Skip to main content
Log in

Recent progress of flexible electronics by 2D transition metal dichalcogenides

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Flexible electronics is the research field with interdisciplinary crossing and integration. It shows the promising advantages of novel device configurations, low-cost and low-power consumption due to their flexible and soft characteristics. Atomic layered two-dimensional (2D) materials especially transition metal dichalcogenides, have triggered great interest in ultra-thin 2D flexible electronic devices and optoelectronic devices because of their direct and tunable bandgaps, excellent electrical, optical, mechanical, and thermal properties. This review aims to provide the recent progress in 2D TMDs and their applications in flexible electronics. The fundamental electrical properties and mechanical properties of materials, flexible device configurations, and their performance in transistors, sensors, and photodetectors are thoroughly discussed. At last, some perspectives are given on the open challenges and prospects for 2D TMDs flexible electronic devices and new device opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogers, J. A.; Someya, T.; Huang, Y. G. Materials and mechanics for stretchable electronics. Science 2010, 327, 1603–1607.

    Article  CAS  Google Scholar 

  2. Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.

    Article  CAS  Google Scholar 

  3. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 22, 17033.

    Article  Google Scholar 

  4. Kim, S. J.; Choi, K.; Lee, B.; Kim, Y.; Hong, B. H. Materials for flexible, stretchable electronics: Graphene and 2D materials. Annu. Rev. Mater. Res. 2015, 45, 63–84.

    Article  CAS  Google Scholar 

  5. Park, S.; Zhu, W. N.; Akinwande, D. Progress in flexible 2D nanoelectronics. ECS Trans. 2017, 77, 15–22.

    Article  CAS  Google Scholar 

  6. Semple, J.; Georgiadou, D. G.; Wyatt-Moon, G.; Gelinck, G.; Anthopoulos, T. D. Flexible diodes for radio frequency (RF) electronics: A materials perspective. Semicond. Sci. Technol. 2017, 32, 123002.

    Article  Google Scholar 

  7. Chen, D.; Pei, Q. B. Electronic muscles and skins: A review of soft sensors and actuators. Chem. Rev. 2017, 117, 11239–11268.

    Article  CAS  Google Scholar 

  8. Liang, J. J.; Tong, K.; Sun, H. B.; Pei, Q. B. Intrinsically stretchable field-effect transistors. MRS Bull. 2017, 42, 131–137.

    Article  CAS  Google Scholar 

  9. Pu, J.; Li, L. J.; Takenobu, T. Flexible and stretchable thin-film transistors based on molybdenum disulphide. Phys. Chem. Chem. Phys. 2014, 16, 14996–15006.

    Article  CAS  Google Scholar 

  10. Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

    Article  CAS  Google Scholar 

  11. Gao, L. Flexible device applications of 2D semiconductors. Small 2017, 13, 1603994.

    Article  Google Scholar 

  12. Liu, X. H.; Ma, T. T.; Pinna, N.; Zhang, J. Two-dimensional nanostructured materials for gas sensing. Adv. Funct. Mater. 2017, 27, 1702168.

    Article  Google Scholar 

  13. Zhou, Y.; Zhang, M. X.; Guo, Z. N.; Miao, L. L.; Han, S. T.; Wang, Z. Y.; Zhang, X. W.; Zhang, H.; Peng, Z. C. Recent advances in black phosphorus-based photonics, electronics, sensors and energy devices. Mater. Horiz. 2017, 4, 997–1019.

    Article  CAS  Google Scholar 

  14. Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

    Article  CAS  Google Scholar 

  15. Pei, Y. F.; Chen, R.; Xu, H.; He, D.; Jiang, C. Z.; Li, W. Q.; Xiao, X. H. Recent progress about 2D metal dichalcogenides: Synthesis and application in photodetectors. Nano Res. 2021, 14, 1819–1839.

    Article  CAS  Google Scholar 

  16. Zeng, S. F.; Tang, Z. W.; Liu, C. S.; Zhou, P. Electronics based on two-dimensional materials: Status and outlook. Nano Res. 2021, 14, 1752–1767.

    Article  Google Scholar 

  17. Li, N.; Wang, Q. Q.; Shen, C.; Wei, Z.; Yu, H.; Zhao, J.; Lu, X. B.; Wang, G. L.; He, C. L.; Xie, L. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 2020, 3, 711–717.

    Article  CAS  Google Scholar 

  18. Ye, M. X.; Zhang, D. Y.; Yap, Y. K. Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics 2017, 6, 43.

    Article  Google Scholar 

  19. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263–275.

    Article  Google Scholar 

  20. Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

    Article  CAS  Google Scholar 

  21. Mak, K. F.; Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 2016, 10, 216–226.

    Article  CAS  Google Scholar 

  22. Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

    Article  CAS  Google Scholar 

  23. Wei, Z.; Wang, Q. Q.; Li, L.; Yang, R.; Zhang, G. Y. Monolayer MoS2 epitaxy. Nano Res. 2021, 14, 1598–1608.

    Article  CAS  Google Scholar 

  24. Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 2015, 9, 9451–9469.

    Article  CAS  Google Scholar 

  25. Tan, C. L.; Cao, X. H.; Wu, X. J.; He, Q. Y.; Yang, J.; Zhang, X.; Chen, J. Z.; Zhao, W.; Han, S. K.; Nam, G. H. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 2017, 117, 6225–6331.

    Article  CAS  Google Scholar 

  26. Choi, W.; Choudhary, N.; Han, G. H.; Park, J.; Akinwande, D.; Lee, Y. H. Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 2017, 20, 116–130.

    Article  CAS  Google Scholar 

  27. Cui, C. J.; Xue, F.; Hu, W. J.; Li, L. J. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl. 2018, 2, 18.

    Article  Google Scholar 

  28. Kolobov, A. V.; Tominaga, J. Two-Dimensional Transition-Metal Dichalcogenides; Springer International Publishing: Switzerland, 2016.

    Book  Google Scholar 

  29. Kooi, B. J.; Noheda, B. Ferroelectric chalcogenides—Materials at the edge. Science 2016, 353, 221–222.

    Article  CAS  Google Scholar 

  30. Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

    Article  CAS  Google Scholar 

  31. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically ThinMoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Article  Google Scholar 

  32. Kormányos, A.; Burkard, G.; Gmitra, M.; Fabian, J.; Zólyomi, V.; Drummond, N. D.; Fal’ko, V. Corrigendum: k.p theory for two-dimensional transition metal dichalcogenide semiconductors (2015 2D Mater. 2 022001). 2D Mater. 2015, 2, 049501.

    Article  Google Scholar 

  33. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 85, 033305.

