Skip to main content

Carbon Nanotube Dual-Material Gate Devices for Flexible Electronics

  • Chapter
  • First Online:
Nanoporous Carbons for Soft and Flexible Energy Devices

Part of the book series: Carbon Materials: Chemistry and Physics ((CMCP,volume 11))

  • 515 Accesses

Abstract

Due to limited power supply and multifarious scenarios in practical applications, flexible electronic devices are expected to have low power consumption and functional configurability. In this chapter, a novel technology of dual-material gate (DMG) is demonstrated in flexible carbon nanotube (CNT) devices, which could modulate the energy-band structure in channel area of the devices by adopting two kinds of metals with different work functions, leading to low-power characteristics and functional configurability simultaneously. First, concept and principles of CNT-based DMG technology are introduced, followed by demonstrations of low-power characteristics of DMG devices under the transistor configuration. Then, after the exhibition of the devices under diode configuration, factors that could affect the electrical performances of DMG devices are identified. Finally, the flexibility of DMG devices and multifunctional integrated circuits (ICs) are demonstrated, together with the discussion of future perspectives of DMG technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

DMG:

Dual-Material Gate

NG:

Normal-Gated

FET:

Field Effect Transistor

MOSFET:

Metal-Oxide-Semiconductor Field Effect Transistor

CNT:

Carbon Nanotube

IC:

Integrated Circuit

Al:

Aluminum

Y:

Yttrium

Ti:

Titanium

Au:

Gold

Pd:

Palladium

I off :

off-state current

I on :

on-state current

V gs :

gate-to-source voltage

V ds :

drain-to-source voltage

W :

Width of the device channel

L :

Length of the device channel

SS :

subthreshold swing

V th :

threshold voltage

DIBL:

Drain-Induced Barrier Lowering

I diode-on :

on-current of diode

I-V curve:

current-voltage characteristic curves

V g-in :

input signal applied on gate electrode

V d-in :

input signal applied on drain electrode

V ctrl :

Controlling signal

V out :

Output signal

References

  1. Liu, Y., Pharr, M., Salvatore, G.A.: Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS Nano. 11(10), 9614–9635 (2017)

    Article  CAS  Google Scholar 

  2. Yao, S., Ren, P., Song, R., Liu, Y., Huang, Q., Dong, J., O’Connor, B.T., Zhu, Y.: Nanomaterial-enabled flexible and stretchable sensing systems: processing, integration, and applications. Adv. Mater. 32(15), 1902343 (2020)

    Article  CAS  Google Scholar 

  3. Xiang, L., Zeng, X., Xia, F., Jin, W., Liu, Y., Hu, Y.: Recent advances in flexible and stretchable sensing systems: from the perspective of system integration. ACS Nano. 14(6), 6449–6469 (2020)

    Article  CAS  Google Scholar 

  4. Tian, X., Lee, P.M., Tan, Y.J., Wu, T.L.Y., Yao, H., Zhang, M., Li, Z., Ng, K.A., Tee, B.C.K., Ho, J.S.: Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2(6), 243–251 (2019)

    Article  Google Scholar 

  5. Xiang, L., Xia, F., Zhang, H., Liu, Y., Liu, F., Liang, X., Hu, Y.: Wafer-scale high-yield manufacturing of degradable electronics for environmental monitoring. Adv. Funct. Mater. 29(50), 1905518 (2019)

    Article  CAS  Google Scholar 

  6. Zhu, C., Chortos, A., Wang, Y., Pfattner, R., Lei, T., Hinckley, A.C., Pochorovski, I., Yan, X., To, J. W.-F, Oh, J.Y., Tok, J.B.-H., Bao, Z., Murmann, B.: Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat. Electron. 1(3), 183–190 (2018)

    Article  Google Scholar 

  7. Gao, W., Nyein, H.Y.Y., Shahpar, Z., Fahad, H.M., Chen, K., Emaminejad, S., Gao, Y., Tai, L.-C., Ota, H., Wu, E., Bullock, J., Zeng, Y., Lien, D.-H., Javey, A.: Wearable microsensor array for multiplexed heavy metal monitoring of body fluids. ACS Sens. 1(7), 866–874 (2016)

    Article  CAS  Google Scholar 

  8. Khan, Y., Garg, M., Gui, Q., Schadt, M., Gaikwad, A., Han, D., Yamamoto, N.A.D., Hart, P., Welte, R., Wilson, W., Czarnecki, S., Poliks, M., Jin, Z., Ghose, K., Egitto, F., Turner, J., Arias, A.C.: Flexible hybrid electronics: direct interfacing of soft and hard electronics for wearable health monitoring. Adv. Funct. Mater. 26(47), 8764–8775 (2016)

