Skip to main content
Log in

Graphdiyne oxide substrate-enhanced peroxidase-mimicking performance of Ru nanoparticles with physiological pH preference

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Modulating electronic structure of metal nanoparticles via metal–support interaction has attracted intense interest in the field of catalytic science. However, the roles of supporting substrates in regulating catalytic properties of nanozymes remain elusive. In this study, we find that the use of graphdiyne oxide (GDYO) as the substrate for self-terminating growth of Ru nanoparticles (Ru@GDYO) endows the peroxidase-like activity of Ru nanoparticles with intrinsic physiological pH preference and natural horseradish peroxidase (HRP) comparable performance. Ru nanoparticles electrolessly deposited onto GDYO possess a partially oxidized electronic structure owing to limited charge transfer between Ru and GDYO, contributing to the intrinsic physiological pH preference of the peroxidase-mimicking nanozyme. More importantly, the substrate GDYO plays an influential factor in enhancing catalytic activity, that is, the activity of Ru@GDYO is much higher than that of Ru nanoparticles deposited on other carbon substrates including graphene oxides and graphdiyne. To demonstrate the application of Ru@GDYO nanozyme in neutral solutions, we employ Ru@GDYO with nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenases in physiological conditions to realize a sustainable cascade reaction by means of forming continuous NAD+/dihydronicotiamide adenine dinucleotide (NADH) recycling. Our finding represents a promising perspective on designing high-performance peroxidase-mimicking nanozymes with broader applicability, raising fundamental understanding of structure–activity relationship, and investigating new applications of nanozymes in biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

    Article  CAS  Google Scholar 

  2. Li, C.; Lu, X. L.; Han, Y. Y.; Tang, S. F.; Ding, Y.; Liu, R. R.; Bao, H. H.; Li, Y. L.; Luo, J.; Lu, T. B. Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Res. 2018, 11, 1714–1721.

    Article  CAS  Google Scholar 

  3. Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936.

    Article  CAS  PubMed  Google Scholar 

  4. Fang, Y.; Liu, Y. X.; Qi, L.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709.

    Article  CAS  PubMed  Google Scholar 

  5. Lu, C.; Yang, Y.; Wang, J.; Fu, R. P.; Zhao, X. X.; Zhao, L.; Ming, Y.; Hu, Y.; Lin, H. Z.; Tao, X. M. et al. High-performance graphdiyne-based electrochemical actuators. Nat. Commun. 2018, 9, 752.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, Z. C.; Li, Y.; Wang, J. J.; Qi, D. H.; Yao, B. W.; Yu, M. X.; Chen, X. D.; Lu, T. B. Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems. Nano Res. 2021, 14, 4591–4600.

    Article  ADS  CAS  Google Scholar 

  7. Sun, Y. N.; Nian, L.; Kan, Y. Y.; Ren, Y.; Chen, Z. H.; Zhu, L.; Zhang, M.; Yin, H.; Xu, H. J.; Li, J. F. et al. Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 2022, 6, 2835–2848.

    Article  CAS  Google Scholar 

  8. Li, X. Y.; Zhao, C. X.; Li, B. Q.; Huang, J. Q.; Zhang, Q. Advances on composite cathodes for lithium-sulfur batteries. J. Electrochem. 2022, 28, 2219013.

    Google Scholar 

  9. Pan, H. H.; Jiang, Z. Q.; Zuo, Z. C.; He, F.; Wang, F.; Li, L.; Chang, Q.; Guan, B.; Li, Y. L. Proton selective anode nanochannel for efficient methanol utilization. Nano Today 2021, 39, 101213.

    Article  CAS  Google Scholar 

  10. Li, W. Q.; Xu, C.; Xiong, T. Y.; Jiang, Y. N.; Ma, W. J.; Yu, P.; Mao, L. Q. Giant water uptake enabled ultrahigh proton conductivity of graphdiyne oxide. Angew. Chem., Int. Ed. 2023, 62, e202216530.

    Article  CAS  Google Scholar 

  11. Li, J.; Gao, X.; Jiang, X.; Li, X. B.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution. ACS Catal. 2017, 7, 5209–5213.

    Article  CAS  Google Scholar 

  12. Rong, W. F.; Zou, H. Y.; Zang, W. J.; Xi, S. B.; Wei, S. T.; Long, B. H.; Hu, J. H.; Ji, Y. F.; Duan, L. L. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 466–472.

    Article  CAS  Google Scholar 

  13. Gao, Y.; Xue, Y. R.; Qi, L.; Xing, C. Y.; Zheng, X. C.; He, F.; Li, Y. L. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun. 2022, 13, 5227.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parvin, N.; Jin, Q.; Wei, Y. Z.; Yu, R. B.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L. H.; Zhang, H.; Gao, M. Y. et al. Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection. Adv. Mater. 2017, 29, 1606755.

