Skip to main content
Log in

Iron-doping Accelerating NADH Oxidation over Carbon Nitride

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

As a state-of-the-art conjugated polymer photocatalyst, graphitic carbon nitride(abbreviated as g-C3N4) has shown great potential in photocatalytic cofactor(reduced form of nicotinamide adenine dinucleotide, NADH) regeneration. Herein, Fe-doped g-C3N4 was engineered for photocatalytic NADH oxidation. The π-π interaction between the NADH molecule and the conjugated heptazine building block facilitates the adsorption of NADH onto the framework, as revealed by density functional theory(DFT) calculations. Furthermore, iron doping promoted the oxidation kinetics of NADH under blue LED illumination. The conversion ratio of NADH to its oxidized form could be up to 85.7% in 20 min, comparing with 59.4% for metal-free counterpart. Enzyme assay employing formate dehydrogenase(FDH) further verified the selectivity of the products, with 67.5%±2.6% of enzymatically active 1,4-NADH being regenerated following the oxidation process. Scavenger experiments suggest the dominant role of photo-induced electrons in the oxidation of NADH. This work could shed light on developing a novel cofactor regeneration route through the synergistic effect between the metal doping and noncovalent interaction based on the conjugated polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu H., Tian C., Song X., Liu C., Yang D., Jiang Z., Green Chem., 2013, 15, 1773

    CAS  Google Scholar 

  2. Zhang S., Shi J., Chen Y., Huo Q., Li W., Wu Y., Sun Y., Zhang Y., Wang X., Jiang Z., ACS Catal., 2020, 10, 4967

    CAS  Google Scholar 

  3. Huang J., Antoniettia M., Liu J., J. Mater. Chem. A, 2014, 2, 7686

    CAS  Google Scholar 

  4. Lee Y. W., Boonmongkolras P., Son E. J., Kim J., Lee S. H., Kuk S. K., Ko J. W., Shin B., Park C. B., Nat. Commun., 2018, 9, 4208

    PubMed  PubMed Central  Google Scholar 

  5. Ji X., Wang J., Kang Y., Mei L., Su Z., Wang S., Ma G., Shi J., Zhang S., ACS Catal., 2018, 8, 10732

    CAS  Google Scholar 

  6. Wang X., Saba T., Yiu H. H. P., Howe R. F., Anderson J. A., Shi J., Chem, 2017, 2, 621

    CAS  Google Scholar 

  7. Yang D., Zhang Y., Zhang S., Cheng Y., Wu Y., Cai Z., Wang X., Shi J., Jiang Z., ACS Catal., 2019, 9, 11492

    CAS  Google Scholar 

  8. Samantara A. K., Chandra Sahu S., Bag B., Jena B., Jena B. K., J. Mater. Chem. A, 2014, 2

  9. Gopalan A., Ragupathy D., Kim H. T., Manesh K. M., Lee K. P., Spectrochim. Acta, Part A, 2009, 74, 678

    CAS  Google Scholar 

  10. Liese A., Filho M. V., Curr. Opin. Biotechnol., 1999, 10, 595

    CAS  PubMed  Google Scholar 

  11. Nishigaki J. I., Ishida T., Honma T., Haruta M., ACS Sustainable Chem. Eng., 2020, 8, 10413

    CAS  Google Scholar 

  12. Jaegfeldt H., J. Electroanal. Chem. Interfacial Electrochem., 1981, 128, 355

    Google Scholar 

  13. Ma B. C., Caire da Silva L., Jo S. M., Wurm F. R., Bannwarth M. B., Zhang K. A. I., Sundmacher K., Landfester K., ChemBioChem, 2019, 20, 2593

    CAS  PubMed  Google Scholar 

  14. Ferguson C. T. J., Huber N., Landfester K., Zhang K. A. I., Angew. Chem. Int. Ed., 2019, 58, 10567

    CAS  Google Scholar 

  15. Yu F., Wang L., Xing Q., Wang D., Jiang X., Li G., Zheng A., Ai F., Zou J., Chin. Chem. Lett., 2020, 31, 1648

    CAS  Google Scholar 

  16. Wang L., Zhu C., Yin L., Huang W., Acta Phys. -Chim. Sin., 2020, 36, 1907001

    Google Scholar 

  17. Zheng Y., Lin L., Wang B., Wang X., Angew. Chem. Int. Ed., 2015, 54, 12868

    CAS  Google Scholar 

  18. Huang P., Liu W., He Z., Xiao C., Yao T., Zou Y., Wang C., Qi Z., Tong W., Pan B., Wei S., Xie Y., Sci. China Chem, 2018, 61, 1187