    Article  Google Scholar 

  34. Kuc, A.; Zibouche, N.; Heine, T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 2011, 83, 245213.

    Article  Google Scholar 

  35. Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F. Jr.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

    Article  CAS  Google Scholar 

  36. Li, Y. H.; Yu, C. B.; Gan, Y. Y.; Jiang, P.; Yu, J. X.; Ou, Y.; Zou, D. F.; Huang, C.; Wang, J. H.; Jia, T. T. et al. Mapping the elastic properties of two-dimensional MoS2 via bimodal atomic force microscopy and finite element simulation. npj Comput. Mater. 2018, 4, 49.

    Article  Google Scholar 

  37. Chen, Y. F.; Xi, J. Y.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z. G.; Huang, Y. S.; Xie, L. M. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 2013, 7, 4610–4616.

    Article  CAS  Google Scholar 

  38. Iguiñiz, N.; Frisenda, R.; Bratschitsch, R.; Castellanos-Gomez, A. Revisiting the buckling metrology method to determine the young’s modulus of 2D materials. Adv. Mater. 2019, 31, 1807150.

    Article  Google Scholar 

  39. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B 2012, 55, 033305.

    Article  Google Scholar 

  40. Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

    Article  CAS  Google Scholar 

  41. Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Anomalous Raman spectra and thickness dependent electronic properties of WSe2. Phys. Rev. B 2013, 57, 165409.

    Article  Google Scholar 

  42. Lin, Y. F.; Xu, Y.; Wang, S. T.; Li, S. L.; Yamamoto, M.; Aparecido-Ferreira, A.; Li, W. W.; Sun, H. B.; Nakaharai, S.; Jian, W. B. et al. Ambipolar MoTe2 transistors and their applications in logic circuits. Adv. Mater. 2014, 26, 3263–3269.

    Article  CAS  Google Scholar 

  43. Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482–486.

    Article  CAS  Google Scholar 

  44. Wu, X. J.; Xu, Z. P.; Zeng, X. C. Single-walled MoTe2 nanotubes. Nano Lett. 2007, 7, 2987–2992.

    Article  CAS  Google Scholar 

  45. Lee, C. H.; Silva, E. C.; Calderin, L.; Nguyen, M. A. T.; Hollander, M. J.; Bersch, B.; Mallouk, T. E.; Robinson, J. A. Tungsten ditelluride: A layered semimetal. Sci. Rep. 2015, 5, 10013.

    Article  CAS  Google Scholar 

  46. Dawson, W. G.; Bullett, D. W. Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C 1987, 20, 6159–6174.

    Article  CAS  Google Scholar 

  47. Kumar, A.; Ahluwalia, P. K. Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: New direct band gap semiconductors. Eur. Phys. J. B 2012, 55, 186.

    Article  Google Scholar 

  48. Lee, J.; Ye, F.; Wang, Z. H.; Yang, R.; Hu, J.; Mao, Z. Q.; Wei, J.; Feng, P. X. L. Single- and few-layer WTe2 and their suspended nanostructures: Raman signatures and nanomechanical resonances. Nanoscale 2016, 8, 7854–7860.

    Article  CAS  Google Scholar 

  49. Xu, K.; Wang, Z. X.; Wang, F.; Huang, Y.; Wang, F. M.; Yin, L.; Jiang, C.; He, J. Ultrasensitive phototransistors based on few-layered HfS2. Adv. Mater. 2015, 27, 7881–7887.

    Article  CAS  Google Scholar 

  50. Kanazawa, T.; Amemiya, T.; Ishikawa, A.; Upadhyaya, V.; Tsuruta, K.; Tanaka, T.; Miyamoto, Y. Few-layer HfS2 transistors. Sci. Rep. 2016, 6, 22277.

    Article  CAS  Google Scholar 

  51. Kaur, H.; Yadav, S.; Srivastava, A. K.; Singh, N.; Rath, S.; Schneider, J. J.; Sinha, O. P.; Srivastava, R. High-yield synthesis and liquid-exfoliation of two-dimensional belt-like hafnium disulphide. Nano Res. 2018, 11, 343–353.

    Article  CAS  Google Scholar 

  52. Kang, J.; Sahin, H.; Peeters, F. M. Mechanical properties of monolayer sulphides: A comparative study between MoS2, HfS2 and TiS3. Phys. Chem. Chem. Phys. 2015, 17, 27742–27749.

    Article  CAS  Google Scholar 

  53. Mleczko, M. J.; Zhang, C. F.; Lee, H. R.; Kuo, H. H.; Magyari-Köpe, B.; Moore, R. G.; Shen, Z. X.; Fisher, I. R.; Nishi, Y.; Pop, E. HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-K oxides. Sci. Adv. 2017, 3, e1700481.

    Article  Google Scholar 

  54. Zhao, Q. Y.; Guo, Y. H.; Si, K. Y.; Ren, Z. Y.; Bai, J. T.; Xu, X. L. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi B 2017, 254, 1700033.

    Article  Google Scholar 

  55. Li, Y.; Kang, J.; Li, J. B. Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: First-principles calculations. RSC Adv. 2014, 4, 7396–7401.

    Article  CAS  Google Scholar 

  56. Si, Y.; Wu, H. Y.; Yang, H. M.; Huang, W. Q.; Yang, K.; Peng, P.; Huang, G. F. Dramatically enhanced visible light response of monolayer ZrS2 via non-covalent modification by double-ring tubular B20 cluster. Nanoscale Res. Lett. 2016, 11, 495.

    Article  Google Scholar 

  57. Guo, Y. Z.; Robertson, J. Band engineering in transition metal dichalcogenides: Stacked versus lateral heterostructures. Appl. Phys. Lett. 2016, 108, 233104.

    Article  Google Scholar 

  58. Lu, H. C.; Guo, Y. Z.; Robertson, J. Band edge states, intrinsic defects, and dopants in monolayer HfS2 and SnS2. Appl. Phys. Lett. 2018, 112, 062105.

    Article  Google Scholar 

  59. He, X. C.; Shen, H. L. Ab initio calculations of band structure and thermophysical properties for SnS2 and SnSe2. Phys. B 2012, 407, 1146–1152.

    Article  CAS  Google Scholar 

  60. Ling, C. Y.; Huang, Y. C.; Liu, H.; Wang, S. F.; Fang, Z.; Ning, L. X. Mechanical properties, electronic structures, and potential applications in lithium ion batteries: A first-principles study toward SnSe2 nanotubes. J. Phys. Chem. C 2014, 118, 28291–28298.

    Article  CAS  Google Scholar 

  61. Aslan, O. B.; Chenet, D A.; van der Zande, A. M.; Hone, J. C.; Heinz, T. F. Linearly polarized excitons in single- and few-layer ReS2 crystals. ACS Photon. 2016, 3, 96–101.

