Skip to main content

Carbon-based Nanozeymes

  • Chapter
  • First Online:
Nanozymology

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Carbon nanomaterials, including fullerene, carbon nanotube, graphene, carbon dots, graphene quantum dots, etc., have become a star family in materials science. Since the 1990s, fullerene and its derivatives were found to display superoxide dismutase like activity, various kinds of carbon nanomaterials have been considered as nanozymes, which could be divided into two categories, fullerene-based superoxide dismutase mimics and carbon nanotube, graphene, graphene quantum dots, or carbon dots based-peroxidase mimics. In this chapter, we first give a brief introduction to carbon nanomaterials. Then we discuss their enzymatic activity and catalytic mechanism of both superoxide dismutase and peroxidase mimics. We also focus on and investigate carbon nanomaterials which work as modulators in the nanozyme hybrid. In conclusion, we give future perspectives on carbon-based nanozymes. We hope our summary in this chapter will attract more attention from researchers in related fields and produce new breakthroughs to carbon-based nanozymes in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

CNMs:

Carbon nanomaterials

CNTs:

Carbon nanotubes

CQDs:

Carbon quantum dots

DNase:

Deoxyribonuclease

EPR:

Electron paramagnetic resonance

g-C3N4:

Graphitic carbon nitride

GO:

Graphene oxide

GO-COOH:

Carboxyl-modified graphene oxide

GOx:

Glucose oxidase

GQDs:

Graphene quantum dots

HCC:

Hydrophilic carbon clusters

HRP:

Horseradish peroxidase

K m :

Michaelis–Menten constant

MWCNTs:

Multi-walled carbon nanotubes

NHE:

Normal hydrogen electrode

NIR:

Near-infrared

NR:

Nanoribbon

PDI:

Perylene diimide

PEG:

Polyethylene glycol

SOD:

Superoxide dismutase

SWCNTs:

Single-walled carbon nanotubes

TA:

Terephthalic acid

TAOH:

2-hydroxy terephthalic acid

TMB:

3,3,5,5-tetramethylbenzidine

V max :

Maximum initial velocity

References

  1. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42(16):5843–5859

    CAS  Google Scholar 

  2. Dai LM, Chang DW, Baek JB et al (2012) Carbon nanomaterials for advanced energy conversion and storage. Small 8(8):1130–1166

    CAS  Google Scholar 

  3. Wei H, Wang EK (2013) Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem Soc Rev 42(14):6060–6093

    CAS  Google Scholar 

  4. Jariwala D, Sangwan VK, Lauhon LJ et al (2013) Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Soc Rev 42(7):2824–2860

    CAS  Google Scholar 

  5. Su DS, Perathoner S, Centi G (2013) Nanocarbons for the development of advanced catalysts. Chem Rev 113(8):5782–5816

    CAS  Google Scholar 

  6. Lin YH, Ren JS, Qu XG (2014) Catalytically active nanomaterials: a promising candidate for artificial enzymes. Accounts Chem Res 47(4):1097–1105

    CAS  Google Scholar 

  7. Garg B, Bisht T, Ling YC (2015) Graphene-based nanomaterials as efficient peroxidase mimetic catalysts for biosensing applications: an overview. Molecules 20(8):14155–14190

    CAS  Google Scholar 

  8. Shin HY, Park TJ, Kim MI (2015) Recent research trends and future prospects in nanozymes. J Nanomater 2015:756278

    Google Scholar 

  9. Georgakilas V, Perman JA, Tucek J et al (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115(11):4744–4822

    CAS  Google Scholar 

  10. Hong GS, Diao SO, Antaris AL et al (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115(19):10816–10906

    CAS  Google Scholar 

  11. Bartelmess J, Quinn SJ, Giordani S (2015) Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chem Soc Rev 44(14):4672–4698

    CAS  Google Scholar 

  12. Sun HJ, Ren JS, Qu XG (2016) Carbon nanomaterials and DNA: from molecular recognition to applications. Accounts Chem Res 49(3):461–470

