Skip to main content
Log in

Recent progress about 2D metal dichalcogenides: Synthesis and application in photodetectors

  • Review Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

In recent years, two-dimensional (2D) layered metal dichalcogenides (MDCs) have received enormous attention on account of their excellent optoelectronic properties. Especially, various MDCs can be constructed into vertical/lateral heterostructures with many novel optical and electrical properties, exhibiting great potential for the application in photodetectors. Therefore, the batch production of 2D MDCs and their heterostructures is crucial for the practical application. Recently, the vapour phase methods have been proved to be dependable for growing large-scale MDCs and related heterostructures with high quality. In this paper, we summarize the latest progress about the synthesis of 2D MDCs and their heterostructures by vapour phase methods. Particular focus is paid to the control of influence factors during the vapour phase growth process. Furthermore, the application of MDCs and their heterostructures in photodetectors with outstanding performance is also outlined. Finally, the challenges and prospects for the future application are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, P. M.; Tarasov, A.; Joiner, C. A.; Ready, W. J.; Vogel, E. M. Enhanced resonant tunneling in symmetric 2D semiconductor vertical heterostructure transistors. ACS Nano 2015, 9, 5000–5008.

    CAS  Google Scholar 

  2. Chen, Y. Y.; Liu, Z. Y.; Li, J. Z.; Cheng, X.; Ma, J. Q.; Wang, H. Z.; Li, D. H. Robust interlayer coupling in two-dimensional perovskite/monolayer transition metal dichalcogenide heterostructures. ACS Nano 2020, 14, 10258–10264.

    CAS  Google Scholar 

  3. Liu, Y. R.; Gao, Z. B.; Tan, Y.; Chen, F. Enhancement of out-of-plane charge transport in a vertically stacked two-dimensional heterostructure using point defects. ACS Nano 2018, 12, 10529–10536.

    CAS  Google Scholar 

  4. Lv, Q. S.; Yan, F. G.; Wei, X.; Wang, K. Y. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv. Opt. Mater. 2018, 6, 1700490.

    Google Scholar 

  5. Mu, X. J.; Sun, M. T. Interfacial charge transfer exciton enhanced by plasmon in 2D in-plane lateral and van der Waals heterostructures. Appl. Phys. Lett. 2020, 117, 091601.

    CAS  Google Scholar 

  6. Susarla, S.; Manimunda, P.; Jaques, Y. M.; Hachtel, J. A.; Idrobo, J. C.; Amnulla, S. A. S.; Galväo, D. S.; Tiwary, C. S.; Ajayan, P. M. Deformation mechanisms of vertically stacked WS2/MoS2 heterostructures: The role of interfaces. ACS Nano 2018, 12, 4036–4044.

    CAS  Google Scholar 

  7. Ye, T.; Li, J. Z.; Li, D. H. Charge-accumulation effect in transition metal dichalcogenide heterobilayers. Small 2019, 15, 1902424.

    CAS  Google Scholar 

  8. Bellus, M. Z.; Mahjouri-Samani, M.; Lane, S. D.; Oyedele, A. D.; Li, X. F.; Puretzky, A. A.; Geohegan, D.; Xiao, K.; Zhao, H. Photocarrier transfer across monolayer MoS2-MoSe2 lateral heterojunctions. ACS Nano 2018, 12, 7086–7092.

    CAS  Google Scholar 

  9. Kobayashi, Y.; Yoshida, S.; Maruyama, M.; Mogi, H.; Murase, K.; Maniwa, Y.; Takeuchi, O.; Okada, S.; Shigekawa, H.; Miyata, Y. Continuous heteroepitaxy of two-dimensional heterostructures based on layered chalcogenides. ACS Nano 2019, 13, 7527–7535.

    CAS  Google Scholar 

  10. Lee, J.; Pak, S.; Lee, Y. W.; Park, Y.; Jang, A. R.; Hong, J.; Cho, Y.; Hou, B.; Lee, S.; Jeong, H. Y. et al. Direct epitaxial synthesis of selective two-dimensional lateral heterostructures. ACS Nano 2019, 13, 13047–13055.