    Article  CAS  Google Scholar 

  62. Tongay, S.; Sahin, H.; Ko, C.; Luce, A.; Fan, W.; Liu, K.; Zhou, J.; Huang, Y. S.; Ho, C. H.; Yan, J. Y. et al. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 2014, 5, 3252.

    Article  Google Scholar 

  63. Wang, H. F.; Liu, E. F.; Wang, Y.; Wan, B.; Ho, C. H.; Miao, F.; Wan, X. G. Cleavage tendency of anisotropic two-dimensional materials: ReX2 (X = S, Se) and WTe2. Phys. Rev. B 2017, 96, 165418.

    Article  Google Scholar 

  64. Wolverson, D.; Crampin, S.; Kazemi, A. S.; Ilie, A.; Bending, S. J. Raman spectra of monolayer, few-layer, and bulk ReSe2: An anisotropic layered semiconductor. ACS Nano 2014, 8, 11154–11164.

    Article  CAS  Google Scholar 

  65. Jariwala, B.; Voiry, D.; Jindal, A.; Chalke, B. A.; Bapat, R.; Thamizhavel, A.; Chhowalla, M.; Deshmukh, M.; Bhattacharya, A. Synthesis and characterization of ReS2 and ReSe2 layered chalcogenide single crystals. Chem. Mater. 2016, 28, 3352–3359.

    Article  CAS  Google Scholar 

  66. Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys. Rev. B 2011, 84, 153402.

    Article  Google Scholar 

  67. Xiao, D.; Liu, G. B.; Feng, W. X.; Xu, X. D.; Yao, W. Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 2012, 108, 196802.

    Article  Google Scholar 

  68. Habe, T.; Koshino, M. Spin-dependent refraction at the atomic step of transition-metal dichalcogenides. Phys. Rev. B 2015, 91, 201407.

    Article  Google Scholar 

  69. Szczęśniak, D.; Ennaoui, A.; Ahzi, S. Complex band structures of transition metal dichalcogenide monolayers with spin-orbit coupling effects. J. Phys.:Condens. Matter 2016, 28, 355301.

    Google Scholar 

  70. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

    Article  CAS  Google Scholar 

  71. Wang, H.; Sandoz-Rosado, E. J.; Tsang, S. H.; Lin, J. J.; Zhu, M. M.; Mallick, G.; Liu, Z.; Teo, E. H. T. Elastic properties of 2D ultrathin tungsten nitride crystals grown by chemical vapor deposition. Adv. Funct. Mater. 2019, 29, 1902663.

    Article  Google Scholar 

  72. Castellanos-Gomez, A.; Poot, M.; Steele, G. A.; van der Zant, H. S.; Agraït, N.; Rubio-Bollinger, G. Elastic properties of freely suspended MoS2 nanosheets. Adv. Mater. 2012, 24, 772–775.

    Article  CAS  Google Scholar 

  73. Liu, K.; Yan, Q. M.; Chen, M.; Fan, W.; Sun, Y. H.; Suh, J.; Fu, D. Y.; Lee, S.; Zhou, J.; Tongay, S. et al. Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 2014, 14, 5097–5103.

    Article  CAS  Google Scholar 

  74. Song, L.; Ci, L.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209–3215.

    Article  CAS  Google Scholar 

  75. Guo, L. L.; Yan, H. M.; Moore, Q.; Buettner, M.; Song, J. H.; Li, L.; Araujo, P. T.; Wang, H. T. Elastic properties of van der Waals epitaxy grown bismuth telluride 2D nanosheets. Nanoscale 2015, 7, 11915–11921.

    Article  CAS  Google Scholar 

  76. Falin, A.; Cai, Q. R.; Santos, E. J. G.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S. M.; Watanabe, K.; Taniguchi, T. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815.

    Article  CAS  Google Scholar 

  77. Rasool, H. I.; Ophus, C.; Klug, W. S.; Zettl, A.; Gimzewski, J. K. Measurement of the intrinsic strength of crystalline and polycrystalline graphene. Nat. Commun. 2013, 4, 2811.

    Article  Google Scholar 

  78. Cao, G. X.; Gao, H. J. Mechanical properties characterization of two-dimensional materials via nanoindentation experiments. Prog. Mater. Sci. 2019, 103, 558–595.

    Article  CAS  Google Scholar 

  79. Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

    Article  CAS  Google Scholar 

  80. Lee, G. H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerberg, A. G.; Lee, C.; Crawford, B.; Oliver, W. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 2013, 340, 1073–1076.

    Article  CAS  Google Scholar 

  81. Castellanos-Gomez, A.; Singh, V.; van der Zant, H. S. J.; Steele, G. A. Mechanics of freely-suspended ultrathin layered materials. Annal. Phys. 2015, 527, 27–44.

    Article  CAS  Google Scholar 

  82. Jiang, H. J.; Zheng, L.; Liu, Z.; Wang, X. W. Two-dimensional materials: From mechanical properties to flexible mechanical sensors. InfoMat 2020, 2, 1077–1094.

    Article  CAS  Google Scholar 

  83. Akinwande, D.; Brennan, C. J.; Bunch, J. S.; Egberts, P.; Felts, J. R.; Gao, H. J.; Huang, R.; Kim, J. S.; Li, T.; Li, Y. et al. A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Extreme Mech. Lett. 2017, 13, 42–77.

    Article  Google Scholar 

  84. Feng, J.; Qian, X. F.; Huang, C. W.; Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 2012, 6, 866–872.

    Article  CAS  Google Scholar 

  85. Qi, J. J.; Lan, Y. W.; Stieg, A. Z.; Chen, J. H.; Zhong, Y. L.; Li, L. J.; Chen, C. D.; Zhang, Y.; Wang, K. L. Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics. Nat. Commun. 2015, 6, 7430.

    Article  CAS  Google Scholar 

  86. Roldán, R.; Castellanos-Gomez, A.; Cappelluti, E.; Guinea, F. Strain engineering in semiconducting two-dimensional crystals. J. Phys.:Condens. Matter 2015, 27, 313201.

    Google Scholar 

  87. Castellanos-Gomez, A.; Roldán, R.; Cappelluti, E.; Buscema, M.; Guinea, F.; van der Zant, H. S. J.; Steele, G. A. Local strain engineering in atomically thin MoS2. Nano Lett. 2013, 13, 5361–5366.

    Article  CAS  Google Scholar 

  88. Ghorbani-Asl, M.; Borini, S.; Kuc, A.; Heine, T. Strain-dependent modulation of conductivity in single-layer transition-metal dichalcogenides. Phys. Rev. B 2013, 87, 235434.

    Article  Google Scholar 

  89. Liu, Z.; Amani, M.; Najmaei, S.; Xu, Q.; Zou, X. L.; Zhou, W.; Yu, T.; Qiu, C. Y.; Birdwell, A. G.; Crowne, F. J. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 2014, 5, 5246.

