Skip to main content
Log in

Monolayer MoS2 epitaxy

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

As an emerging two-dimensional (2D) semiconductor material, monolayer MoS2 has recently attracted considerable attention. Various promising applications of this material have been proposed for electronics, optoelectronics, sensing, catalysis, energy storage, and so on. To realize these practical applications, high-quality and large-area MoS2 with controllable properties is required. Among the many different synthesis techniques, epitaxy provides a promising route for producing MoS2 monolayers. Here, we review the epitaxial growth of monolayer MoS2 on various substrates, with a particular focus on large-scale films with large domain sizes and high domain alignments. Finally, we offer perspectives and challenges for future research and applications of this technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertolazzi, S.; Brivio, J.; Kis, A. Stretching and breaking of ultrathin MoS2. ACS Nano 2011, 5, 9703–9709.

    CAS  Google Scholar 

  2. Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147–150.

    CAS  Google Scholar 

  3. Kang, K.; Xie, S. E.; Huang, L. J.; Han, Y. M.; Huang, P. Y.; Mak, K. F.; Kim, C. J.; Muller, D.; Park, J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 2015, 520, 656–660.

    CAS  Google Scholar 

  4. Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025–5030.

    CAS  Google Scholar 

  5. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

    Google Scholar 

  6. Zhao, J.; Chen, W.; Meng, J. L.; Yu, H.; Liao, M. Z.; Zhu, J. Q.; Yang, R.; Shi, D. X.; Zhang, G Y. Integrated flexible and high-quality thin film transistors based on monolayer MoS2. Adv. Electron. Mater. 2016, 2, 1500379.

    Google Scholar 

  7. Liu, J. X.; Chen, X. H.; Wang, Q. Q.; Xiao, M. M.; Zhong, D. L.; Sun, W.; Zhang, G. Y.; Zhang, Z. Y. Ultrasensitive monolayer MoS2 field-effect transistor based DNA sensors for screening of down syndrome. Nano Lett. 2019, 19, 1437–1444.

    CAS  Google Scholar 

  8. Zhao, J.; Li, N.; Yu, H.; Wei, Z.; Liao, M. Z.; Chen, P.; Wang, S. P.; Shi, D. X.; Sun, Q. J.; Zhang, G. Y. Highly sensitive MoS2 humidity sensors array for noncontact sensation. Adv. Mater. 2017, 29, 1702076.

    Google Scholar 

  9. Zhao, J.; Wei, Z.; Zhang, Q.; Yu, H.; Wang, S. P.; Yang, X. X.; Gao, G Y.; Qin, S. S.; Zhang, G. Y.; Sun, Q. J. et al. Static and dynamic piezopotential modulation in piezo-electret gated MoS2 field-effect transistor. ACS Nano 2019, 13, 582–590.

    CAS  Google Scholar 

  10. Shi, J. P.; Ma, D. L.; Han, G. F.; Zhang, Y.; Ji, Q. Q.; Gao, T.; Sun, J. Y.; Song, X. J.; Li, C.; Zhang, Y. S. et al. Controllable growth and transfer of monolayer MoS2 on Au foils and its potential application in hydrogen evolution reaction. ACS Nano 2014, 8, 10196–10204.

    CAS  Google Scholar 

  11. Zhu, J. Q.; Wang, Z. C.; Dai, H. J.; Wang, Q. Q.; Yang, R.; Yu, H.; Liao, M. Z.; Zhang, J.; Chen, W.; Wei, Z. et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat. Commun. 2019, 10, 1348.

    Google Scholar 

  12. Li, H.; Tsai, C.; Koh, A. L.; Cai, L. L.; Contryman, A. W.; Fragapane, A. H.; Zhao, J. H.; Han, H. S.; Manoharan, H. C.; Abild-Pedersen, F. et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 2016, 15, 48–53.

    CAS  Google Scholar 

  13. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    CAS  Google Scholar 

  14. O’Neill, A.; Khan, U.; Coleman, J. N. Preparation of high concentration dispersions of exfoliated MoS2 with increased flake size. Chem. Mater. 2012, 24, 2414–2421.

    Google Scholar 

  15. Yu, H.; Liao, M. Z.; Zhao, W. J.; Liu, G D.; Zhou, X. J.; Wei, Z.; Xu, X. Z.; Liu, K. H.; Hu, Z. H.; Deng, K. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001–12007.