    CAS  Google Scholar 

  11. Sahoo, P. K.; Memaran, S.; Nugera, F. A.; Xin, Y.; Márquez, T. D.; Lu, Z. G; Zheng, W. K.; Zhigadlo, N. D.; Smirnov, D.; Balicas, L. et al. Bilayer lateral heterostructures of transition-metal dichalcogenides and their optoelectronic response. ACS Nano 2019, 13, 12372–12384.

    CAS  Google Scholar 

  12. Xu, X. X.; Wang, X. Perovskite nano-heterojunctions: Synthesis, structures, properties, challenges, and prospects. Small Struct., in press, DOI: https://doi.org/10.1002/sstr.202000009.

  13. Zhu, J. T.; Li, W.; Huang, R.; Ma, L.; Sun, H. M.; Choi, J. H.; Zhang, L. Q.; Cui, Y.; Zou, G. F. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J. Am. Chem. Soc. 2020, 142, 16276–16284.

    CAS  Google Scholar 

  14. Lembke, D.; Bertolazzi, S.; Kis, A. Single-layer MoS2 electronics. Acc. Chem. Res. 2015, 48, 100–110.

    CAS  Google Scholar 

  15. Shim, J.; Park, H. Y.; Kang, D. H.; Kim, J. O.; Jo, S. H.; Park, Y.; Park, J. H. Electronic and optoelectronic devices based on two-dimensional materials: From fabrication to application. Adv. Electron. Mater. 2017, 3, 1600364.

    Google Scholar 

  16. Wen, X. L.; Gong, Z. B.; Li, D. H. Nonlinear optics of two-dimensional transition metal dichalcogenides. InfoMat 2019, 1, 317–337.

    CAS  Google Scholar 

  17. Yang, Y. S.; Liu, S. C.; Yang, W.; Li, Z. B.; Wang, Y.; Wang, X.; Zhang, S. S.; Zhang, Y.; Long, M. S.; Zhang, G. M. et al. Air-stable in-plane anisotropic GeSe2 for highly polarization-sensitive photodetection in short wave region. J. Am. Chem. Soc. 2018, 140, 4150–4156.

    CAS  Google Scholar 

  18. Yang, Z. B.; Hao, J. H. Recent progress in 2D layered III-VI semiconductors and their heterostructures for optoelectronic device applications. Adv. Mater. Technol. 2019, 4, 1900108.

    CAS  Google Scholar 

  19. Yeh, C. H.; Liang, Z. Y.; Lin, Y. C.; Wu, T. L.; Fan, T.; Chu, Y. C.; Ma, C. H.; Liu, Y. C.; Chu, Y. H.; Suenaga, K. et al. Scalable van der Waals heterojunctions for high-performance photodetectors. ACS Appl. Mater. Interfaces 2017, 9, 36181–36188.

    CAS  Google Scholar 

  20. Yu, S. L.; Wu, X. Q.; Wang, Y. P.; Guo, X.; Tong, L. M. 2D materials for optical modulation: Challenges and opportunities. Adv. Mater. 2017, 29, 1606128.

    Google Scholar 

  21. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

    CAS  Google Scholar 

  22. Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

    CAS  Google Scholar 

  23. Coleman, J. N.; Lotya, M.; O’Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568–571.

    CAS  Google Scholar 

  24. Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111–5116.

    CAS  Google Scholar 

  25. M, T.; Late, D. J. Temperature dependent phonon shifts in single-layer WS2. ACS Appl. Mater. Interfaces 2014, 6, 1158–1163.

    CAS  Google Scholar 

  26. Huang, Y.; Sutter, E.; Sadowski, J. T.; Cotlet, M.; Monti, O. L. A.; Racke, D. A.; Neupane, M. R.; Wickramaratne, D.; Lake, R. K.; Parkinson, B. A. et al. Tin disulfide—An emerging layered metal dichalcogenide semiconductor: Materials properties and device characteristics. ACS Nano 2014, 8, 10743–10755.