    Article  Google Scholar 

  90. Cheng, R.; Jiang, S.; Chen, Y.; Liu, Y.; Weiss, N.; Cheng, H. C.; Wu, H.; Huang, Y.; Duan, X. F. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 2014, 5, 5143.

    Article  CAS  Google Scholar 

  91. Blees, M. K.; Barnard, A. W.; Rose, P. A.; Roberts, S. P.; McGill, K. L.; Huang, P. Y.; Ruyack, A. R.; Kevek, J. W.; Kobrin, B.; Muller, D. A. et al. Graphene kirigami. Nature 2015, 524, 204–207.

    Article  CAS  Google Scholar 

  92. He, K. L.; Poole, C.; Mak, K. F.; Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 2013, 13, 2931–2936.

    Article  CAS  Google Scholar 

  93. Hui, Y. Y.; Liu, X. F.; Jie, W. J.; Chan, N. Y.; Hao, J. H.; Hsu, Y. T.; Li, L. J.; Guo, W. L.; Lau, S. P. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 2013, 7, 7126–7131.

    Article  CAS  Google Scholar 

  94. Scalise, E.; Houssa, M.; Pourtois, G.; Afanas’ev, V.; Stesmans, A. Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Res. 2012, 5, 43–48.

    Article  CAS  Google Scholar 

  95. Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 5, 2562–2572.

    Article  Google Scholar 

  96. Zhang, Q. H.; Chang, Z. Y.; Xu, G. Z.; Wang, Z. Y.; Zhang, Y. P.; Xu, Z. Q.; Chen, S. J.; Bao, Q. L.; Liu, J. Z.; Mai, Y. W. et al. Strain relaxation of monolayer WS2 on plastic substrate. Adv. Funct. Mater. 2016, 26, 8707–8714.

    Article  CAS  Google Scholar 

  97. Wu, W. Z.; Wang, L.; Li, Y. L.; Zhang, F.; Lin, L.; Niu, S. M.; Chenet, D.; Zhang, X.; Hao, Y. F.; Heinz, T. F. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474.

    Article  CAS  Google Scholar 

  98. Zhu, H. Y.; Wang, Y.; Xiao, J.; Liu, M.; Xiong, S. M.; Wong, Z. J.; Ye, Z. L.; Ye, Y.; Yin, X. B.; Zhang, X. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 2014, 10, 151–155.

    Article  Google Scholar 

  99. Wang, X. W.; He, X. X.; Zhu, H. F.; Sun, L. F.; Fu, W.; Wang, X. L.; Hoong, L. C.; Wang, H.; Zeng, Q. S.; Zhao, W. et al. Subatomic deformation driven by vertical piezoelectricity from CdS ultrathin films. Sci. Adv. 2016, 2, e1600209.

    Article  Google Scholar 

  100. Kim, S. K.; Bhatia, R.; Kim, T. H.; Seol, D.; Kim, J. H.; Kim, H.; Seung, W.; Kim, Y.; Lee, Y. H.; Kim, S. W. Directional dependent piezoelectric effect in CVD grown monolayer MoS2 for flexible piezoelectric nanogenerators. Nano Energy 2016, 22, 483–489.

    Article  CAS  Google Scholar 

  101. Mohanta, M. K.; Sarkar, A. D. Tweaking the physics of interfaces between monolayers of buckled cadmium sulfide for a superhigh piezoelectricity, excitonic solar cell efficiency, and thermoelectricity. ACS Appl. Mater. Interfaces 2020, 12, 18123–18137.

    Article  CAS  Google Scholar 

  102. Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitridegraphene heterostructures. ACS Nano 2013, 7, 7931–7936.

    Article  CAS  Google Scholar 

  103. Agnihotri, P.; Dhakras, P.; Lee, J. U. Bipolar junction transistors in two-dimensional WSe2 with large current and photocurrent gains. Nano Lett. 2016, 16, 4355–4360.

    Article  CAS  Google Scholar 

  104. Lin, C. Y.; Zhu, X. D.; Tsai, S. H.; Tsai, S. P.; Lei, S. D.; Shi, Y. M.; Li, L. J.; Huang, S. J.; Wu, W. F.; Yeh, W. K. et al. Atomic-monolayer two-dimensional lateral quasi-heterojunction bipolar transistors with resonant tunneling phenomenon. ACS Nano 2017, 11, 11015–11023.

    Article  CAS  Google Scholar 

  105. Bai, C. X.; Zou, Y. L.; Lou, W. K.; Chang, K. Pure valley- and spin-entangled states in a MoS2-based bipolar transistor. Phys. Rev. B 2014, 90, 195445.

    Article  Google Scholar 

  106. Torres, C. M. Jr.; Lan, Y. W.; Zeng, C. F.; Chen, J. H.; Kou, X. F.; Navabi, A.; Tang, J. S.; Montazeri, M.; Adleman, J. R.; Lerner, M. B. et al. High-current gain two-dimensional MoS2-base hot-electron transistors. Nano Lett. 2015, 15, 7905–7912.

    Article  CAS  Google Scholar 

  107. Moise, T. S.; Kao, Y. C.; Seabaugh, A. C. Room-temperature operation of a tunneling hot-electron transfer amplifier. Appl. Phys. Lett. 1994, 64, 1138.

    Article  CAS  Google Scholar 

  108. Suk, J. W.; Kitt, A.; Magnuson, C. W.; Hao, Y. F.; Ahmed, S.; An, J.; Swan, A. K.; Goldberg, B. B.; Ruoff, R. S. Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS Nano 2011, 5, 6916–6924.

    Article  CAS  Google Scholar 

  109. Salvatore, G. A.; Münzenrieder, N.; Barraud, C.; Petti, L.; Zysset, C.; Büthe, L.; Ensslin, K.; Tröster, G. Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano 2013, 7, 8809–8815.

    Article  CAS  Google Scholar 

  110. Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135–6141.

    Article  CAS  Google Scholar 

  111. Li, F.; Feng, Y. X.; Li, Z. W.; Ma, C.; Qu, J. Y.; Wu, X. P.; Li, D.; Zhang, X. H.; Yang, T. F.; He, Y. Q. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.

    Article  Google Scholar 

  112. Wang, F. L.; Stepanov, P.; Gray, M.; Lau, C. N.; Itkis, M. E.; Haddon, R. C. Ionic liquid gating of suspended MoS2 field effect transistor devices. Nano Lett. 2015, 15, 5284–5288.

    Article  CAS  Google Scholar 

  113. Pu, J.; Yomogida, Y.; Liu, K. K.; Li, L. J.; Iwasa, Y.; Takenobu, T. Highly flexible MoS2 thin-film transistors with ion gel dielectrics. Nano Lett. 2012, 12, 4013–4017.