    CAS  Google Scholar 

  16. Choudhary, N.; Park, J.; Hwang, J. Y.; Choi, W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl. Mater. Interfaces 2014, 6, 21215–21222.

    CAS  Google Scholar 

  17. Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

    Google Scholar 

  18. Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

    CAS  Google Scholar 

  19. Zhang, J.; Yu, H.; Chen, W.; Tian, X. Z.; Liu, D. H.; Cheng, M.; Xie, G. B.; Yang, W.; Yang, R.; Bai, X. D. et al. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 2014, 8, 6024–6030.

    CAS  Google Scholar 

  20. Zhan, Y. J.; Liu, Z.; Najmaei, S.; Ajayan, P. M.; Lou, J. Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 2012, 8, 966–971.

    CAS  Google Scholar 

  21. Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.

    CAS  Google Scholar 

  22. Tao, J. G.; Chai, J. W.; Lu, X.; Wong, L. M.; Wong, T. I.; Pan, J. S.; Xiong, Q. H.; Chi, D. Z.; Wang, S. J. Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 2015, 7, 2497–2503.

    CAS  Google Scholar 

  23. Tan, L. K.; Liu, B.; Teng, J. H.; Guo, S. F.; Low, H. Y.; Loh, K. P. Atomic layer deposition of a MoS2 film. Nanoscale 2014, 6, 10584–10588.

    CAS  Google Scholar 

  24. Liu, K. K.; Zhang, W. J.; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H. et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett. 2012, 12, 1538–1544.

    CAS  Google Scholar 

  25. Wu, S. F.; Huang, C. M.; Aivazian, G.; Ross, J. S.; Cobden, D. H.; Xu, X. D. Vapor-solid growth of high optical quality MoS2 monolayers with near-unity valley polarization. ACS Nano 2013, 7, 2768–2772.

    CAS  Google Scholar 

  26. Yu, Y. F.; Li, C.; Liu, Y.; Su, L. Q.; Zhang, Y.; Cao, L. Y. Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 2013, 3, 1866.

    Google Scholar 

  27. Baek, S. H.; Choi, Y.; Choi, W. Large-area growth of uniform single-layer MoS2 thin films by chemical vapor deposition. Nanoscale Res. Lett. 2015, 10, 388.

    Google Scholar 

  28. Liu, L. N.; Qiu, H. L.; Wang, J. Y.; Xu, G. C.; Jiao, L. Y. Atomic MoS2 monolayers synthesized from a metal-organic complex by chemical vapor deposition. Nanoscale 2016, 8, 4486–4490.

    CAS  Google Scholar 

  29. Ling, X.; Lee, Y. H.; Lin, Y. X.; Fang, W. J.; Yu, L. L.; Dresselhaus, M. S.; Kong, J. Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett. 2014, 14, 464–472.

    CAS  Google Scholar 

  30. Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L..F; Zheng, J. Y. et al. Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

    CAS  Google Scholar 

  31. Han, G. H.; Kybert, N. J.; Naylor, C. H.; Lee, B. S.; Ping, J. L.; Park, J. H.; Kang, J.; Lee, S. Y.; Lee, Y. H.; Agarwal, R. et al. Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations. Nat. Commun. 2015, 6, 6128.

    CAS  Google Scholar 

  32. Gong, Y. J.; Lin, Z.; Ye, G. L.; Shi, G.; Feng, S. M.; Lei, Y.; Elias, A. L.; Perea-Lopez, N.; Vajtai, R.; Terrones, H. et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano 2015, 9, 11658–11666.

    CAS  Google Scholar 

  33. Li, S. S.; Lin, Y. C.; Zhao, W.; Wu, J.; Wang, Z.; Hu, Z. H.; Shen, Y. D.; Tang, D. M.; Wang, J. Y.; Zhang, Q. et al. Vapour-liquid-solid growth of monolayer MoS2 nanoribbons. Nat. Mater. 2018, 17, 535–542.

    CAS  Google Scholar 

  34. Kim, H.; Ovchinnikov, D.; Deiana, D.; Unuchek, D.; Kis, A. Suppressing nucleation in metal-organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 2017, 17, 5056–5063.