    Article  CAS  Google Scholar 

  9. Yang, Y., Gao, W.: Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48(6), 1465–1491 (2019)

    Article  CAS  Google Scholar 

  10. Pappa, A.-M., Parlak, O., Scheiblin, G., Mailley, P., Salleo, A., Owens, R.M.: Organic electronics for point-of-care metabolite monitoring. Trends Biotechnol. 36(1), 45–59 (2018)

    Article  CAS  Google Scholar 

  11. Dooley, E.E., Golaszewski, N.M., Bartholomew, J.B.: Estimating accuracy at exercise intensities: a comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR Mhealth Uhealth. 5(3), e34 (2017)

    Article  Google Scholar 

  12. Sugiyama, M., Uemura, T., Kondo, M., Akiyama, M., Namba, N., Yoshimoto, S., Noda, Y., Araki, T., Sekitani, T.: An ultraflexible organic differential amplifier for recording electrocardiograms. Nat. Electron. 2(8), 351–360 (2019)

    Article  Google Scholar 

  13. Tasnim, F., Sadraei, A., Datta, B., Khan, M., Choi, K.Y., Sahasrabudhe, A., Vega Gálvez, T.A., Wicaksono, I., Rosello, O., Nunez-Lopez, C., Dagdeviren, C.: Towards personalized medicine: the evolution of imperceptible health-care technologies. foresight. 20(6), 589–601 (2018)

    Article  Google Scholar 

  14. Rogers, J.A.: Electronics for the human body. JAMA. 313(6), 561 (2015)

    Article  CAS  Google Scholar 

  15. Yu, Y., Nyein, H.Y.Y., Gao, W., Javey, A.: Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Adv. Mater. 32(15), 1902083 (2020)

    Article  CAS  Google Scholar 

  16. Lee, H., Choi, T.K., Lee, Y.B., Cho, H.R., Ghaffari, R., Wang, L., Choi, H.J., Chung, T.D., Lu, N., Hyeon, T., Choi, S.H., Kim, D.-H.: A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 11(6), 566–572 (2016)

    Article  Google Scholar 

  17. Sim, K., Ershad, F., Zhang, Y., Yang, P., Shim, H., Rao, Z., Lu, Y., Thukral, A., Elgalad, A., Xi, Y., Tian, B., Taylor, D.A., Yu, C.: An epicardial bioelectronic patch made from soft rubbery materials and capable of spatiotemporal mapping of electrophysiological activity. Nat. Electron., 1–10 (2020)

    Google Scholar 

  18. Han, M., Wang, H., Yang, Y., Liang, C., Bai, W., Yan, Z., Li, H., Xue, Y., Wang, X., Akar, B., Zhao, H., Luan, H., Lim, J., Kandela, I., Ameer, G.A., Zhang, Y., Huang, Y., Rogers, J.A.: Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants. Nat. Electron. 2(1), 26–35 (2019)

    Article  Google Scholar 

  19. Myny, K.: The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 1(1), 30–39 (2018)

    Article  CAS  Google Scholar 

  20. Xiang, L., Zhang, H., Dong, G., Zhong, D., Han, J., Liang, X., Zhang, Z., Peng, L.-M., Hu, Y.: Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 1(4), 237–245 (2018)

    Article  Google Scholar 

  21. Kim, Y., Lee, E.K., Oh, J.H.: Flexible low-power operative organic source-gated transistors. Adv. Funct. Mater. 29(27), 1900650 (2019)

    Article  Google Scholar 

  22. Mongillo, M., Spathis, P., Katsaros, G., Gentile, P., De Franceschi, S.: Multifunctional devices and logic gates with undoped silicon nanowires. Nano Lett. 12(6), 3074–3079 (2012)

    Article  CAS  Google Scholar 

  23. Weber, W.M., Heinzig, A., Trommer, J., Grube, M., Kreupl, F., Mikolajick, T.: Reconfigurable nanowire electronics-enabling a single CMOS circuit technology. IEEE Trans. Nanotechnol. 13(6), 1020–1028 (2014)

    Article  Google Scholar 

  24. Yan, H., Choe, H.S., Nam, S., Hu, Y., Das, S., Klemic, J.F., Ellenbogen, J.C., Lieber, C.M.: Programmable nanowire circuits for nanoprocessors. Nature. 470(7333), 240–244 (2011)