    Article  CAS  Google Scholar 

  114. Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

    Article  CAS  Google Scholar 

  115. Pu, J.; Zhang, Y. J.; Wada, Y.; Wang, J. T. W.; Li, L. J.; Iwasa, Y.; Takenobu, T. Fabrication of stretchable MoS2 thin-film transistors using elastic ion-gel gate dielectrics. Appl. Phys. Lett. 2013, 103, 023505.

    Article  Google Scholar 

  116. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    Article  CAS  Google Scholar 

  117. Chang, H. Y.; Yang, S. X.; Lee, J.; Tao, L.; Hwang, W. S.; Jena, D.; Lu, N. S.; Akinwande, D. High-performance, highly bendable MoS2 transistors with high-K dielectrics for flexible low-power systems. ACS Nano 2013, 7, 5446–5452.

    Article  CAS  Google Scholar 

  118. Zhao, J.; Chen, W.; Meng, J. L.; Yu, H.; Liao, M. Z.; Zhu, J. Q.; Yang, R.; Shi, D. X.; Zhang, G. Y. Integrated flexible and high-quality thin film transistors based on monolayer MoS2. Adv. Electron. Mater. 2016, 2, 1500379.

    Article  Google Scholar 

  119. Rhyee, J. S.; Kwon, J.; Dak, P.; Kim, J. H.; Kim, S. M.; Park, J.; Hong, Y. K.; Song, W. G.; Omkaram, I.; Alam, M. A. et al. High-mobility transistors based on large-area and highly crystalline CVD-grown MoSe2 films on insulating substrates. Adv. Mater. 2016, 25, 2316–2321.

    Article  Google Scholar 

  120. Kim, T. Y.; Ha, J.; Cho, K.; Pak, J.; Seo, J.; Park, J.; Kim, J. K.; Chung, S.; Hong, Y.; Lee, T. Transparent large-area MoS2 phototransistors with inkjet-printed components on flexible platforms. ACS Nano 2017, 11, 10273–10280.

    Article  CAS  Google Scholar 

  121. Kwon, H.; Choi, W.; Lee, D.; Lee, Y.; Kwon, J.; Yoo, B.; Grigoropoulos, C. P.; Kim, S. Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors. Nano Res. 2014, 7, 1137–1145.

    Article  CAS  Google Scholar 

  122. Song, W. G.; Kwon, H. J.; Park, J.; Yeo, J.; Kim, M.; Park, S.; Yun, S.; Kyung, K. U.; Grigoropoulos, C. P.; Kim, S. et al. Highperformance flexible multilayer MoS2 transistors on solution-based polyimide substrates. Adv. Funct. Mater. 2016, 26, 2426–2434.

    Article  CAS  Google Scholar 

  123. Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 5, 100–103.

    Article  Google Scholar 

  124. Funahashi, K.; Pu, J.; Li, M. Y.; Li, L. J.; Iwasa, Y.; Takenobu, T. Large-area WSe2 electric double layer transistors on a plastic substrate. Jpn. J. Appl. Phys. 2015, 54, 06FF06.

    Article  Google Scholar 

  125. Qi, H. Y.; Mi, W. T.; Zhao, H. M.; Xue, T.; Yang, Y.; Ren, T. L. A large-scale spray casting deposition method of WS2 films for highsensitive, flexible and transparent sensor. Mater. Lett. 2017, 201, 161–164.

    Article  CAS  Google Scholar 

  126. Gong, Y. Y.; Carozo, V.; Li, H. Y.; Terrones, M.; Jackson, T. N. High flex cycle testing of CVD monolayer WS2 TFTs on thin flexible polyimide. 2D Mater. 2016, 3, 021008.

    Article  Google Scholar 

  127. Aji, A. S.; Solís-Fernández, P.; Ji, H. G.; Fukuda, K.; Ago, H. High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors. Adv. Funct. Mater. 2017, 27, 1703448.

    Article  Google Scholar 

  128. Park, J.; Choudhary, N.; Smith, J.; Lee, G.; Kim, M.; Choi, W. Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Appl. Phys. Lett. 2015, 106, 012104.

    Article  Google Scholar 

  129. Yoon, J.; Park, W.; Bae, G. Y.; Kim, Y.; Jang, H. S.; Hyun, Y.; Lim, S. K.; Kahng, Y. H.; Hong, W. K.; Lee, B. H. et al. Flexible electronics: Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. Small 2013, 9, 3185–3185.

    Article  CAS  Google Scholar 

  130. Shinde, S. M.; Das, T.; Hoang, A. T.; Sharma, B. K.; Chen, X.; Ahn, J. H. Surface-functionalization-mediated direct transfer of molybdenum disulfide for large-area flexible devices. Adv. Funct. Mater. 2018, 28, 1706231.

    Article  Google Scholar 

  131. Chang, H. Y.; Yogeesh, M. N.; Ghosh, R.; Rai, A.; Sanne, A.; Yang, S. X.; Lu, N. S.; Banerjee, S. K.; Akinwande, D. Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime. Adv. Mater. 2016, 28, 1818–1823.

    Article  CAS  Google Scholar 

  132. Gao, Y.; Liu, Z. B.; Sun, D. M.; Huang, L.; Ma, L. P.; Yin, L. C.; Ma, T.; Zhang, Z. Y.; Ma, X. L.; Peng, L. M. et al. Large-area synthesis of high-quality and uniform monolayer WS2 on reusable Au foils. Nat. Commun. 2015, 6, 8569.

    Article  CAS  Google Scholar 

  133. Chamlagain, B.; Li, Q.; Ghimire, N. J.; Chuang, H. J.; Perera, M. M.; Tu, H. G.; Xu, Y.; Pan, M. H.; Xaio, D.; Yan, J. Q. et al. Mobility improvement and temperature dependence in MoSe2 field-effect transistors on parylene-C substrate. ACS Nano 2014, 8, 5079–5088.

    Article  CAS  Google Scholar 

  134. Kim, Y.; Kang, B.; Choi, Y.; Cho, J. H.; Lee, C. Direct synthesis of large-area continuous ReS2 films on a flexible glass at low temperature. 2D Mater. 2017, 4, 025057.

    Article  Google Scholar 

  135. Zhang, M.; Li, H.; Xu, J.; Zhu, H.; Chen, L.; Sun, Q. Q.; Zhang, D. W. High-performance ReS2 FET for optoelectronics and flexible electronics applications. IEEE Electron Device Lett. 2019, 40, 123–126.

    Article  Google Scholar 

  136. Yoo, G.; Choi, S. L.; Park, S. J.; Lee, K. T.; Lee, S.; Oh, M. S.; Heo, J.; Park, H. J. Flexible and wavelength-selective MoS2 phototransistors with monolithically integrated transmission color filters. Sci. Rep. 2017, 7, 40945.