    Article  Google Scholar 

  15. Yan, H. L.; Guo, S. Y.; Wu, F.; Yu, P.; Liu, H. B.; Li, Y. L.; Mao, L. Q. Carbon atom hybridization matters: Ultrafast humidity response of graphdiyne oxides. Angew. Chem., Int. Ed. 2018, 57, 3922–3926.

    Article  CAS  Google Scholar 

  16. Guo, S. Y.; Yu, P.; Li, W. Q.; Yi, Y. P.; Wu, F.; Mao, L. Q. Electron hopping by interfacing semiconducting graphdiyne nanosheets and redox molecules for selective electrocatalysis. J. Am. Chem. Soc. 2020, 142, 2074–2082.

    Article  CAS  PubMed  Google Scholar 

  17. Xu, C.; Jiang, Y.; Yu, P.; Mao, L. Q. Brain electrochemistry. J. Electrochem. 2022, 28, 2108551.

    Google Scholar 

  18. Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

    Article  CAS  Google Scholar 

  20. Zou, H. Y.; Rong, W. F.; Wei, S. T.; Ji, Y. F.; Duan, L. L. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proc. Natl. Acad. Sci. USA 2020, 117, 29462–29468.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, H.; Zou, H. Y.; Wang, D.; Wang, C. C.; Li, F.; Dai, H.; Song, T.; Wang, M.; Ji, Y. F.; Duan, L. L. Second sphere effects promote formic acid dehydrogenation by a single-atom gold catalyst supported on amino-substituted graphdiyne. Angew. Chem., Int. Ed. 2023, 62, e202216739.

    Article  CAS  Google Scholar 

  22. Qi, H. T.; Yu, P.; Wang, Y. X.; Han, G. C.; Liu, H. B.; Yi, Y. P.; Li, Y. L.; Mao, L. Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260–5263.

    Article  CAS  PubMed  Google Scholar 

  23. Pan, C. Q.; Wang, C. Y.; Zhao, X. Y.; Xu, P. Y.; Mao, F. H.; Yang, J.; Zhu, Y. H.; Yu, R. H.; Xiao, S. Y.; Fang, Y. R. et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne. J. Am. Chem. Soc. 2022, 144, 4942–4951.

    Article  CAS  PubMed  Google Scholar 

  24. Yu, J.; Chen, W. M.; He, F.; Song, W. G.; Cao, C. Y. Electronic oxide-support strong interactions in the graphdiyne-supported cuprous oxide nanocluster catalyst. J. Am. Chem. Soc. 2023, 145, 1803–1810.

    Article  CAS  PubMed  Google Scholar 

  25. Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

    Article  ADS  CAS  Google Scholar 

  26. Li, J.; Han, X.; Wang, D. M.; Zhu, L.; Ha-Thi, M. H.; Pino, T.; Arbiol, J.; Wu, L. Z.; Ghazzal, M. N. A deprotection-free method for high-yield synthesis of graphdiyne powder with in situ formed CuO nanoparticles. Angew. Chem., Int. Ed. 2022, 61, e202210242.

    Article  CAS  Google Scholar 

  27. Hui, L.; Zhang, X. T.; Xue, Y. R.; Chen, X.; Fang, Y.; Xing, C. Y.; Liu, Y. X.; Zheng, X. C.; Du, Y. C.; Zhang, C. et al. Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst. J. Am. Chem. Soc. 2022, 144, 1921–1928.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang, W.; Zhang, Z.; Wang, Q.; Dou, J. X.; Zhao, Y. Y.; Ma, Y. C.; Liu, H. R.; Xu, H. X.; Wang, Y. C. Tumor reoxygenation and blood perfusion enhanced photodynamic therapy using ultrathin graphdiyne oxide nanosheets. Nano Lett. 2019, 19, 4060–4067.

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Min, H.; Qi, Y. Q.; Zhang, Y. L.; Han, X. X.; Cheng, K. M.; Liu, Y.; Liu, H. B.; Hu, J. S.; Nie, G. J.; Li, Y. Y. A graphdiyne oxide-based iron sponge with photothermally enhanced tumor-specific Fenton chemistry. Adv. Mater. 2020, 32, 2000038.

    Article  CAS  Google Scholar 

  30. Wang, F. H.; Xiong, Z. C.; Jin, W. Y.; Liu, H. Y.; Liu, H. B. Graphdiyne oxide for aqueous zinc ion full battery with ultra-long cycling stability. Nano Today 2022, 44, 101463.