    CAS  Google Scholar 

  35. Shi, Y. P.; Yang, P. F.; Jiang, S. L.; Zhang, Z. P.; Huan, Y. H.; Xie, C. Y.; Hong, M.; Shi, J. P.; Zhang, Y. F. Na-assisted fast growth of large single-crystal MoS2 on sapphire. Nanotechnology 2019, 30, 034002.

    CAS  Google Scholar 

  36. Zhang, K. H.; Bersch, B. M.; Zhang, F.; Briggs, N. C.; Subramanian, S.; Xu, K.; Chubarov, M.; Wang, K.; Lerach, J. O.; Redwing, J. M. et al. Considerations for utilizing sodium chloride in epitaxial molybdenum disulfide. ACS Appl. Mater. Interfaces 2018, 10, 40831–40837.

    CAS  Google Scholar 

  37. Wang, P.; Lei, J. Y.; Qu, J. F.; Cao, S. Y.; Jiang, H.; He, M. C.; Shi, H. Y.; Sun, X. D.; Gao, B.; Liu, W. J. Mechanism of alkali metal compound-promoted growth of monolayer MoS2: Eutectic intermediates. Chem. Mater. 2019, 31, 873–880.

    Google Scholar 

  38. Walsh, L. A.; Hinkle, C. L. van der Waals epitaxy: 2D materials and topological insulators. Appl. Mater. Today 2017, 9, 504–515.

    Google Scholar 

  39. Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z. Z.; Li, X. M.; Yu, H.; Zhu, X. T.; Yang, R.; Shi, D. X. et al. Oxygen-assisted chemical vapor deposition growth of Large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632–15635.

    CAS  Google Scholar 

  40. Yu, H.; Yang, Z. Z.; Du, L. J.; Zhang, J.; Shi, J. N.; Chen, W.; Chen, P.; Liao, M. Z.; Zhao, J.; Meng, J. L. et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small 2017, 13, 1603005.

    Google Scholar 

  41. Fu, L.; Sun, Y. Y.; Wu, N.; Mendes, R. G.; Chen, L. F.; Xu, Z.; Zhang, T.; Rummeli, M. H.; Rellinghaus, B.; Pohl, D. et al. Direct growth of MoS2/h-BN heterostructures via a sulfide-resistant alloy. ACS Nano 2016, 10, 2063–2070.

    CAS  Google Scholar 

  42. Ahn, C.; Lee, J.; Kim, H. U.; Bark, H.; Jeon, M.; Ryu, G. H.; Lee, Z.; Yeom, G. Y.; Kim, K.; Jung, J. et al. Low-temperature synthesis of large-scale molybdenum disulfide thin films directly on a plastic substrate using plasma-enhanced chemical vapor deposition. Adv. Mater. 2015, 27, 5223–5229.

    CAS  Google Scholar 

  43. Zhang, Z. F.; Xu, X. L.; Song, J.; Gao, Q. G.; Li, S. C.; Hu, Q. L.; Li, X. F.; Wu, Y. Q. High-performance transistors based on monolayer CVD MoS2 grown on molten glass. Appl. Phys. Lett. 2018, 113, 202103.

    Google Scholar 

  44. Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazić, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y. C.; Krasnozhon, D.; Chen, M. W. et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611–4620.

    CAS  Google Scholar 

  45. Aljarb, A.; Cao, Z.; Tang, H. L.; Huang, J. K.; Li, M. L.; Hu, W. J.; Cavallo, L.; Li, L. J. Substrate lattice-guided seed formation controls the orientation of 2D transition-metal dichalcogenides. ACS Nano 2017, 11, 9215–9222.

    CAS  Google Scholar 

  46. Suenaga, K.; Ji, H. G.; Lin, Y. C.; Vincent, T.; Maruyama, M.; Aji, A. S.; Shiratsuchi, Y.; Ding, D.; Kawahara, K.; Okada, S. et al. Surface-mediated aligned growth of monolayer MoS2 and in-plane heterostructures with graphene on sapphire. ACS Nano 2018, 12, 10032–10044.

    CAS  Google Scholar 

  47. Zhang, Y.; Ji, Q. Q.; Han, G. F.; Ju, J.; Shi, J. P.; Ma, D. L.; Sun, J. Y.; Zhang, Y. S.; Li, M. J.; Lang, X. Y. et al. Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electrocatalytic applications. ACS Nano 2014, 8, 8617–8624.