    CAS  Google Scholar 

  13. Wang XY, Hu YH, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 3(1):41–60

    CAS  Google Scholar 

  14. Liu BW, Liu JW (2017) Surface modification of nanozymes. Nano Res 10(4):1125–1148

    CAS  Google Scholar 

  15. Navalon S, Dhakshinamoorthy A, Alvaro M, Antonietti M, Garcia H (2017) Active sites on graphene-based materials as metal-free catalysts. Chem Soc Rev 46(15):4501–4529

    CAS  Google Scholar 

  16. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9(11):868–871

    CAS  Google Scholar 

  17. Ajayan PM (1999) Nanotubes from carbon. Chem Rev 99(7):1787–1800

    CAS  Google Scholar 

  18. Kroto HW, Heath JR, O’Brien SC et al (1985) C60: buckminsterfullerene. Nature 318(6042):162–163

    CAS  Google Scholar 

  19. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    CAS  Google Scholar 

  20. Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669

    CAS  Google Scholar 

  21. Xu XY, Ray R, Gu YL et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126(40):12736–12737

    CAS  Google Scholar 

  22. Ponomarenko LA, Schedin F, Katsnelson MI et al (2008) Chaotic dirac billiard in graphene quantum dots. Science 320(5874):356–358

    CAS  Google Scholar 

  23. Kratschmer W, Lamb LD, Fostiropoulos K et al (1990) Solid C60: a new form of carbon. Nature 347(6291):354–358

    Google Scholar 

  24. Dugan LL, Gabrielsen JK, Yu SP et al (1996) Buckminsterfullerenol free radical scavengers reduce excitotoxic and apoptotic death of cultured cortical neurons. Neurobiol Dis 3(2):129–135

    CAS  Google Scholar 

  25. Dugan LL, Turetsky DM, Du C et al (1997) Carboxyfullerenes as neuroprotective agents. Pro Natl Acad Sci USA 94(17):9434–9439

    CAS  Google Scholar 

  26. Dugan LL, Lovett EG, Quick KL et al (2001) Fullerene-based antioxidants and neurodegenerative disorders. Park Relat D 7(3):243–246

    Google Scholar 

  27. Ali SS, Hardt JI, Quick KL et al (2004) A biologically effective fullerene (C60) derivative with superoxide dismutase mimetic properties. Free Radic Bio Med 37(8):1191–1202

    CAS  Google Scholar 

  28. Belgorodsky B, Fadeev L, Ittah V et al (2005) Formation and characterization of stable human serum albumin-tris-malonic acid [C60]fullerene complex. Bioconjugate Chem 16(5):1058–1062

    CAS  Google Scholar 

  29. Li R, Zhen M, Guan M et al (2013) A novel glucose colorimetric sensor based on intrinsic peroxidase-like activity of C60-carboxyfullerenes. Biosens Bioelectron 47:502–507

    Google Scholar 

  30. Song Y, Wang X, Zhao C et al (2010) Label-free colorimetric detection of single nucleotide polymorphism by using single-walled carbon nanotube intrinsic peroxidase-like activity. Chem Eur J 16(12):3617–3621

    CAS  Google Scholar 

  31. Cui R, Han Z, Zhu JJ (2011) Helical carbon nanotubes: intrinsic peroxidase catalytic activity and its application for biocatalysis and biosensing. Chem Eur J 17(34):9377–9384

    CAS  Google Scholar 

  32. Song Y, Qu K, Zhao C et al (2010) Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    CAS  Google Scholar 

  33. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed 49(38):6726–6744

    CAS  Google Scholar 

  34. Zhao AD, Chen ZW, Zhao CQ et al (2015) Recent advances in bioapplications of C-dots. Carbon 85:309–327

    CAS  Google Scholar 

  35. Shi W, Wang Q, Long Y et al (2011) Carbon nanodots as peroxidase mimetics and their applications to glucose detection. Chem Commun 47(23):6695–6697

    CAS  Google Scholar 

  36. Wang X, Qu K, Xu B et al (2011) Multicolor luminescent carbon nanoparticles: synthesis, supramolecular assembly with porphyrin, intrinsic peroxidase-like catalytic activity and applications. Nano Res 4(9):908–920