    CAS  Google Scholar 

  19. Wang Y., Shen S., Acta Phys. -Chim. Sin., 2020, 36, 1905080

    Google Scholar 

  20. Li X., Wang B., Yin W., Di J., Xia J., Zhu W., Li H., Acta Phys.-Chim. Sin., 2020, 36, 1902001

    Google Scholar 

  21. Liu J., Antonietti M., Energy Environ. Sci., 2013, 6, 1486

    CAS  Google Scholar 

  22. Jones W., Burnett J. W. H., Shi J., Howe R. F., Wang X., Joule, 2020, 4, 2055.

    Google Scholar 

  23. Liu W., Hu W., Yang L., Liu J., Nano Energy, 2020, 73, 104750

    CAS  Google Scholar 

  24. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865

    CAS  PubMed  Google Scholar 

  25. Delley B., Phys. Rev. B, 2002, 66, 155125

    Google Scholar 

  26. Zhang Y., Zhao Y., Li R., Liu J., Sol. RRL, 2020, 2000339

    Google Scholar 

  27. Brown K. A., Wilker M. B., Boehm M., Hamby H., Dukovic G., King P. W., ACS Catal., 2016, 6, 2201

    CAS  Google Scholar 

  28. Roy S., Jain V., Kashyap R. K., Rao A., Pillai P. P., ACS Catal., 2020, 10, 5522

    CAS  Google Scholar 

  29. Liu J., Wang H., Antonietti M., Chem. Soc. Rev., 2016, 45, 2308

    CAS  PubMed  Google Scholar 

  30. Savateev A., Ghosh I., Konig B., Antonietti M., Angew. Chem. Int. Ed., 2018, 57, 15936

    CAS  Google Scholar 

  31. Liu J., Huang J., Zhou H., Antonietti M., ACS Appl. Mater. Interfaces, 2014, 6, 8434

    CAS  PubMed  Google Scholar 

  32. Yang D., Zhang Y., Zou H., Zhang S., Wu Y., Cai Z., Shi J., Jiang Z., ACS Sustain. Chem. Eng., 2018, 7, 285

    Google Scholar 

  33. Son E. J., Lee Y. W., Ko J. W., Park C. B., ACS Sustain. Chem. Eng., 2018, 7, 2545

    Google Scholar 

  34. An S., Zhang G., Wang T., Zhang W., Li K., Song C., Miller J. T., Miao S., Wang J., Guo X., ACS Nano, 2018, 12, 9441

    CAS  PubMed  Google Scholar 

  35. Chen Z., Vorobyeva E., Mitchell S., Fako E., López N., Collins S. M., Leary R. K., Midgley P. A., Hauert R., Pérez-Ramírez J., Natl. Sci. Rev., 2018, 5, 642

    CAS  Google Scholar 

  36. Chen Z., Mitchell S., Vorobyeva E., Leary R., Hauert R., Furnival T., Ramasse Q., Thomas J. M., Midgley P., Dontsova D., Antonietti M., Pogodin S., López N., Pérez-Ramírez J., Adv. Funct. Mater., 2017, 27, 1605785

    Google Scholar 

  37. Liang Q., Li Z., Yu X., Huang Z., Kang F., Yang Q., Adv. Mater., 2015, 27, 4634

    CAS  PubMed  Google Scholar 

  38. Yang S., Gong Y., Zhang J., Zhan L., Ma L., Fang Z., Vajtai R., Wang X., Ajayan P. M., Adv. Mater., 2013, 25, 2452

    CAS  PubMed  Google Scholar 

  39. Khan S. R., Morgan A. G., Michail K., Srivastava N., Whittal R. M., Aljuhani N., Siraki A. G., Biochem. Pharmacol., 2016, 106, 46

    CAS  PubMed  Google Scholar 

  40. Chen Y., Li P., Zhou J., Buru C. T., Dordevic L., Li P., Zhang X., Cetin M. M., Stoddart J. F., Stupp S. I., Wasielewski M. R., Farha O. K., J. Am. Chem. Soc., 2020, 142, 1768

    CAS  PubMed  Google Scholar 

  41. Mohanty B., Naik K. K., Sahoo S., Jena B., Chakraborty B., Rout C. S., Jena B. K., ChemistrySelect, 2018, 3, 9008

    CAS  Google Scholar 

  42. Emmanuel M. A., Greenberg N. R., Oblinsky D. G., Hyster T. K., Nature, 2016, 540, 414

    CAS  PubMed  Google Scholar 

  43. Lee S. H., Choi D. S., Kuk S. K., Park C. B., Angew. Chem. Int. Ed., 2018, 57, 7958

    CAS  Google Scholar 

  44. Weckbecker A., Groger H., Hummel W., Adv. Biochem.Eug./Biotechnd., 2010, 120, 195

    CAS  Google Scholar 

  45. Byun J., Landfester K., Zhang K. A. I., Chem. Mater., 2019, 31, 3381

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Liu.

Additional information

Supported by the Distinguished Young Scholar Fund of Natural Science Foundation of Shandong Province, China (No. ZR2019JQ05), the Key Basic Research Project of the Natural Science Foundation of Shandong Province, China (No. ZR2019ZD47) and the Fund of the Education Department of Shandong Province, China(No.2019KJC006).

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huang, X., Li, J. et al. Iron-doping Accelerating NADH Oxidation over Carbon Nitride. Chem. Res. Chin. Univ. 36, 1076–1082 (2020). https://doi.org/10.1007/s40242-020-0293-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-020-0293-x

Keywords

Navigation