    Article  CAS  Google Scholar 

  25. Cheng, R., Wang, F., Yin, L., Wang, Z., Wen, Y., Shifa, T.A., He, J.: High-performance, multifunctional devices based on asymmetric van Der Waals Heterostructures. Nat. Electron. 1(6), 356–361 (2018)

    Article  CAS  Google Scholar 

  26. Weber, W.M., Heinzig, A., Trommer, J., Martin, D., Grube, M., Mikolajick, T.: Reconfigurable nanowire electronics - a review. Solid State Electron. 102, 12–24 (2014)

    Article  CAS  Google Scholar 

  27. Long, W., Ou, H., Kuo, J., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices. 46(5), 865–870 (1999)

    Article  Google Scholar 

  28. Saxena, M., Haldar, S., Gupta, M., Gupta, R.S.: Physics-based analytical Modeling of potential and electrical field distribution in dual material gate (DMG)-MOSFET for improved hot Electron effect and carrier transport efficiency. IEEE Trans. Electron Devices. 49(11), 1928–1938 (2002)

    Article  CAS  Google Scholar 

  29. Chaudhry, A., Kumar, M.J.: Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron Devices. 51(9), 1463–1467 (2004)

    Article  Google Scholar 

  30. Xiang, L., Wang, Y., Zhang, P., Fong, X., Wei, X., Hu, Y.: Configurable multifunctional integrated circuits based on carbon nanotube dual-material gate devices. Nanoscale. 10(46), 21857–21864 (2018)

    Article  CAS  Google Scholar 

  31. Xiang, L., Xia, F., Jin, W., Zeng, X., Liu, F., Liang, X., Hu, Y.: Carbon nanotube dual-material gate devices for flexible configurable multifunctional electronics. Carbon. 161, 656–664 (2020)

    Article  CAS  Google Scholar 

  32. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley (2006)

    Book  Google Scholar 

  33. Qiu, C., Zhang, Z., Zhong, D., Si, J., Yang, Y., Peng, L.-M.: Carbon nanotube feedback-gate field-effect transistor: suppressing current leakage and increasing on/off ratio. ACS Nano. 9(1), 969–977 (2015)

    Article  CAS  Google Scholar 

  34. Auth, C., Allen, C., Blattner, A., Bergstrom, D., Brazier, M., Bost, M., Buehler, M., Chikarmane, V., Ghani, T., Glassman, T., Grover, R., Han, W., Hanken, D., Hattendorf, M., Hentges, P., Heussner, R., Hicks, J., Ingerly, D., Jain, P., Jaloviar, S., James, R., Jones, D., Jopling, J., Joshi, S., Kenyon, C., Liu, H., McFadden, R., McIntyre, B., Neirynck, J., Parker, C., Pipes, L., Post, I., Pradhan, S., Prince, M., Ramey, S., Reynolds, T., Roesler, J., Sandford, J., Seiple, J., Smith, P., Thomas, C., Towner, D., Troeger, T., Weber, C., Yashar, P., Zawadzki, K., Mistry, K.: A 22nm High Performance and Low-Power CMOS Technology Featuring Fully-Depleted Tri-Gate Transistors, Self-Aligned Contacts and High Density MIM Capacitors. In: 2012 Symposium on VLSI Technology (VLSIT), pp. 131–132 (2012)

    Google Scholar 

  35. International Roadmap for Devices and Systems (IRDS™) 2020 Edition https://irds.ieee.org/editions/2020. Accessed 2 Nov 2020

  36. Jan, C., Agostinelli, M., Buehler, M., Chen, Z., Choi, S., Curello, G., Deshpande, H., Gannavaram, S., Hafez, W., Jalan, U., Kang, M., Kolar, P., Komeyli, K., Landau, B., Lake, A., Lazo, N., Lee, S., Leo, T., Lin, J., Lindert, N., Ma, S., McGill, L., Meining, C., Paliwal, A., Park, J., Phoa, K., Post, I., Pradhan, N., Prince, M., Rahman, A., Rizk, J., Rockford, L., Sacks, G., Schmitz, A., Tashiro, H., Tsai, C., Vandervoorn, P., Xu, J., Yang, L., Yeh, J., Yip, J., Zhang, K., Zhang, Y., Bai, P.: A 32nm SoC Platform Technology with 2nd Generation High-k/Metal Gate Transistors Optimized for Ultra Low Power, High Performance, and High Density Product Applications. In: 2009 IEEE International Electron Devices Meeting (IEDM), pp. 1–4 (2009)