    CAS  Google Scholar 

  37. Liu S, Tian J, Wang L et al (2012) A general strategy for the production of photoluminescent carbon nitride dots from organic amines and their application as novel peroxidase-like catalysts for colorimetric detection of H2O2 and glucose. RSC Adv 2(2):411–413

    CAS  Google Scholar 

  38. Zhu W, Zhang J, Jiang Z et al (2014) High-quality carbon dots: synthesis, peroxidase-like activity and their application in the detection of H2O2, Ag+ and Fe3+. RSC Adv 4(33):17387–17392

    CAS  Google Scholar 

  39. Long Y, Wang X, Shen D et al (2016) Detection of glucose based on the peroxidase-like activity of reduced state carbon dots. Talanta 159:122–126

    CAS  Google Scholar 

  40. Li LL, Wu GH, Yang GH et al (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5(10):4015–4039

    CAS  Google Scholar 

  41. Sun HJ, Wu L, Wei WL et al (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16(11):433–442

    CAS  Google Scholar 

  42. Zhang Y, Wu C, Zhou X et al (2013) Graphene quantum dots/gold electrode and its application in living cell H2O2 detection. Nanoscale 5(5):1816–1819

    CAS  Google Scholar 

  43. Zheng AX, Cong ZX, Wang JR et al (2013) Highly-efficient peroxidase-like catalytic activity of graphene dots for biosensing. Biosens Bioelectron 49:519–524

    CAS  Google Scholar 

  44. Wu X, Tian F, Wang W et al (2013) Fabrication of highly fluorescent graphene quantum dots using l-glutamic acid for in vitro/in vivo imaging and sensing. J Mater Chem C 1(31):4676–4684

    CAS  Google Scholar 

  45. Sun H, Gao N, Dong K et al (2014) Graphene quantum dots-band-aids used for wound disinfection. ACS Nano 8(6):6202–6210

    CAS  Google Scholar 

  46. Sun H, Zhao A, Gao N et al (2015) Deciphering a nanocarbon-based artificial peroxidase: chemical identification of the catalytically active and substrate-binding sites on graphene quantum dots. Angew Chem Int Ed 54(24):7176–7180

    CAS  Google Scholar 

  47. Tang D, Liu J, Yan X et al (2016) Graphene oxide derived graphene quantum dots with different photoluminescence properties and peroxidase-like catalytic activity. RSC Adv 6(56):50609–50617

    CAS  Google Scholar 

  48. Nirala NR, Khandelwal G, Kumar B et al (2017) One step electro-oxidative preparation of graphene quantum dots from wood charcoal as a peroxidase mimetic. Talanta 173:36–43

    CAS  Google Scholar 

  49. Samuel ELG, Marcano DC, Berka V et al (2015) Highly efficient conversion of superoxide to oxygen using hydrophilic carbon clusters. Pro Natl Acad Sci USA 112(8):2343–2348

    CAS  Google Scholar 

  50. Jalilov AS, Nilewski LG, Berka V et al (2017) Perylene diimide as a precise graphene-like superoxide dismutase mimetic. ACS Nano 11(2):2024–2032

    CAS  Google Scholar 

  51. Zhu S, Zhao XE, You J et al (2015) Carboxylic-group-functionalized single-walled carbon nanohorns as peroxidase mimetics and their application to glucose detection. Analyst 140(18):6398–6403

    CAS  Google Scholar 

  52. Qian J, Yang X, Yang Z et al (2015) Multiwalled carbon nanotube@reduced graphene oxide nanoribbon heterostructure: synthesis, intrinsic peroxidase-like catalytic activity, and its application in colorimetric biosensing. J Mater Chem B 3(8):1624–1632

    CAS  Google Scholar 

  53. Krusic PJ, Wasserman E, Keizer PN er al (1991) Radical reactions of C60. Science 254(5035):1183–1185

    Google Scholar 

  54. Ali SS, Hardt JI, Dugan LL (2008) SOD Activity of carboxyfullerenes predicts their neuroprotective efficacy: a structure-activity study. Nanomed Nanotechnol 4(4):283–294

