navigation