    Article  CAS  Google Scholar 

  31. Wang, Q. W.; Liu, Y.; Wang, H.; Jiang, P. L.; Qian, W. C.; You, M.; Han, Y. L.; Zeng, X.; Li, J. X.; Lu, H. et al. Graphdiyne oxide nanosheets display selective anti-leukemia efficacy against DNMT3A-mutant AML cells. Nat. Commun. 2022, 13, 5657.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, J. M.; Shen, X. M.; Baimanov, D.; Wang, L. M.; Xiao, Y. T.; Liu, H. B.; Li, Y. L.; Gao, X. F.; Zhao, Y. L.; Chen, C. Y. Immobilized ferrous ion and glucose oxidase on graphdiyne and its application on one-step glucose detection. ACS Appl. Mater. Interfaces 2019, 11, 2647–2654.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu, Q. Q.; Yuan, Y. H.; Yan, B.; Zhou, J.; Zuo, J. L.; Bai, L. J. A new biomimetic nanozyme of hemin/graphdiyne oxide with superior peroxidase-like activity for colorimetric bioassays. Analyst 2021, 146, 7284–7293.

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Zhu, Z. L.; Luo, H. Y.; Wang, T.; Zhang, C. H.; Liang, M. M.; Yang, D. Q.; Liu, M. H.; Yu, W. W.; Bai, Q.; Wang, L. N. et al. Plasmon-enhanced peroxidase-like activity of nitrogen-doped graphdiyne oxide quantum dots/gold-silver nanocage heterostructures for antimicrobial applications. Chem. Mater. 2022, 34, 1356–1368.

    Article  CAS  Google Scholar 

  35. Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

    Article  CAS  PubMed  Google Scholar 

  36. Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

    Article  CAS  PubMed  Google Scholar 

  37. Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.

    Article  CAS  Google Scholar 

  38. Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

    Article  ADS  PubMed  Google Scholar 

  39. Bi, X. L.; Bai, Q.; Wang, L. N.; Du, F. L.; Liu, M. H.; Yu, W. W.; Li, S. H.; Li, J. Q.; Zhu, Z. L.; Sui, N. et al. Boron doped graphdiyne: A metal-free peroxidase mimetic nanozyme for antibacterial application. Nano Res. 2022, 15, 1446–1454.

    Article  ADS  CAS  Google Scholar 

  40. Peng, Y. W.; Huang, M. C.; Chen, L. J.; Gong, C. T.; Li, N. J.; Huang, Y.; Cheng, C. M. Ultrathin covalent organic framework nanosheet-based photoregulated metal-free oxidase-like nanozyme. Nano Res. 2022, 15, 8783–8790.

    Article  ADS  CAS  Google Scholar 

  41. Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Liu, Y. F.; Cheng, Y.; Zhang, H.; Zhou, M.; Yu, Y. J.; Lin, S. C.; Jiang, B.; Zhao, X. Z.; Miao, L. Y.; Wei, C. W. et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for antiinflammatory therapy. Sci. Adv. 2020, 6, eabb2695.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ma, M. M.; Liu, Z. Q.; Gao, N.; Pi, Z. F.; Du, X. B.; Ren, J. S.; Qu, X. G. Self-protecting biomimetic nanozyme for selective and synergistic clearance of peripheral amyloid-β in an Alzheimer’s disease model. J. Am. Chem. Soc. 2020, 142, 21702–21711.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang, L.; Liu, Z. W.; Deng, Q. Q.; Sang, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2021, 60, 3469–3474.

    Article  CAS  Google Scholar 

  45. Ren, G. Y.; Dong, F. D.; Zhao, Z. Q.; Li, K.; Lin, Y. Q. Structure defect tuning of metal-organic frameworks as a nanozyme regulatory strategy for selective online electrochemical analysis of uric acid. ACS Appl. Mater. Interfaces 2021, 13, 52987–52997.

    Article  CAS  PubMed  Google Scholar 

  46. Li, S. R.; Zhou, Z. J.; Tie, Z. X.; Wang, B.; Ye, M.; Du, L.; Cui, R.; Liu, W.; Wan, C. H.; Liu, Q. Y. et al. Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 2022, 13, 827.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  47. Ma, C. B.; Xu, Y. P.; Wu, L. X.; Wang, Q.; Zheng, J. J.; Ren, G. X.; Wang, X. Y.; Gao, X. F.; Zhou, M.; Wang, M. et al. Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem., Int. Ed. 2022, 61, e202116170.

    Article  ADS  CAS  Google Scholar 

  48. Ma, W. J.; Mao, J. J.; Yang, X. T.; Pan, C.; Chen, W. X.; Wang, M.; Yu, P.; Mao, L. Q.; Li, Y. D. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159–162.