    CAS  Google Scholar 

  55. Yang W, Huang T, Zhao M et al (2017) High peroxidase-like activity of iron and nitrogen co-doped carbon dots and its application in immunosorbent assay. Talanta 164:1–6

    CAS  Google Scholar 

  56. Jin J, Zhu S, Song Y et al (2016) Precisely controllable core–shell Ag@carbon dots nanoparticles: application to in situ super-sensitive monitoring of catalytic reactions. ACS Appl Mater Interfaces 8(41):27956–27965

    CAS  Google Scholar 

  57. Tian J, Liu Q, Asiri AM et al (2013) Ultrathin graphitic carbon nitride nanosheets: a novel peroxidase mimetic, Fe doping-mediated catalytic performance enhancement and application to rapid, highly sensitive optical detection of glucose. Nanoscale 5(23):11604–11609

    CAS  Google Scholar 

  58. Wang Z, Dong K, Liu Z et al (2017) Activation of biologically relevant levels of reactive oxygen species by Au/g-C3N4 hybrid nanozyme for bacteria killing and wound disinfection. Biomaterials 113:145–157

    CAS  Google Scholar 

  59. Zhao R, Zhao X, Gao X (2015) Molecular-level insights into intrinsic peroxidase-like activity of nanocarbon oxides. Chem Eur J 21(3):960–964

    CAS  Google Scholar 

  60. Dong Y, Li J, Shi L et al (2015) Iron impurities as the active sites for peroxidase-like catalytic reaction on graphene and its derivatives. ACS Appl Mater Interfaces 7(28):15403–15413

    CAS  Google Scholar 

  61. Zuo X, Peng C, Huang Q et al (2009) Design of a carbon nanotube/magnetic nanoparticle-based peroxidase-like nanocomplex and its application for highly efficient catalytic oxidation of phenols. Nano Res 2(8):617–623

    CAS  Google Scholar 

  62. Ye Y, Kong T, Yu X et al (2012) Enhanced nonenzymatic hydrogen peroxide sensing with reduced graphene oxide/ferroferric oxide nanocomposites. Talanta 89:417–421

    CAS  Google Scholar 

  63. Dong YL, Zhang HG, Rahman ZU et al (2012) Graphene oxide-Fe3O4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13):3969–3976

    CAS  Google Scholar 

  64. Wu X, Zhang Y, Han T et al (2014) Composite of graphene quantum dots and Fe3O4 nanoparticles: peroxidase activity and application in phenolic compound removal. RSC Adv 4(7):3299–3305

    CAS  Google Scholar 

  65. Qian J, Yang X, Jiang L et al (2014) Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine. Sensor Actuat B-Chem 201:160–166

    CAS  Google Scholar 

  66. Wang H, Li S, Si Y et al (2014) Recyclable enzyme mimic of cubic Fe3O4 nanoparticles loaded on graphene oxide-dispersed carbon nanotubes with enhanced peroxidase-like catalysis and electrocatalysis. J Mater Chem B 2(28):4442–4448

    CAS  Google Scholar 

  67. Li Q, Tang G, Xiong X et al (2015) Carbon coated magnetite nanoparticles with improved water-dispersion and peroxidase-like activity for colorimetric sensing of glucose. Sens Actuat B-Chem 215:86–92

    CAS  Google Scholar 

  68. Zhang S, Li H, Wang Z et al (2015) A strongly coupled Au/Fe3O4/GO hybrid material with enhanced nanozyme activity for highly sensitive colorimetric detection, and rapid and efficient removal of Hg2+ in aqueous solutions. Nanoscale 7(18):8495–8502

    CAS  Google Scholar 

  69. Xu HY, Shi TN, Zhao H et al (2016) Heterogeneous Fenton-like discoloration of methyl orange using Fe3O4/MWCNTs as catalyst: process optimization by response surface methodology. Front Mater Sci 10(1):45–55

    Google Scholar 

  70. Yuan F, Zhao H, Zang H et al (2016) Three-dimensional graphene supported bimetallic nanocomposites with DNA regulated-flexibly switchable peroxidase-like activity. ACS Appl Mater Interfaces 8(15):9855–9864

