Skip to main content
Log in

Cadmium sulfide as bifunctional mimics of NADH oxidase and cytochrome c reductase takes effect at physiological pH

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Recently, a study of mimic enzyme has received more attentions. However, the investigation on the oxidoreductase activity of electron mediators in the biological respiratory chain is still rare. Herein, we found that cadmium sulfide (CdS) nanorods can catalyze the formation of superoxide anions. Due to the role of the photo-generated holes and the nicotinamide adenine dinucleotide (NADH) oxidation promoted by superoxide anion \(({\rm{O}}_2^{\,\,\, \bullet - })\), the CdS exhibits NADH oxidase-like activity and can be coupled with dehydrogenase to realize the recycling of NADH. It is worth mentioning that the bio-electron acceptor, cytochrome c (Cyt c), as a chromogenic substrate, can accept electrons transferred from \({\rm{O}}_2^{\,\,\, \bullet - }\), which demonstrates the Cyt c reductase-like activity of CdS under physiological pH conditions. For different substrates, \({\rm{O}}_2^{\,\,\, \bullet - }\) induced from CdS show oxidizing capacity for NADH and reducing capacity for Cyt c, which provides a new perspective for the in-depth study of new nanozyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  Google Scholar 

  2. Fan, Y.; Liu, S. G.; Yi, Y.; Rong, H. P.; Zhang, J. T. Catalytic nanomaterials toward atomic levels for biomedical applications: From metal clusters to single-atom catalysts. Acs Nano 2021, 15, 2005–2037.

    Article  CAS  Google Scholar 

  3. Xu, Y. Q.; Fei, J. B.; Li, G. L.; Yuan, T. T.; Xu, X.; Li, J. B. Nanozyme-catalyzed cascade reactions for mitochondria-mimicking oxidative phosphorylation. Angew. Chem., Int. Ed. 2019, 58, 5572–5576.

    Article  CAS  Google Scholar 

  4. Chen, J. X.; Ma, Q.; Li, M. H.; Chao, D. Y.; Huang, L.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375.

    Article  CAS  Google Scholar 

  5. Wang, C. L.; Fei, J. B.; Wang, K. Q.; Li, J. B. A dipeptide-based hierarchical nanoarchitecture with enhanced catalytic activity. Angew. Chem., Int. Ed. 2020, 59, 18960–18963.

    Article  CAS  Google Scholar 

  6. Qi, W.; Yan, X. H.; Juan, L.; Cui, Y.; Yang, Y.; Li, J. B. Glucose-sensitive microcapsules from glutaraldehyde cross-linked hemoglobin and glucose oxidase. Biomacromolecules 2009, 10, 1212–1216.

    Article  CAS  Google Scholar 

  7. Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

    Article  CAS  Google Scholar 

  8. Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

    Article  CAS  Google Scholar 

  9. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    Article  CAS  Google Scholar 

  10. Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

    Article  CAS  Google Scholar 

  11. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    Article  CAS  Google Scholar 

  12. Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

    Article  CAS  Google Scholar 

  13. Tao, Y.; Ju, E. G.; Ren, J. S.; Qu, X. G. Bifunctionalized mesoporous silica-supported gold nanoparticles: Intrinsic oxidase and peroxidase catalytic activities for antibacterial applications. Adv. Mater. 2015, 27, 1097–1104.

    Article  CAS  Google Scholar 

  14. Santucci, R.; Sinibaldi, F.; Cozza, P.; Polticelli, F.; Fiorucci, L. Cytochrome c: An extreme multifunctional protein with a key role in cell fate. Int. J. Biol. Macromol. 2019, 136, 1237–1246.

    Article  CAS  Google Scholar 

  15. Qi, G. H.; Li, H. J.; Zhang, Y.; Li, C. P.; Xu, S. P.; Wang, M. M.; Jin, Y. D. Smart plasmonic nanorobot for real-time monitoring cytochrome c release and cell acidification in apoptosis during electrostimulation. Anal. Chem. 2019, 91, 1408–1415.

    Article  CAS  Google Scholar 

  16. Elmer-Dixon, M. M.; Xie, Z. Q.; Alverson, J. B.; Priestley, N. D.; Bowler, B. E. Curvature-dependent binding of cytochrome c to cardiolipin. J. Am. Chem. Soc. 2020, 142, 19532–19539.