    CAS  Google Scholar 

  27. Giri, B.; Masroor, M.; Yan, T.; Kushnir, K.; Carl, A. D.; Doiron, C.; Zhang, H. C.; Zhao, Y. Y.; McClelland, A.; Tompsett, G. A. et al. Balancing light absorption and charge transport in vertical SnS2 nanoflake photoanodes with stepped layers and large intrinsic mobility. Adv. Energy Mater. 2019, 9, 1901236.

    Google Scholar 

  28. Hoffman, A. N.; Stanford, M. G.; Zhang, C.; Ivanov, I. N.; Oyedele, A. D.; Sales, M. G.; McDonnell, S. J.; Koehler, M. R.; Mandrus, D. G.; Liang, L. B. et al. Atmospheric and long-term aging effects on the electrical properties of variable thickness WSe2 transistors. ACS Appl. Mater. Interfaces 2018, 10, 36540–36548.

    CAS  Google Scholar 

  29. Buscema, M.; Groenendijk, D. J.; Blanter, S. I.; Steele, G. A.; van Der Zant, H. S. J.; Castellanos-Gomez, A. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 2014, 14, 3347–3352.

    CAS  Google Scholar 

  30. Chen, D.; Tang, L. H.; Li, J. H. Graphene-based materials in electrochemistry. Chem. Soc. Rev. 2010, 39, 3157–3180.

    CAS  Google Scholar 

  31. Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lazic, P.; Gibertini, M.; Marzari, N.; Sanchez, O. L.; Kung, Y. C.; Krasnozhon, D.; Chen, M. W. et al. Large-area epitaxial monolayer MoS2. ACS Nano 2015, 9, 4611–4620.

    CAS  Google Scholar 

  32. Hu, P. A.; Wen, Z. Z.; Wang, L. F.; Tan, P. H.; Xiao, K. Synthesis of few-layer GaSe nanosheets for high performance photodetectors. ACS Nano 2012, 6, 5988–5994.

    CAS  Google Scholar 

  33. Radisavljevic, B.; Kis, A. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 2013, 12, 815–820.

    CAS  Google Scholar 

  34. Sun, Y. Q.; Wu, Q.; Shi, G. Q. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113–1132.

    CAS  Google Scholar 

  35. Huang, X. L.; Guo, F.; Li, M. Y.; Ren, H. J.; Shi, Y.; Chen, L. Z. Hydrothermal synthesis of ZnSnO3 nanoparticles decorated on g-C3N4 nanosheets for accelerated photocatalytic degradation of tetracycline under the visible-light irradiation. Sep. Purif. Technol. 2020, 230, 115854.

    CAS  Google Scholar 

  36. Yang, W. J.; Li, J.; Zhang, X. L.; Zhang, C.; Jiang, X.; Liu, B. D. Hydrothermal approach to spinel-type 2D metal oxide nanosheets. Inorg. Chem. 2019, 58, 549–556.

    CAS  Google Scholar 

  37. Xie, X. Q.; Ao, Z. M.; Su, D. W.; Zhang, J. Q.; Wang, G. X. MoS2/graphene composite anodes with enhanced performance for sodium-ion batteries: The role of the two-dimensional heterointerface. Adv. Funct. Mater. 2015, 25, 1393–1403.

    CAS  Google Scholar 

  38. Zhang, L.; Yin, J. J.; Wei, K.; Li, B. F.; Jiao, T. F.; Chen, Y.; Zhou, J. X.; Peng, Q. M. Fabrication of hierarchical SrTiO3@MoS2 heterostructure nanofibers as efficient and low-cost electrocatalysts for hydrogen-evolution reactions. Nanotechnology 2020, 31, 205604.

    CAS  Google Scholar 

  39. Zhang, Z. Y.; Shao, C. L.; Li, X. H.; Sun, Y. Y.; Zhang, M. Y.; Mu, J. B.; Zhang, P.; Guo, Z. C.; Liu, Y. C. Hierarchical assembly of ultrathin hexagonal SnS2 nanosheets onto electrospun TiO2 nanofibers: Enhanced photocatalytic activity based on photoinduced interfacial charge transfer. Nanoscale 2013, 5, 606–618.