    CAS  Google Scholar 

  71. Shi B, Su Y, Zhang L et al (2016) Facilely prepared Fe3O4/nitrogen-doped graphene quantum dot hybrids as a robust nonenzymatic catalyst for visual discrimination of phenylenediamine isomers. Nanoscale 8(20):10814–10822

    CAS  Google Scholar 

  72. Zhang J, Ma J, Fan X et al (2017) Graphene supported Au-Pd-Fe3O4 alloy trimetallic nanoparticles with peroxidase-like activities as mimic enzyme. Catal Commun 89:148–151

    CAS  Google Scholar 

  73. Wang Q, Zhang X, Huang L et al (2017) One-pot synthesis of Fe3O4 nanoparticle loaded 3D porous graphene nanocomposites with enhanced nanozyme activity for glucose detection. ACS Appl Mater Interfaces 9(8):7465–7471

    CAS  Google Scholar 

  74. Yousefinejad S, Rasti H, Hajebi M et al (2017) Design of C-dots/Fe3O4 magnetic nanocomposite as an efficient new nanozyme and its application for determination of H2O2 in nanomolar level. Sensor Actuat B-Chem 247:691–696

    CAS  Google Scholar 

  75. Lu N, Zhang M, Ding L et al (2017) Yolk-shell nanostructured Fe3O4@C magnetic nanoparticles with enhanced peroxidase-like activity for label-free colorimetric detection of H2O2 and glucose. Nanoscale 9(13):4508–4515

    CAS  Google Scholar 

  76. Xu C, Bing W, Wang F et al (2017) Versatile dual photoresponsive system for precise control of chemical reactions. ACS Nano ACS Nano 11(8):7770–7780

    CAS  Google Scholar 

  77. Hsu KI, Lien CW, Lin CH et al (2014) Immobilization of iron hydroxide/oxide on reduced graphene oxide: peroxidase-like activity and selective detection of sulfide ions. RSC Adv 4(71):37705–37713

    CAS  Google Scholar 

  78. Li L, Zeng C, Ai L et al (2015) Synthesis of reduced graphene oxide-iron nanoparticles with superior enzyme-mimetic activity for biosensing application. J Alloy Compd 639:470–477

    CAS  Google Scholar 

  79. Song L, Huang C, Zhang W et al (2016) Graphene oxide-based Fe2O3 hybrid enzyme mimetic with enhanced peroxidase and catalase-like activities. Colloid Surf A 506:747–755

    CAS  Google Scholar 

  80. Zhang Z, Hao J, Yang W et al (2013) Porous Co3O4 nanorods–reduced graphene oxide with intrinsic peroxidase-like activity and catalysis in the degradation of methylene blue. ACS Appl Mater Interfaces 5(9):3809–3815

    CAS  Google Scholar 

  81. Fan S, Zhao M, Ding L et al (2017) Preparation of Co3O4/crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosens Bioelectron 89:846–852

    CAS  Google Scholar 

  82. Hayat A, Haider W, Raza Y et al (2015) Colorimetric cholesterol sensor based on peroxidase like activity of zinc oxide nanoparticles incorporated carbon nanotubes. Talanta 143:157–161

    CAS  Google Scholar 

  83. Ragavan KV, Rastogi NK (2016) Graphene–copper oxide nanocomposite with intrinsic peroxidase activity for enhancement of chemiluminescence signals and its application for detection of Bisphenol-A. Sens Actuat B-Chem 229:570–580

    CAS  Google Scholar 

  84. Singh P, Nath P, Arun RK et al (2016) Novel synthesis of a mixed Cu/CuO-reduced graphene oxide nanocomposite with enhanced peroxidase-like catalytic activity for easy detection of glutathione in solution and using a paper strip. RSC Adv 6(95):92729–92738

    CAS  Google Scholar 

  85. Zhang L, Hai X, Xia C et al (2017) Growth of CuO nanoneedles on graphene quantum dots as peroxidase mimics for sensitive colorimetric detection of hydrogen peroxide and glucose. Sens Actuat B-Chem 248:374–384