    CAS  Google Scholar 

  48. Ji, Q. Q.; Zhang, Y. F.; Gao, T.; Zhang, Y.; Ma, D. L.; Liu, M. X.; Chen, Y. B.; Qiao, X. F.; Tan, P. H.; Kan, M. et al. Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 2013, 13, 3870–3877.

    CAS  Google Scholar 

  49. Shi, Y. M.; Zhou, W.; Lu, A. Y.; Fang, W. J.; Lee, Y. H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L. J. et al. van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 2012, 12, 2784–2791.

    CAS  Google Scholar 

  50. Wang, S. S.; Wang, X. C.; Warner, J. H. All chemical vapor deposition growth of MoS2: h-BN vertical van der Waals heterostructures. ACS Nano 2015, 9, 5246–5254.

    CAS  Google Scholar 

  51. Zhao, W. F.; Yu, H.; Liao, M. Z.; Zhang, L.; Zou, S. Z.; Yu, H. J.; He, C. J.; Zhang, J. Y.; Zhang, G. Y.; Lin, X. C. Large area growth of monolayer MoS2 film on quartz and its use as a saturable absorber in laser mode-locking. Semicond. Sci. Technol. 2017, 32, 025013.

    Google Scholar 

  52. Liao, M. Z.; Wei, Z.; Du, L. J.; Wang, Q. Q.; Tang, J.; Yu, H.; Wu, F. F.; Zhao, J. J.; Xu, X. Z.; Han, B. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 2020, 11, 2153.

    CAS  Google Scholar 

  53. Yang, P. F.; Zhang, S. Q.; Pan, S. Y.; Tang, B.; Liang, Y.; Zhao, X. X.; Zhang, Z. P.; Shi, J. P.; Huan, Y. H.; Shi, Y. P. et al. Epitaxial growth of centimeter-scale single-crystal MoS2 monolayer on Au(111). ACS Nano 2020, 14, 5036–5045.

    CAS  Google Scholar 

  54. Zhang, J.; Wang, J. H.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z. Y.; Lu, X. B.; Yu, H.; Chen, W.; Zhu, J. Q. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950–1956.

    CAS  Google Scholar 

  55. McCreary, K. M.; Hanbicki, A. T.; Robinson, J. T.; Cobas, E.; Culbertson, J. C.; Friedman, A. L.; Jernigan, G. G.; Jonker, B. T. Large-area synthesis of continuous and uniform MoS2 monolayer films on graphene. Adv. Funct. Mater. 2014, 24, 6449–6454.

    CAS  Google Scholar 

  56. Zhou, W.; Zou, X. L.; Najmaei, S.; Liu, Z.; Shi, Y. M.; Kong, J.; Lou, J.; Ajayan, P. M.; Yakobson, B. I.; Idrobo, J. C. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 2013, 13, 2615–2622.

    CAS  Google Scholar 

  57. Hong, J. H.; Hu, Z. X.; Probert, M.; Li, K.; Lv, D. H.; Yang, X. A.; Gu, L.; Mao, N. N.; Feng, Q. L.; Xie, L. N. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 2015, 6, 6293.

    CAS  Google Scholar 

  58. van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    CAS  Google Scholar 

  59. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

    CAS  Google Scholar 

  60. Wang, D. F.; Yu, H.; Tao, L.; Xiao, W. D.; Fan, P.; Zhang, T. T.; Liao, M. Z.; Guo, W.; Shi, D. X.; Du, S. X. et al. Bandgap broadening at grain boundaries in single-layer MoS2. Nano Res. 2018, 11, 6102–6109.

    CAS  Google Scholar 

  61. Najmaei, S.; Amani, M.; Chin, M. L.; Liu, Z.; Birdwell, A. G.; O’Regan, T. P.; Ajayan, P. M.; Dubey, M.; Lou, J. Electrical transport properties of polycrystalline monolayer molybdenum disulfide. ACS Nano 2014, 8, 7930–7937.

    CAS  Google Scholar 

  62. Lin, Z. Y.; Zhao, Y. D.; Zhou, C. J.; Zhong, R.; Wang, X. S.; Tsang, Y. H.; Chai, Y. Controllable growth of large-size crystalline MoS2 and resist-free transfer assisted with a cu thin film. Sci. Rep. 2016, 5, 18596.