    Google Scholar 

  37. Natarajan, S., Agostinelli, M., Akbar, S., Bost, M., Bowonder, A., Chikarmane, V., Chouksey, S., Dasgupta, A., Fischer, K., Fu, Q., Ghani, T., Giles, M., Govindaraju, S., Grover, R., Han, W., Hanken, D., Haralson, E., Haran, M., Heckscher, M., Heussner, R., Jain, P., James, R., Jhaveri, R., Jin, I., Kam, H., Karl, E., Kenyon, C., Liu, M., Luo, Y., Mehandru, R., Morarka, S., Neiberg, L., Packan, P., Paliwal, A., Parker, C., Patel, P., Patel, R., Pelto, C., Pipes, L., Plekhanov, P., Prince, M., Rajamani, S., Sandford, J., Sell, B., Sivakumar, S., Smith, P., Song, B., Tone, K., Troeger, T., Wiedemer, J., Yang, M., Zhang, K.: A 14nm Logic Technology Featuring 2nd-Generation FinFET, Air-Gapped Interconnects, Self-Aligned Double Patterning and a 0.0588 Mm2 SRAM Cell Size. In: 2014 IEEE International Electron Devices Meeting, pp. 3.7.1–3.7.3 (2014)

    Google Scholar 

  38. Long, W., Chin, K.K.: Dual Material Gate Field Effect Transistor (DMGFET). In: International Electron Devices Meeting, pp. 549–552. IEDM Technical Digest (1997)

    Google Scholar 

  39. Si, J., Xu, L., Zhu, M., Zhang, Z., Peng, L.-M.: Advances in high-performance carbon-nanotube thin-film electronics. Adv. Electron. Mater. 5(8), 1900122 (2019)

    Article  Google Scholar 

  40. Si, J., Liu, L., Wang, F., Zhang, Z., Peng, L.-M.: Carbon nanotube self-gating diode and application in integrated circuits. ACS Nano. 10(7), 6737–6743 (2016)

    Article  CAS  Google Scholar 

  41. Zhao, Y., Xiao, X., Huo, Y., Wang, Y., Zhang, T., Jiang, K., Wang, J., Fan, S., Li, Q.: Influence of asymmetric contact form on contact resistance and Schottky barrier, and corresponding applications of diode. ACS Appl. Mater. Interfaces. 9(22), 18945–18955 (2017)

    Article  CAS  Google Scholar 

  42. Hughes, M.A., Homewood, K.P., Curry, R.J., Ohno, Y., Mizutani, T.: An ultra-low leakage current single carbon nanotube diode with Split-gate and asymmetric contact geometry. Appl. Phys. Lett. 103(13), 133508 (2013)

    Article  Google Scholar 

  43. Huang, L., Chor, E.F., Wu, Y., Guo, Z.: Fabrication of single-walled carbon nanotube Schottky diode with gold contacts modified by asymmetric thiolate molecules. Carbon. 48(4), 1298–1304 (2010)

    Article  CAS  Google Scholar 

  44. Chen, C., Liao, C., Wei, L., Zhong, H., He, R., Liu, Q., Liu, X., Lai, Y., Song, C., Jin, T., Zhang, Y.: Carbon nanotube intramolecular P-i-n junction diodes with symmetric and asymmetric contacts. Sci. Rep. 6(1), 22203 (2016)

    Article  CAS  Google Scholar 

  45. Peng, N., Li, H., Zhang, Q.: Nanoscale contacts between carbon nanotubes and metallic pads. ACS Nano. 3(12), 4117–4121 (2009)

    Article  CAS  Google Scholar 

  46. Li, H., Zhang, Q., Marzari, N.: Unique carbon-nanotube field-effect transistors with asymmetric source and drain contacts. Nano Lett. 8(1), 64–68 (2008)

    Article  Google Scholar 

  47. Bandaru, P.R., Daraio, C., Jin, S., Rao, A.M.: Novel electrical switching behaviour and logic in carbon nanotube Y-junctions. Nat. Mater. 4(9), 663–666 (2005)

    Article  CAS  Google Scholar 

  48. Xu, H., Wang, S., Zhang, Z., Peng, L.-M.: Length scaling of carbon nanotube electric and photo diodes down to Sub-50 nm. Nano Lett. 14(9), 5382–5389 (2014)