    CAS  Google Scholar 

  86. Chen M, Ding Y, Gao Y et al (2017) N, N [prime or minute]-di-caboxy methyl perylene diimide (PDI) functionalized CuO nanocomposites with enhanced peroxidase-like activity and their application in visual biosensing of H2O2 and glucose. RSC Adv 7(41):25220–25228

    CAS  Google Scholar 

  87. Guo Y, Wang H, Ma X et al (2017) Fabrication of Ag–Cu2O/reduced graphene oxide nanocomposites as surface-enhanced raman scattering substrates for in situ monitoring of peroxidase-like catalytic reaction and biosensing. ACS Appl Mater Interfaces 9(22):19074–19081

    CAS  Google Scholar 

  88. Wang H, Li S, Si Y et al (2014) Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities. Nanoscale 6(14):8107–8116

    CAS  Google Scholar 

  89. Lin XQ, Deng HH, Wu GW et al (2015) Platinum nanoparticles/graphene-oxide hybrid with excellent peroxidase-like activity and its application for cysteine detection. Analyst 140(15):5251–5256

    CAS  Google Scholar 

  90. Chau LY, He Q, Qin A et al (2016) Platinum nanoparticles on reduced graphene oxide as peroxidase mimetics for the colorimetric detection of specific DNA sequence. J Mater Chem B 4(23):4076–4083

    CAS  Google Scholar 

  91. Chen J, Ge J, Zhang L et al (2016) Poly(styrene sulfonate) and Pt bifunctionalized graphene nanosheets as an artificial enzyme to construct a colorimetric chemosensor for highly sensitive glucose detection. Sens Actuat B-Chem 233:438–444

    Google Scholar 

  92. Wang Y, Qi W, Song Y (2016) Antibody-free detection of protein phosphorylation using intrinsic peroxidase-like activity of platinum/carbon dot hybrid nanoparticles. Chem Commun 52(51):7994–7997

    CAS  Google Scholar 

  93. Li S, Li H, Chen F et al (2016) Strong coupled palladium nanoparticles decorated on magnetic graphene nanosheets as enhanced peroxidase mimetics for colorimetric detection of H2O2. Dyes Pigments 125:64–71

    Google Scholar 

  94. Liu M, Zhao H, Chen S et al (2012) Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 6(4):3142–3151

    CAS  Google Scholar 

  95. Liu M, Zhao H, Chen S et al (2012) Stimuli-responsive peroxidase mimicking at a smart graphene interface. Chem Commun 48(56):7055–7057

    CAS  Google Scholar 

  96. Zhang Y, Xu C, Li B et al (2013) In situ growth of positively-charged gold nanoparticles on single-walled carbon nanotubes as a highly active peroxidase mimetic and its application in biosensing. Biosens Bioelectron 43:205–210

    CAS  Google Scholar 

  97. Tao Y, Lin Y, Huang Z et al (2013) Incorporating graphene oxide and gold nanoclusters: a synergistic catalyst with surprisingly high peroxidase-like activity over a broad pH range and its application for cancer cell detection. Adv Mater 25(18):2594–2599

    CAS  Google Scholar 

  98. Chen X, Tian X, Su B et al (2014) Au nanoparticles on citrate-functionalized graphene nanosheets with a high peroxidase-like performance. Dalton Trans 43(20):7449–7454

    CAS  Google Scholar 

  99. Zhan L, Li CM, Wu WB et al (2014) A colorimetric immunoassay for respiratory syncytial virus detection based on gold nanoparticles-graphene oxide hybrids with mercury-enhanced peroxidase-like activity. Chem Commun 50(78):11526–11528

    CAS  Google Scholar 

  100. Chen X, Zhai N, Snyder JH et al (2015) Colorimetric detection of Hg2+ and Pb2+ based on peroxidase-like activity of graphene oxide-gold nanohybrids. Anal Methods-UK 7(5):1951–1957

    CAS  Google Scholar 

  101. Haider W, Hayat A, Raza Y et al (2015) Gold nanoparticle decorated single walled carbon nanotube nanocomposite with synergistic peroxidase like activity for d-alanine detection. RSC Adv 5(32):24853–24858