    Article  CAS  Google Scholar 

  17. Giacomello, M.; Pyakurel, A.; Glytsou, C.; Scorrano, L. The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 2020, 21, 204–224.

    Article  CAS  Google Scholar 

  18. Rogers, C.; Erkes, D. A.; Nardone, A.; Aplin, A. E.; Fernandes-Alnemri, T.; Alnemri, E. S. Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat. Commun. 2019, 10, 1689.

    Article  CAS  Google Scholar 

  19. McComb, S.; Chan, P. K.; Guinot, A.; Hartmannsdottir, H.; Jenni, S.; Dobay, M. P.; Bourquin, J. P.; Bornhauser, B. C. Efficient apoptosis requires feedback amplification of upstream apoptotic signals by effector caspase-3 or -7. Sci. Adv. 2019, 5, eaau9433.

    Article  CAS  Google Scholar 

  20. Burke, P. J. Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer 2017, 3, 857–870.

    Article  CAS  Google Scholar 

  21. Bock, F. J.; Tait, S. W. G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 2020, 21, 85–100.

    Article  CAS  Google Scholar 

  22. Chen, J. F.; Chen, C. L.; Alevriadou, B. R.; Zweier, J. L.; Chen, Y. R. Excess no predisposes mitochondrial succinate-cytochrome c reductase to produce hydroxyl radical. Biochim. Biophys. Acta (BBA)-Bioenerg. 2011, 1807, 491–502.

    Article  CAS  Google Scholar 

  23. Titov, D. V.; Cracan, V.; Goodman, R. P.; Peng, J.; Grabarek, Z.; Mootha, V. K. Complementation of mitochondrial electron transport chain by manipulation of the NAD+/NADH ratio. Science 2016, 352, 231–235.

    Article  CAS  Google Scholar 

  24. Navas, L. E.; Carnero, A. NAD+ metabolism, stemness, the immune response, and cancer. Sig. Transduct. Target. Ther. 2021, 6, 2.

    Article  CAS  Google Scholar 

  25. Ying, W. H. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Sign. 2008, 10, 179–206.

    Article  CAS  Google Scholar 

  26. Cantó, C.; Menzies, K. J.; Auwerx, J. NAD+ metabolism and the control of energy homeostasis: A balancing act between mitochondria and the nucleus. Cell Metab. 2015, 22, 31–53.

    Article  CAS  Google Scholar 

  27. Singh, N.; Mugesh, G. CeVO4 nanozymes catalyze the reduction of dioxygen to water without releasing partially reduced oxygen species. Angew. Chem., Int. Ed. 2019, 58, 7797–7801.

    Article  CAS  Google Scholar 

  28. Chen, J. X.; Ma, Q.; Li, M. H.; Wu, W. W.; Huang, L.; Liu, L.; Fang, Y. X.; Dong, S. J. Coenzyme-dependent nanozymes playing dual roles in oxidase and reductase mimics with enhanced electron transport. Nanoscale 2020, 12, 23578–23585.

    Article  CAS  Google Scholar 

  29. Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

    Article  CAS  Google Scholar 

  30. Liu, Q. Y.; Jia, Q. Y.; Zhu, R. R.; Shao, Q.; Wang, D. M.; Cui, P.; Ge, J. C. 5, 10, 15, 20-Tetrakis(4-carboxyl phenyl)porphyrin-CdS nanocomposites with intrinsic peroxidase-like activity for glucose colorimetric detection. Mat. Sci. Eng. C 2014, 42, 177–184.

    Article  CAS  Google Scholar 

  31. Zhang, S. H.; Shi, J. F.; Chen, Y. X.; Huo, Q.; Li, W. R.; Wu, Y. Z.; Sun, Y. Y.; Zhang, Y. S.; Wang, X. D.; Jiang, Z. Y. Unraveling and manipulating of NADH oxidation by photogenerated holes. ACS Catal. 2020, 10, 4967–4972.

    Article  CAS  Google Scholar 

  32. Wu, X.; Zhang, H. B.; Dong, J. C.; Qiu, M.; Kong, J. T.; Zhang, Y. F.; Li, Y.; Xu, G. L.; Zhang, J.; Ye, J. H. Surface step decoration of isolated atom as electron pumping: Atomic-level insights into visible-light hydrogen evolution. Nano Energy 2018, 45, 109–117.