    Article  CAS  Google Scholar 

  49. Yang, M.H., Teo, K.B.K., Milne, W.I., Hasko, D.G.: Carbon nanotube Schottky diode and directionally dependent field-effect transistor using asymmetrical contacts. Appl. Phys. Lett. 87(25), 253116 (2005)

    Article  Google Scholar 

  50. Zhou, X., Park, J.-Y., Huang, S., Liu, J., McEuen, P.L.: Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. Phys. Rev. Lett. 95(14), 146805 (2005)

    Article  Google Scholar 

  51. Jang, K.-I., Han, S.Y., Xu, S., Mathewson, K.E., Zhang, Y., Jeong, J.-W., Kim, G.-T., Webb, R.C., Lee, J.W., Dawidczyk, T.J., Kim, R.H., Song, Y.M., Yeo, W.-H., Kim, S., Cheng, H., Rhee, S.I., Chung, J., Kim, B., Chung, H.U., Lee, D., Yang, Y., Cho, M., Gaspar, J.G., Carbonari, R., Fabiani, M., Gratton, G., Huang, Y., Rogers, J.A.: Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5(1), 4779 (2014)

    Article  CAS  Google Scholar 

  52. Xu, S., Yan, Z., Jang, K.-I., Huang, W., Fu, H., Kim, J., Wei, Z., Flavin, M., McCracken, J., Wang, R., Badea, A., Liu, Y., Xiao, D., Zhou, G., Lee, J., Chung, H.U., Cheng, H., Ren, W., Banks, A., Li, X., Paik, U., Nuzzo, R.G., Huang, Y., Zhang, Y., Rogers, J.A.: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science. 347(6218), 154–159 (2015)

    Article  CAS  Google Scholar 

  53. Sim, K., Chen, S., Li, Z., Rao, Z., Liu, J., Lu, Y., Jang, S., Ershad, F., Chen, J., Xiao, J., Yu, C.: Three-dimensional curvy electronics created using conformal additive stamp printing. Nat. Electron. 2(10), 471–479 (2019)

    Article  CAS  Google Scholar 

  54. Zhang, Y., Wang, S., Li, X., Fan, J.A., Xu, S., Song, Y.M., Choi, K.-J., Yeo, W.-H., Lee, W., Nazaar, S.N., Lu, B., Yin, L., Hwang, K.-C., Rogers, J.A., Huang, Y.: Experimental and theoretical studies of serpentine microstructures bonded to Prestrained elastomers for stretchable electronics. Adv. Funct. Mater. 24(14), 2028–2037 (2014)

    Article  CAS  Google Scholar 

  55. Huang, Z., Hao, Y., Li, Y., Hu, H., Wang, C., Nomoto, A., Pan, T., Gu, Y., Chen, Y., Zhang, T., Li, W., Lei, Y., Kim, N., Wang, C., Zhang, L., Ward, J.W., Maralani, A., Li, X., Durstock, M.F., Pisano, A., Lin, Y., Xu, S.: Three-dimensional integrated stretchable electronics. Nat. Electron. 1(8), 473–480 (2018)

    Article  Google Scholar 

  56. Xu, S., Zhang, Y., Jia, L., Mathewson, K.E., Jang, K.-I., Kim, J., Fu, H., Huang, X., Chava, P., Wang, R., Bhole, S., Wang, L., Na, Y.J., Guan, Y., Flavin, M., Han, Z., Huang, Y., Rogers, J.A.: Soft microfluidic assemblies of sensors, circuits, and radios for the skin. Science. 344(6179), 70–74 (2014)

    Article  CAS  Google Scholar 

  57. Niu, S., Matsuhisa, N., Beker, L., Li, J., Wang, S., Wang, J., Jiang, Y., Yan, X., Yun, Y., Burnett, W., Poon, A.S.Y., Tok, J.B.-H., Chen, X., Bao, Z.: A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2(8), 361–368 (2019)

    Article  Google Scholar 

  58. Boutry, C.M., Kaizawa, Y., Schroeder, B.C., Chortos, A., Legrand, A., Wang, Z., Chang, J., Fox, P., Bao, Z.: A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1(5), 314–321 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youfan Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xiang, L., Hu, Y. (2022). Carbon Nanotube Dual-Material Gate Devices for Flexible Electronics. In: Borghi, F., Soavi, F., Milani, P. (eds) Nanoporous Carbons for Soft and Flexible Energy Devices. Carbon Materials: Chemistry and Physics, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-81827-2_2

Download citation

Publish with us

Policies and ethics