    CAS  Google Scholar 

  102. Zheng C, Ke W, Yin T et al (2016) Intrinsic peroxidase-like activity and the catalytic mechanism of gold@carbon dots nanocomposites. RSC Adv 6(42):35280–35286

    CAS  Google Scholar 

  103. Kumar S, Bhushan P, Bhattacharya S (2016) Development of a paper-based analytical device for colorimetric detection of uric acid using gold nanoparticles-graphene oxide (AuNPs-GO) conjugates. Anal Methods-UK 8(38):6965–6973

    CAS  Google Scholar 

  104. Ahmed SR, Takemeura K, Li TC et al (2017) Size-controlled preparation of peroxidase-like graphene-gold nanoparticle hybrids for the visible detection of norovirus-like particles. Biosens Bioelectron 87:558–565

    CAS  Google Scholar 

  105. Ju J, Zhang R, Chen W (2016) Photochemical deposition of surface-clean silver nanoparticles on nitrogen-doped graphene quantum dots for sensitive colorimetric detection of glutathione. Sens Actuat B-Chem 228:66–73

    CAS  Google Scholar 

  106. Tian X, Wang X, Dai C (2017) Visual and quantitative detection of glucose based on the intrinsic peroxidase-like activity of CoSe2/rGO nanohybrids. Sens Actuat B-Chem 245:221–229

    CAS  Google Scholar 

  107. Nie G, Zhang L, Lu X et al (2013) A one-pot and in situ synthesis of CuS-graphene nanosheet composites with enhanced peroxidase-like catalytic activity. Dalton Trans 42(38):14006–14013

    CAS  Google Scholar 

  108. Dutta S, Ray C, Mallick S et al (2015) A gel-based approach to design hierarchical CuS decorated reduced graphene oxide nanosheets for enhanced peroxidase-like activity leading to colorimetric detection of dopamine. J Phys Chem C 119(41):23790–23800

    CAS  Google Scholar 

  109. Chen X, Su B, Cai Z et al (2014) PtPd nanodendrites supported on graphene nanosheets: a peroxidase-like catalyst for colorimetric detection of H2O2. Sens Actuat B-Chem 201:286–292

    CAS  Google Scholar 

  110. Wang A, Zhao H, Chen X et al (2017) A colorimetric aptasensor for sulfadimethoxine detection based on peroxidase-like activity of graphene/nickel@palladium hybrids. Anal Biochem 525:92–99

    CAS  Google Scholar 

  111. Chen H, Li Y, Zhang F et al (2011) Graphene supported Au-Pd bimetallic nanoparticles with core-shell structures and superior peroxidase-like activities. J Mater Chem 21(44):17658–17661

    CAS  Google Scholar 

  112. Yang L, Liu X, Lu Q et al (2016) Catalytic and peroxidase-like activity of carbon based-AuPd bimetallic nanocomposite produced using carbon dots as the reductant. Anal Chim Acta 930:23–30

    CAS  Google Scholar 

  113. Darabdhara G, Sharma B, Das MR et al (2017) Cu-Ag bimetallic nanoparticles on reduced graphene oxide nanosheets as peroxidase mimic for glucose and ascorbic acid detection. Sens Actuat B-Chem 238:842–851

    CAS  Google Scholar 

  114. Ren H, Wang C, Zhang J et al (2010) DNA cleavage system of nanosized graphene oxide sheets and copper ions. ACS Nano 4(12):7169–7174

    CAS  Google Scholar 

  115. Zhou X, Zhang Y, Wang C et al (2012) Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA Cleavage. ACS Nano 6(8):6592–6599

    CAS  Google Scholar 

  116. Wang S, Cazelles R, Liao WC et al (2017) Mimicking horseradish peroxidase and NADH peroxidase by heterogeneous Cu2+-Modified graphene oxide nanoparticles. Nano Lett 17(3):2043–2048