    Article  CAS  Google Scholar 

  137. Zhang, K.; Peng, M. Z.; Wu, W.; Guo, J. M.; Gao, G. Y.; Liu, Y. D.; Kou, J. Z.; Wen, R. M.; Lei, Y.; Yu, A. F. et al. A flexible p-CuO/n-MoS2 heterojunction photodetector with enhanced photoresponse by the piezo-phototronic effect. Mater. Horiz. 2017, 4, 274–280.

    Article  CAS  Google Scholar 

  138. Asad, M.; Salimian, S.; Sheikhi, M. H.; Pourfath, M. Flexible phototransistors based on graphene nanoribbon decorated with MoS2 nanoparticles. Sens. Actuators A:Phys. 2015, 232, 285–291.

    Article  CAS  Google Scholar 

  139. Wang, Q. Q.; Li, N.; Tang, J.; Zhu, J. Q.; Zhang, Q. H.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y. C. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 2020, 20, 7193–7199.

    Article  CAS  Google Scholar 

  140. Chuang, H. J.; Tan, X. B.; Ghimire, N. J.; Perera, M. M.; Chamlagain, B.; Cheng, M. M. C.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. High mobility WSe2 p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts. Nano Lett. 2014, 14, 3594–3601.

    Article  CAS  Google Scholar 

  141. Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R. T.; Feng, S. M.; Long, A. D.; Hayashi, T.; Kim, Y. A.; Endo, M. et al. Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 2013, 7, 5235–5242.

    Article  Google Scholar 

  142. Chung, J. W.; Ko, Y. H.; Hong, Y. K.; Song, W.; Jung, C.; Tang, H.; Lee, J.; Lee, M. H.; Lee, B. L.; Park, J. I. et al. Flexible nano-hybrid inverter based on inkjet-printed organic and 2D multilayer MoS2 thin film transistor. Org. Electron. 2014, 15, 3038–3042.

    Article  CAS  Google Scholar 

  143. Das, T.; Chen, X.; Jang, H.; Oh, I. K.; Kim, H.; Ahn, J. H. Highly flexible hybrid CMOS inverter based on Si nanomembrane and molybdenum disulfide. Small 2016, 12, 5720–5727.

    Article  CAS  Google Scholar 

  144. Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524–528.

    Article  CAS  Google Scholar 

  145. Choi, C.; Lee, Y.; Cho, K. W.; Koo, J. H.; Kim, D. H. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 2019, 52, 73–81.

    Article  CAS  Google Scholar 

  146. Guo, Y.; Zhong, M. J.; Fang, Z. W.; Wan, P. B.; Yu, G. H. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing. Nano Lett. 2019, 19, 1143–1150.

    Article  Google Scholar 

  147. Ko, K. Y.; Lee, S.; Park, K.; Kim, Y.; Woo, W. J.; Kim, D.; Song, J. G.; Park, J.; Kim, J. H.; Lee, Z. et al. High-performance gas sensor using a large-area WS2xSe2−2x alloy for low-power operation wearable applications. ACS Appl. Mater. Interfaces 2018, 10, 34163–34171.

    Article  CAS  Google Scholar 

  148. Park, Y. J.; Sharma, B. K.; Shinde, S. M.; Kim, M. S.; Jang, B.; Kim, J. H.; Ahn, J. H. All MoS2-based large area, skin-attachable active-matrix tactile sensor. ACS Nano 2019, 13, 3023–3030.

    Article  CAS  Google Scholar 

  149. Sarkar, D.; Liu, W.; Xie, X. J.; Anselmo, A. C.; Mitragotri, S.; Banerjee, K. MoS2 field-effect transistor for next-generation labelfree biosensors. ACS Nano 2014, 8, 3992–4003.

    Article  CAS  Google Scholar 

  150. Xiang, P.; Chen, X. F.; Xiao, B. B.; Wang, Z. M. Highly flexible hydrogen boride monolayers as potassium-ion battery anodes for wearable electronics. ACS Appl. Mater. Interfaces 2019, 11, 8115–8125.

    Article  CAS  Google Scholar 

  151. Yang, H. G.; Xue, T. Y.; Li, F. Y.; Liu, W. T.; Song, Y. L. Graphene: Diversified flexible 2D material for wearable vital signs monitoring. Adv. Mater. Technol. 2019, 4, 1800574.

    Google Scholar 

  152. Yang, Y. N.; Shi, L. J.; Cao, Z. R.; Wang, R. R.; Sun, J. Strain sensors with a high sensitivity and a wide sensing range based on a Ti3C2Tx (MXene) nanoparticle-nanosheet hybrid network. Adv. Funct. Mater. 2019, 29, 1807882.

    Article  Google Scholar 

  153. Kim, T. H.; Kim, Y. H.; Park, S. Y.; Kim, S. Y.; Jang, H. W. Two-dimensional transition metal disulfides for chemoresistive gas sensing: Perspective and challenges. Chemosensors 2017, 5, 15.

    Article  Google Scholar 

  154. Cho, B.; Hahm, M. G.; Choi, M.; Yoon, J.; Kim, A. R.; Lee, Y. J.; Park, S. G.; Kwon, J. D.; Kim, C. S.; Song, M. et al. Charge-transfer-based gas sensing using atomic-layer MoS2. Sci. Rep. 2015, 5, 8052.

    Article  CAS  Google Scholar 

  155. He, Q. Y.; Zeng, Z. Y.; Yin, Z. Y.; Li, H.; Wu, S. X.; Huang, X.; Zhang, H. Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications. Small 2012, 8, 2994–2999.

    Article  CAS  Google Scholar 

  156. Guo, H. Y.; Lan, C. Y.; Zhou, Z. F.; Sun, P. H.; Wei, D. P.; Li, C. Transparent, flexible, and stretchable WS2 based humidity sensors for electronic skin. Nanoscale 2017, 9, 6246–6253.

    Article  CAS  Google Scholar 

  157. Kuru, C.; Choi, D.; Kargar, A.; Liu, C. H.; Yavuz, S.; Choi, C.; Jin, S.; Bandaru, P. R. High-performance flexible hydrogen sensor made of WS2 nanosheet-Pd nanoparticle composite film. Nanotechnology 2016, 27, 195501.

    Article  Google Scholar 

  158. Feng, W.; Zheng, W.; Gao, F.; Chen, X. S.; Liu, G. B.; Hasan, T.; Cao, W. W.; Hu, P. A. Sensitive electronic-skin strain sensor array based on the patterned two-dimensional α-In2Se3. Chem. Mater. 2016, 28, 4278–4283.