    Article  CAS  Google Scholar 

  33. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    Article  CAS  Google Scholar 

  34. Chen, M.; Wang, Z. H.; Shu, J. X.; Jiang, X. H.; Wang, W.; Shi, Z. H.; Lin, Y. W. Mimicking a natural enzyme system: Cytochrome c oxidase-like activity of Cu2O nanoparticles by receiving electrons from cytochrome c. Inorg. Chem. 2017, 56, 9400–9403.

    Article  CAS  Google Scholar 

  35. Peskin, A. V.; Winterbourn, C. C. Assay of superoxide dismutase activity in a plate assay using WST-1. Free Radic. Biol. Med. 2017, 103, 188–191.

    Article  CAS  Google Scholar 

  36. Naya, S. I.; Kume, T.; Akashi, R.; Fujishima, M.; Tada, H. Red-light-driven water splitting by Au(core)—CdS(shell) half-cut nanoegg with heteroepitaxial junction. J. Am. Chem. Soc. 2018, 140, 1251–1254.

    Article  CAS  Google Scholar 

  37. Vinokurov, V. A.; Stavitskaya, A. V.; Ivanov, E. V.; Gushchin, P. A.; Kozlov, D. V.; Kurenkova, A. Y.; Kolinko, P. A.; Kozlova, E. A.; Lvov, Y. M. Halloysite nanoclay based CdS formulations with high catalytic activity in hydrogen evolution reaction under visible light irradiation. ACS Sustainable Chem. Eng. 2017, 5, 11316–11323.

    Article  CAS  Google Scholar 

  38. Wallen, J. R.; Mallett, T. C.; Okuno, T.; Parsonage, D.; Sakai, H.; Tsukihara, T.; Claiborne, A. Structural analysis of Streptococcus pyogenes NADH oxidase: Conformational dynamics involved in formation of the C(4a)-peroxyflavin intermediate. Biochemistry 2015, 54, 6815–6829.

    Article  CAS  Google Scholar 

  39. Song, H. Y.; Ma, C. L.; Wang, L.; Zhu, Z. G. Platinum nanoparticle-deposited multi-walled carbon nanotubes as a NADH oxidase mimic: Characterization and applications. Nanoscale 2020, 12, 19284–19292.

    Article  CAS  Google Scholar 

  40. Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Lanthanide-boosted singlet oxygen from diverse photosensitizers along with potent photocatalytic oxidation. ACS Nano 2019, 13, 14152–14161.

    Article  CAS  Google Scholar 

  41. Liu, Y. F.; Zhou, M.; Cao, W.; Wang, X. Y.; Wang, Q.; Li, S. R.; Wei, H. Light-responsive metal—organic framework as an oxidase mimic for cellular glutathione detection. Anal. Chem. 2019, 91, 8170–8175.

    Article  CAS  Google Scholar 

  42. Yu, B.; Wang, W.; Sun, W. B.; Jiang, C. H.; Lu, L. H. Defect engineering enables synergistic action of enzyme-mimicking active centers for high-efficiency tumor therapy. J. Am. Chem. Soc. 2021, 143, 8855–8865.

    Article  CAS  Google Scholar 

  43. Ishibashi, T.; Imai, Y. Effect of lipid depletion on the kinetics of microsomal NADH-cytochrome c reductase. Tohoku J. Exp. Med. 1976, 118, 365–371.

    Article  CAS  Google Scholar 

  44. Velayutham, M.; Hemann, C.; Zweier, J. L. Removal of H2O2 and generation of superoxide radical: Role of cytochrome c and NADH. Free Radic. Biol. Med. 2011, 51, 160–170.

    Article  CAS  Google Scholar 

  45. Murphy, M. P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13.

    Article  CAS  Google Scholar 

  46. Nosaka, Y.; Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 2017, 117, 11302–11336.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key R&D Program of China (No. 2019YFA0709202), MOST China (No. 2016YFA0203200), the International Cooperation Project of Jilin Scientific and Technological Development Program (No. 20190701059GH), and the National Natural Science Foundation of China (Nos. 21721003 and 31301177).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dan Li or Jin Wang.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Chen, J., Dong, Q. et al. Cadmium sulfide as bifunctional mimics of NADH oxidase and cytochrome c reductase takes effect at physiological pH. Nano Res. 15, 5256–5261 (2022). https://doi.org/10.1007/s12274-022-4150-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-022-4150-8

Keywords

Navigation