    CAS  Google Scholar 

  117. Guo Y, Deng L, Li J et al (2011) Hemin-graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290

    CAS  Google Scholar 

  118. Xue T, Jiang S, Qu Y et al (2012) Graphene-supported hemin as a highly active biomimetic oxidation catalyst. Angew Chem Int Ed 51(16):3822–3825

    CAS  Google Scholar 

  119. Zhang Y, Xu C, Li B (2013) Self-assembly of hemin on carbon nanotube as highly active peroxidase mimetic and its application for biosensing. RSC Adv 3(17):6044–6050

    CAS  Google Scholar 

  120. Zhang Y, Xia Z, Liu H et al (2013) Hemin-graphene oxide-pristine carbon nanotubes complexes with intrinsic peroxidase-like activity for the detection of H2O2 and simultaneous determination for Trp, AA, DA, and UA. Sens Actuat B-Chem 188:496–501

    CAS  Google Scholar 

  121. Tao Y, Lin Y, Ren J et al (2013) Self-assembled, functionalized graphene and DNA as a universal platform for colorimetric assays. Biomaterials 34(20):4810–4817

    CAS  Google Scholar 

  122. Sun R, Wang Y, Ni Y et al (2014) Spectrophotometric analysis of phenols, which involves a hemin-graphene hybrid nanoparticles with peroxidase-like activity. J Hazard Mater 266:60–67

    CAS  Google Scholar 

  123. Bi S, Zhao T, Jia X et al (2014) Magnetic graphene oxide-supported hemin as peroxidase probe for sensitive detection of thiols in extracts of cancer cells. Biosens Bioelectron 57:110–116

    CAS  Google Scholar 

  124. Fang M, Wang L, Wang P et al (2016) Selective and sensitive determination of copper ions in soft drink based on high catalysis of hemin–graphene hybrid nanosheets coupled with enzyme inhibitions. J Iran Chem Soc 13(10):1937–1944

    CAS  Google Scholar 

  125. Magerusan L, Socaci C, Pogacean F et al (2016) Enhancement of peroxidase-like activity of N-doped graphene assembled with iron-tetrapyridylporphyrin. RSC Adv 6(83):79497–79506

    CAS  Google Scholar 

  126. Xu X, Wei M, Liu Y et al (2017) A simple, fast, label-free colorimetric method for detection of telomerase activity in urine by using hemin-graphene conjugates. Biosens Bioelectron 87:600–606

    CAS  Google Scholar 

  127. Wang X, Hou C, Qiu W et al (2017) Protein-directed synthesis of bifunctional adsorbent-catalytic hemin-graphene nanosheets for highly efficient removal of dye pollutants via synergistic adsorption and degradation. ACS Appl Mater Interfaces 9(1):684–692

    CAS  Google Scholar 

  128. Xu C, Zhao C, Li M et al (2014) Artificial evolution of graphene oxide chemzyme with enantioselectivity and near-infrared photothermal effect for cascade biocatalysis reactions. Small 10(9):1841–1847

    CAS  Google Scholar 

  129. Zhang R, He S, Zhang C, Chen W (2015) Three-dimensional Fe- and N-incorporated carbon structures as peroxidase mimics for fluorescence detection of hydrogen peroxide and glucose. J Mater Chem B 3(20):4146–4154

    CAS  Google Scholar 

  130. He Y, Niu X, Shi L et al (2017) Photometric determination of free cholesterol via cholesterol oxidase and carbon nanotube supported Prussian blue as a peroxidase mimic. Microchim Acta 184(7):2181–2189

    CAS  Google Scholar 

  131. Chen C, Wang Z, Ren J, Qu X (2018) Enzyme mimicry for combating bacteria and biofilms. Acc Chem Res 51:789–799

    CAS  Google Scholar 

  132. Huang Y, Ren J, Qu X (2019) Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem Rev 119:4357–4412

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grants 21431007, 21533008, 21871249, 91856205, and 21820102009), and Key Program of Frontier of Sciences, CAS QYZDJ-SSW-SLH052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sun, H., Ren, J., Qu, X. (2020). Carbon-based Nanozeymes. In: Yan, X. (eds) Nanozymology. Nanostructure Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-1490-6_7

Download citation

Publish with us

Policies and ethics