    Article  CAS  Google Scholar 

  159. Lee, W. S.; Choi, J. Hybrid integration of carbon nanotubes and transition metal dichalcogenides on cellulose paper for highly sensitive and extremely deformable chemical sensors. ACS Appl. Mater. Interfaces 2019, 11, 19363–19371.

    Article  CAS  Google Scholar 

  160. Guo, S. Q.; Yang, D.; Li, B. C.; Dong, Q.; Li, Z. Y.; Zaghloul, M. E. An artificial intelligent flexible gas sensor based on ultra-large area MoSe2 nanosheet. In 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), Dallas, TX, USA, 2019, pp. 884–887.

  161. Cho, B.; Kim, A. R.; Kim, D. J.; Chung, H. S.; Choi, S. Y.; Kwon, J. D.; Park, S. W.; Kim, Y.; Lee, B. H.; Lee, K. H. et al. Two-dimensional atomic-layered alloy junctions for high-performance wearable chemical sensor. ACS Appl. Mater. Interfaces 2016, 8, 19635–19642.

    Article  CAS  Google Scholar 

  162. Medina, H.; Li, J. G.; Su, T. Y.; Lan, Y. W.; Lee, S. H.; Chen, C. W.; Chen, Y. Z.; Manikandan, A.; Tsai, S. H.; Navabi, A. et al. Wafer-scale growth of WSe2 monolayers toward phase-engineered hybrid WOx/WSe2 films with sub-ppb NOx gas sensing by a low-temperature plasma-assisted selenization process. Chem. Mater. 2017, 29, 1587–1598.

    Article  CAS  Google Scholar 

  163. Hwang, I.; Kim, J. S.; Cho, S. H.; Jeong, B.; Park, C. Flexible vertical p-n diode photodetectors with thin N-type MoSe2 films solution-processed on water surfaces. ACS Appl. Mater. Interfaces 2018, 10, 34543–34552.

    Article  CAS  Google Scholar 

  164. Xue, Y. Z.; Zhang, Y. P.; Liu, Y.; Liu, H. T.; Song, J. C.; Sophia, J.; Liu, J. Y.; Xu, Z. Q.; Xu, Q. Y.; Wang, Z. Y. et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 2016, 10, 573–580.

    Article  CAS  Google Scholar 

  165. Tamalampudi, S. R.; Lu, Y. Y.; Kumar, U. R.; Sankar, R.; Liao, C. D.; Moorthy, B. K.; Cheng, C. H.; Chou, F. C.; Chen, Y. T. High Performance and bendable few-layered InSe photodetectors with broad spectral response. Nano Lett. 2014, 14, 2800–2806.

    Article  CAS  Google Scholar 

  166. Pataniya, P.; Zankat, C. K.; Tannarana, M.; Sumesh, C. K.; Narayan, S.; Solanki, G. K.; Patel, K. D.; Pathak, V. M.; Jha, P. K. Paper-based flexible photodetector functionalized by WSe2 nanodots. ACS Appl. Nano Mater. 2019, 2, 2758–2766.

    Article  CAS  Google Scholar 

  167. Zheng, Z. Q.; Zhang, T. M.; Yao, J.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501.

    Article  Google Scholar 

  168. Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268.

    Article  Google Scholar 

  169. Wang, D. G.; Lu, Y.; Meng, J. H.; Zhang, X. W.; Yin, Z. G.; Gao, M. L.; Wang, Y.; Cheng, L. K.; You, J. B.; Zhang, J. C. Remote heteroepitaxy of atomic layered hafnium disulfide on sapphire through hexagonal boron nitride. Nanoscale 2019, 11, 9310–9318.

    Article  CAS  Google Scholar 

  170. Lei, Y.; Luo, J.; Yang, X. G.; Cai, T.; Qi, R. J.; Gu, L. Y.; Zheng, Z. Thermal evaporation of large-area SnS2 thin films with a UV-to-NIR photoelectric response for flexible photodetector applications. ACS Appl. Mater. Interfaces 2020, 12, 24940–24950.

    Article  CAS  Google Scholar 

  171. Su, T. Y.; Medina, H.; Chen, Y. Z.; Wang, S. W.; Lee, S. S.; Shih, Y. C.; Chen, C. W.; Kuo, H. C.; Chuang, F. C.; Chueh, Y. L. Phase-engineered PtSe2-layered films by a plasma-assisted selenization process toward all PtSe2-based field effect transistor to highly sensitive, flexible, and wide-spectrum photoresponse photodetectors. Small 2018, 14, 1800032.

    Article  Google Scholar 

  172. Yang, C.; Xie, J. Y.; Lou, C. M.; Zheng, W.; Liu, X. H.; Zhang, J. Flexible NO2 sensors based on WSe2 nanosheets with bifunctional selectivity and superior sensitivity under UV activation. Sens. Actuators B:Chem. 2021, 333, 129571.

    Article  CAS  Google Scholar 

  173. Choi, J. M.; Jang, H. Y.; Kim, A. R.; Kwon, J. D.; Cho, B.; Park, M. H.; Kim, Y. Ultra-flexible and rollable 2D-MoS2/Si heterojunction-based near-infrared photodetector via direct synthesis. Nanoscale 2021, 13, 672–680.

    Article  CAS  Google Scholar 

  174. Li, A. L.; Chen, Q. X.; Wang, P. P.; Gan, Y.; Qi, T. L.; Wang, P.; Tang, F. D.; Wu, J. Z.; Chen, R.; Zhang, L. Y. et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/graphene/SnS2 p-g-n junctions. Adv. Mater. 2019, 31, 1805656.

    Article  Google Scholar 

  175. Roy, T.; Tosun, M.; Cao, X.; Fang, H.; Lien, D. H.; Zhao, P. D.; Chen, Y. Z.; Chueh, Y. L.; Guo, J.; Javey, A. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 2015, 9, 2071–2079.

    Article  CAS  Google Scholar 

  176. Zhang, K. N.; Zhang, T. N.; Cheng, G. H.; Li, T. X.; Wang, S. X.; Wei, W.; Zhou, X. H.; Yu, W. W.; Sun, Y.; Wang, P. et al. Interlayer transition and infrared photodetection in atomically thin type-II MoTe2/MoS2 van der Waals heterostructures. ACS Nano 2016, 10, 3852–3858.

    Article  CAS  Google Scholar 

  177. Rao, G. F.; Wang, X. P.; Wang, Y.; Wangyang, P. H.; Yan, C. Y.; Chu, J. W.; Xue, L. X.; Gong, C. H.; Huang, J. W.; Xiong, J. et al. Two-dimensional heterostructure promoted infrared photodetection devices. InfoMat 2019, 1, 272–288.