    Google Scholar 

  63. Zhu, J. Q.; Wang, Z. C.; Yu, H.; Li, N.; Zhang, J.; Meng, J. L.; Liao, M. Z.; Zhao, J.; Lu, X. B.; Du, L. J. et al. Argon plasma induced phase transition in monolayer MoS2. J. Am. Chem. Soc. 2017, 139, 10216–10219.

    CAS  Google Scholar 

  64. Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

    CAS  Google Scholar 

  65. Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391–396.

    CAS  Google Scholar 

  66. Guo, X. D.; Liu, R. N.; Hu, D. B.; Hu, H.; Wei, Z.; Wang, R.; Dai, Y. Y.; Cheng, Y.; Chen, K.; Liu, K. H. et al. Efficient all-optical plasmonic modulators with atomically thin van der Waals heterostructures. Adv. Mater. 2020, 32, 1907105.

    CAS  Google Scholar 

  67. Zhang, J.; Du, L. J.; Feng, S.; Zhang, R. W.; Cao, B. C.; Zou, C. J.; Chen, Y.; Liao, M. Z.; Zhang, B. L.; Yang, S. A. et al. Enhancing and controlling valley magnetic response in MoS2/WS2 heterostructures by all-optical route. Nat. Commun. 2019, 10, 4226.

    Google Scholar 

  68. Chen, H. L.; Wen, X. W.; Zhang, J.; Wu, T. M.; Gong, Y. J.; Zhang, X.; Yuan, J. T.; Yi, C. Y.; Lou, J.; Ajayan, P. M. et al. Ultrafast formation of interlayer hot excitons in atomically thin MoS2/WS2 heterostructures. Nat. Commun. 2016, 7, 12512.

    CAS  Google Scholar 

  69. Xue, Y. Z.; Zhang, Y. P.; Liu, Y.; Liu, H. T.; Song, J. C.; Sophia, J.; Liu, J. Y.; Xu, Z. Q.; Xu, Q. Y.; Wang, Z. Y. et al. Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors. ACS Nano 2016, 10, 573–580.

    CAS  Google Scholar 

  70. Ionescu, R.; Ruiz, I.; Favors, Z.; Campbell, B.; Neupane, M. R.; Wickramaratne, D.; Ahmed, K.; Liu, C.; Abrahamian, N.; Lake, R. K. et al. Two step growth phenomena of molybdenum disulfidetungsten disulfide heterostructures. Chem. Commun. 2015, 51, 11213–11216.

    CAS  Google Scholar 

  71. Choudhary, N.; Park, J.; Hwang, J. Y.; Chung, H. S.; Dumas, K. H.; Khondaker, S. I.; Choi, W.; Jung, Y. Centimeter scale patterned growth of vertically stacked few layer only 2D MoS2/WS2 van der Waals heterostructure. Sci. Rep. 2016, 6, 25456.

    CAS  Google Scholar 

  72. Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524–528.

    CAS  Google Scholar 

  73. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    CAS  Google Scholar 

  74. Heo, H.; Sung, J. H.; Jin, G.; Ahn, J. H.; Kim, K.; Lee, M. J.; Cha, S.; Choi, H.; Jo, M. H. Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 2015, 27, 3803–3810.

    CAS  Google Scholar 

  75. Yoo, Y.; Degregorio, Z. P.; Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281–14287.

    CAS  Google Scholar 

  76. Li, F.; Feng, Y. X.; Li, Z. W.; Ma, C.; Qu, J. Y.; Wu, X. P.; Li, D.; Zhang, X. H.; Yang, T. F.; He, Y. Q. et al. Rational kinetics control toward universal growth of 2D vertically stacked heterostructures. Adv. Mater. 2019, 31, 1901351.

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 11834017 and 61888102), the National Key Research and Development Program of China (No. 2016YFA0300904), the Key Research Program of Frontier Sciences of CAS (No. QYZDB-SSW-SLH004), and the Strategic Priority Research Program of CAS (Nos. XDB30302000 and XDB33010300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z., Wang, Q., Li, L. et al. Monolayer MoS2 epitaxy. Nano Res. 14, 1598–1608 (2021). https://doi.org/10.1007/s12274-020-3019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3019-y

Keywords

Navigation