    CAS  Google Scholar 

  40. Zhang, Y.; Yao, Y. Y.; Sendeku, M. G.; Yin, L.; Zhan, X. Y.; Wang, F.; Wang, Z. X.; He, J. Recent progress in CVD growth of 2D transition metal dichalcogenides and related heterostructures. Adv. Mater. 2019, 31, 1901694.

    CAS  Google Scholar 

  41. Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

    CAS  Google Scholar 

  42. Fu, Q. D.; Zhu, C.; Zhao, X. X.; Wang, X. L.; Chaturvedi, A.; Zhu, C.; Wang, X. W.; Zeng, Q. S.; Zhou, J. D.; Liu, F. C. et al. Ultrasensitive 2D Bi2O2Se phototransistors on silicon substrates. Adv. Mater. 2019, 31, 1804945.

    Google Scholar 

  43. Johra, F. T.; Jung, W. G. Synthesis of black phosphorus via a facile vapor transfer method. Electron. Mater. Lett. 2019, 15, 639–644.

    CAS  Google Scholar 

  44. Lin, Z.; McCreary, A.; Briggs, N.; Subramanian, S.; Zhang, K.; Sun, Y. F.; Li, X. F.; Borys, N. J.; Yuan, H. T.; Fullerton-Shirey, S. K. et al. 2D materials advances: From large scale synthesis and controlled heterostructures to improved characterization techniques, defects and applications. 2D Mater. 2016, 3, 042001.

    Google Scholar 

  45. Manzeli, S.; Ovchinnikov, D.; Pasquier, D.; Yazyev, O. V.; Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2017, 2, 17033.

    CAS  Google Scholar 

  46. Wei, G. D.; Qin, W. P.; Ning, L.; Kim, R.; Wang, G. F.; Zhang, D. S.; Zhu, P. F.; Zheng, K. Z.; Wang, L. Synthesis of ZnO nanosheets by microwave thermal vapor method. J. Nanosci. Nanotechnol. 2010, 10, 2065–2069.

    CAS  Google Scholar 

  47. Xia, J.; Li, X. Z.; Huang, X.; Mao, N. N.; Zhu, D. D.; Wang, L.; Xu, H.; Meng, X. M. Physical vapor deposition synthesis of two-dimensional orthorhombic SnS flakes with strong angle/temperature-dependent Raman responses. Nanoscale 2016, 8, 2063–2070.

    CAS  Google Scholar 

  48. Zhou, X.; Zhang, Q.; Gan, L.; Li, H. Q.; Xiong, J.; Zhai, T. Y. Booming development of group IV-VI semiconductors: Fresh blood of 2D family. Adv. Sci. 2016, 3, 1600177.

    Google Scholar 

  49. Dai, C.; Li, B.; Li, J.; Zhao, B.; Wu, R. X.; Ma, H. F.; Duan, X. D. Controllable synthesis of NiS and NiS2 nanoplates by chemical vapor deposition. Nano Res. 2020, 13, 2506–2511.

    CAS  Google Scholar 

  50. Li, Z. F.; Xi, X. K.; Ding, B.; Li, H.; Liu, E. K.; Yao, Y.; Wang, W. H. Thermodynamics and kinetics synergy for controlled synthesis of 2D van der Waals single-crystal NbSe2 via modified chemical vapor transport. Cryst. Growth Des. 2020, 20, 706–712.

    CAS  Google Scholar 

  51. Reale, F.; Sharda, K.; Mattevi, C. From bulk crystals to atomically thin layers of group VI-transition metal dichalcogenides vapour phase synthesis. Appl. Mater. Today 2016, 3, 11–22.

    Google Scholar 

  52. Sharma, R.; Biroju, R. K.; Sinai, O.; Cohen, H.; Sahoo, K. R.; Artel, V.; Alon, H.; Levi, A.; Subrahmanyam, A.; Theis, W. et al. Vapour transport deposition of fluorographene oxide films and electro-optical device applications. Appl. Mater. Today 2018, 13, 387–395.

    Google Scholar 

  53. Wang, H. N.; Zhang, C. J.; Chan, W. M.; Tiwari, S.; Rana, F. Ultrafast response of monolayer molybdenum disulfide photodetectors. Nat. Commun. 2015, 6, 8831.