    Article  CAS  Google Scholar 

  178. Zheng, B. Y.; Li, D.; Zhu, C. G.; Lan, J. Y.; Sun, X. X.; Zheng, W. H.; Liu, H. W.; Zhang, X. H.; Zhu, X. L.; Feng, Y. X. et al. Dualchannel type tunable field-effect transistors based on vertical bilayer WS2(1−x)Se2x/SnS2 heterostructures. InfoMat 2020, 2, 752–760.

    Article  CAS  Google Scholar 

  179. Cheng, R.; Li, D. H.; Zhou, H. L.; Wang, C.; Yin, A. X.; Jiang, S.; Liu, Y.; Chen, Y.; Huang, Y.; Duan, X. F. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 2014, 14, 5590–5597.

    Article  CAS  Google Scholar 

  180. Furchi, M. M.; Pospischil, A.; Libisch, F.; Burgdörfer, J.; Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 2014, 14, 4785–4791.

    Article  CAS  Google Scholar 

  181. Zhang, J. C.; Huang, Y. C.; Tan, Z. J.; Li, T. R.; Zhang, Y. C.; Jia, K. C.; Lin, L.; Sun, L. Z.; Chen, X. W.; Li, Z. Z. et al. Low-temperature heteroepitaxy of 2D PbI2/graphene for large-area flexible photodetectors. Adv. Mater. 2018, 30, 1803194.

    Article  Google Scholar 

  182. Zhang, H. B.; Man, B. Y.; Zhang, Q. Topological crystalline insulator SnTe/Si Vertical heterostructure photodetectors for highperformance near-infrared detection. ACS Appl. Mater. Interfaces 2017, 9, 14067–14077.

    Article  CAS  Google Scholar 

  183. Qiao, H.; Yuan, J.; Xu, Z. Q.; Chen, C. Y.; Lin, S. H.; Wang, Y. S.; Song, J. C.; Liu, Y.; Khan, Q.; Hoh, H. Y. et al. Broadband photodetectors based on graphene-Bi2Te3 heterostructure. ACS Nano 2015, 9, 1886–1894.

    Article  CAS  Google Scholar 

  184. Sun, H. H.; Jiang, T.; Zang, Y. Y.; Zheng, X.; Gong, Y.; Yan, Y.; Xu, Z. J.; Liu, Y.; Fang, L.; Cheng, X. A. et al. Broadband ultrafast photovoltaic detectors based on large-scale topological insulator Sb2Te3/STO heterostructures. Nanoscale 2017, 9, 9325–9332.

    Article  CAS  Google Scholar 

  185. Yang, J.; Yu, W. Z.; Pan, Z. H.; Yu, Q.; Yin, Q.; Guo, L.; Zhao, Y. F.; Sun, T.; Bao, Q. L.; Zhang, K. Ultra-broadband flexible photodetector based on topological crystalline insulator SnTe with high responsivity. Small 2018, 14, 1802598.

    Article  Google Scholar 

  186. Yao, J. D.; Yang, G. W. Flexible and high-performance all-2D photodetector for wearable devices. Small 2018, 14, 1704524.

    Article  Google Scholar 

  187. Park, M.; Park, Y. J.; Chen, X.; Park, Y. K.; Kim, M. S.; Ahn, J. H. MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 2016, 25, 2556–2562.

    Article  Google Scholar 

  188. An, C. H.; Xu, Z. H.; Shen, W. F.; Zhang, R. J.; Sun, Z. Y.; Tang, S. J.; Xiao, Y. F.; Zhang, D. H.; Sun, D.; Hu, X. D. et al. The opposite anisotropic piezoresistive effect of ReS2. ACS Nano 2019, 13, 3310–3319.

    Article  CAS  Google Scholar 

  189. Ahn, C.; Lee, J.; Kim, H. U.; Bark, H.; Jeon, M.; Ryu, G. H.; Lee, Z.; Yeom, G. Y.; Kim, K.; Jung, J. et al. Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv. Mater. 2015, 27, 5223–5229.

    Article  CAS  Google Scholar 

  190. Kim, S. J.; Mondal, S.; Min, B. K.; Choi, C. G. Highly sensitive and flexible strain-pressure sensors with cracked paddy-shaped MoS2/graphene foam/ecoflex hybrid nanostructures. ACS Appl. Mater. Interfaces 2018, 10, 36377–36384.

    Article  CAS  Google Scholar 

  191. Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Sharma, S.; Xuan, X.; Park, J. Y. MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 2019, 11, 22531–22542.

    Article  CAS  Google Scholar 

  192. Veeralingam, S.; Sahatiya, P.; Kadu, A.; Mattela, V.; Badhulika, S. Direct, one-step growth of NiSe2 on cellulose paper: A low-cost, flexible, and wearable with smartphone enabled multifunctional sensing platform for customized noninvasive personal healthcare monitoring. ACS Appl. Electron. Mater. 2019, 1, 558–568.

    Article  CAS  Google Scholar 

  193. Shan, J. J.; Li, J. H.; Chu, X. Y.; Xu, M. Z.; Jin, F. J.; Wang, X. J.; Ma, L.; Fang, X.; Wei, Z. P.; Wang, X. H. High sensitivity glucose detection at extremely low concentrations using a MoS2-based field-effect transistor. RSC Adv. 2018, 5, 7942–7948.

    Article  Google Scholar 

  194. Feng, J.; Peng, L. L.; Wu, C. Z.; Sun, X.; Hu, S. L.; Lin, C. W.; Dai, J.; Yang, J. L.; Xie, Y. Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 2012, 24, 1969–1974.

    Article  CAS  Google Scholar 

  195. Chen, X. F.; Yu, K.; Shen, Y. H.; Feng, Y.; Zhu, Z. Q. Synergistic effect of MoS2 nanosheets and VS2 for the hydrogen evolution reaction with enhanced humidity-sensing performance. ACS Appl. Mater. Interfaces 2017, 9, 42139–42148.

    Article  CAS  Google Scholar 

  196. Feng, Y.; Gong, S. J.; Du, E. W.; Yu, K.; Ren, J.; Wang, Z. G.; Zhu, Z. Q. TaS2 nanosheet-based ultrafast response and flexible humidity sensor for multifunctional applications. J. Mater. Chem. C 2019, 7, 9284–9292.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (No. 2020YFB2008501), the National Natural Science Foundation of China (No. 11904289), the Key Research and Development Program of Shaanxi Province (Nos. 2020ZDLGY04-08, and 2020GXLH-Z-027), the Natural Science Foundation of Ningbo (No. 202003N4003), the Fundamental Research Funds for the Central Universities (Nos. 3102019PY004, 31020190QD010, and 3102019JC004), and startup funds from Northwestern Polytechnical University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuewen Wang, Wei Huang or Zheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Wang, X., Jiang, H. et al. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 15, 2413–2432 (2022). https://doi.org/10.1007/s12274-021-3779-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3779-z

Keywords

Navigation