    Article  CAS  Google Scholar 

  49. Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu, W. W.; Huang, L.; Wang, E. K.; Dong, S. J. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 2020, 11, 9741–9756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

    Article  CAS  Google Scholar 

  52. Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

    Article  CAS  Google Scholar 

  53. Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

    Article  CAS  Google Scholar 

  54. Chen, L. F.; Xing, S. H.; Lei, Y. L.; Chen, Q. S.; Zou, Z.; Quan, K.; Qing, Z. H.; Liu, J. W.; Yang, R. H. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew. Chem., Int. Ed. 2021, 60, 23534–23539.

    Article  CAS  Google Scholar 

  55. Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  56. Zhen, W. Y.; Liu, Y.; Wang, W.; Zhang, M. C.; Hu, W. X.; Jia, X. D.; Wang, C.; Jiang, X. Specific “unlocking” of a nanozyme-based butterfly effect to break the evolutionary fitness of chaotic tumors. Angew. Chem., Int. Ed. 2020, 59, 9491–9497.

    Article  CAS  Google Scholar 

  57. Han, L.; Li, C. C.; Zhang, T.; Lang, Q. L.; Liu, A. H. Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl. Mater. Interfaces 2015, 7, 14463–14470.

    Article  CAS  PubMed  Google Scholar 

  58. Niu, X. H.; Xu, X. C.; Li, X.; Pan, J. M.; Qiu, F. X.; Zhao, H. L.; Lan, M. B. Surface charge engineering of nanosized CuS via acidic amino acid modification enables high peroxidase-mimicking activity at neutral pH for one-pot detection of glucose. Chem. Commun. 2018, 54, 13443–13446.

    Article  CAS  Google Scholar 

  59. Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 2019, 19, 3214–3220.

    Article  ADS  CAS  PubMed  Google Scholar 

  60. Maity, S.; Bain, D.; Chakraborty, S.; Kolay, S.; Patra, A. Copper nanocluster (Cu23 NC)-based biomimetic system with peroxidase activity. ACS Sustainable Chem. Eng. 2020, 8, 18335–18344.

    Article  CAS  Google Scholar 

  61. Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

    Article  CAS  PubMed  Google Scholar 

  62. Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cheng, Q. Q.; Hu, C. G.; Wang, G. L.; Zou, Z. Q.; Yang, H.; Dai, L. M. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 5594–5601.

    Article  CAS  PubMed  Google Scholar 

  65. Ma, W. J.; Xue, Y. F.; Guo, S. Y.; Jiang, Y. N.; Wu, F.; Yu, P.; Mao, L. Q. Graphdiyne oxide: A new carbon nanozyme. Chem. Commun. 2020, 56, 5115–5118.

    Article  CAS  Google Scholar 

  66. Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

    Article  CAS  PubMed  Google Scholar 

  67. Keoingthong, P.; Hao, Q.; Li, S. K.; Zhang, L.; Xu, J. Q.; Wang, S.; Chen, L.; Tan, W. H.; Chen, Z. Graphene encapsuled Ru nanocrystal with highly-efficient peroxidase-like activity for glutathione detection at near-physiological pH. Chem. Commun. 2021, 57, 7669–7672.

    Article  CAS  Google Scholar 

  68. Nguyen, P. T.; Lee, J.; Cho, A.; Kim, M. S.; Choi, D.; Han, J. W.; Kim, M. I.; Lee, J. Rational development of Co-doped mesoporous ceria with high peroxidase-mimicking activity at neutral pH for paper-based colorimetric detection of multiple biomarkers. Adv. Funct. Mater. 2022, 32, 2112428.

    Article  CAS  Google Scholar 

  69. Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science 2015, 350, 1208–1213.

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Li, Y. Z.; Wang, Z. G.; Li, H. R.; Ding, B. Q. NAD+ cofactor regeneration by TMB-mediated horseradish-peroxidase-catalyzed reactions. ChemistrySelect 2018, 3, 10900–10904.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22134002 to L. M., 22125406, 22074149, and 21790053 to P. Y.), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB30000000), and the National Basic Research Program of China (No. 2018YFA0703501).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ping Yu or Lanqun Mao.

Electronic Supplementary Material

12274_2023_5931_MOESM1_ESM.pdf

Graphdiyne oxide substrate-enhanced peroxidase-mimicking performance of Ru nanoparticles with physiological pH preference

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Ma, W., Wang, H. et al. Graphdiyne oxide substrate-enhanced peroxidase-mimicking performance of Ru nanoparticles with physiological pH preference. Nano Res. 17, 1123–1131 (2024). https://doi.org/10.1007/s12274-023-5931-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-023-5931-4

Keywords

Navigation