    CAS  Google Scholar 

  54. Huang, Y.; Zhuge, F.; Hou, J. X.; Lv, L.; Luo, P.; Zhou, N.; Gan, L.; Zhai, T. Y. van der Waals coupled organic molecules with monolayer MoS2 for fast response photodetectors with gate-tunable responsivity. ACS Nano 2018, 12, 4062–4073.

    CAS  Google Scholar 

  55. Massicotte, M.; Schmidt, P.; Vialla, F.; Schädler, K. G.; Reserbat-Plantey, A.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Picosecond photoresponse in van der Waals heterostructures. Nat. Nanotechnol. 2016, 11, 42–46.

    CAS  Google Scholar 

  56. Srivastava, Y. K.; Chaturvedi, A.; Manjappa, M.; Kumar, A.; Dayal, G.; Kloc, C.; Singh, R. MoS2 for ultrafast all-optical switching and modulation of THz fano metaphotonic devices. Adv. Opt. Mater. 2017, 5, 1700762.

    Google Scholar 

  57. Yin, L.; Xu, K.; Wen, Y.; Wang, Z. X.; Huang, Y.; Wang, F.; Shifa, T. A.; Cheng, R. Q.; Ma, H.; He, J. Ultrafast and ultrasensitive phototransistors based on few-layered HfSe2. Appl. Phys. Lett. 2016, 109, 213105.

    Google Scholar 

  58. Zeng, L. H.; Lin, S. S.; Lou, Z. H.; Yuan, H. Y.; Long, H.; Li, Y. Y.; Lu, W.; Lau, S. P.; Wu, D.; Tsang, Y. H. Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Mater. 2018, 10, 352–362.

    CAS  Google Scholar 

  59. Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T. P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830.

    CAS  Google Scholar 

  60. Luo, H.; Wang, B. L.; Wang, E. Z.; Wang, X. W.; Sun, Y. F.; Li, Q. Q.; Fan, S. S.; Cheng, C.; Liu, K. Phase-transition modulated, high-performance dual-mode photodetectors based on WSe2/VO2 heterojunctions. Appl. Phys. Rev. 2019, 6, 041407.

    Google Scholar 

  61. Luo, H.; Wang, B. L.; Wang, E. Z.; Wang, X. W.; Sun, Y. F.; Liu, K. High-responsivity photovoltaic photodetectors based on MoTe2/MoSe2 van der Waals heterojunctions. Crystals 2019, 9, 315.

    CAS  Google Scholar 

  62. Schneider, D. S.; Grundmann, A.; Bablich, A.; Passi, V.; Kataria, S.; Kalisch, H.; Heuken, M.; Vescan, A.; Neumaier, D.; Lemme, M. C. Highly responsive flexible photodetectors based on MOVPE grown uniform few-layer MoS2. ACS Photonics 2020, 7, 1388–1395.

    CAS  Google Scholar 

  63. Yao, J. D.; Zheng, Z. Q.; Yang, G. W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C 2016, 4, 7831–7840.

    CAS  Google Scholar 

  64. Wu, W. H.; Zhang, Q.; Zhou, X.; Li, L.; Su, J. W.; Wang, F. K.; Zhai, T. Y. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy 2018, 51, 45–53.

    CAS  Google Scholar 

  65. Fu, L.; Wang, F.; Wu, B.; Wu, N.; Huang, W.; Wang, H. L.; Jin, C. H.; Zhuang, L.; He, J.; Fu, L. et al. Van der Waals epitaxial growth of atomic layered HfS2 crystals for ultrasensitive near-infrared phototransistors. Adv. Mater. 2017, 29, 1700439.

    Google Scholar 

  66. Li, A.; Chen, Q. X.; Wang, P. P.; Gan, Y.; Qi, T. L.; Wang, P.; Tang, F. D.; Wu, J. Z.; Chen, R.; Zhang, L. Y. et al. Ultrahigh-sensitive broadband photodetectors based on dielectric shielded MoTe2/Graphene/SnS2 p-g-n junctions. Adv. Mater. 2019, 31, 1805656.

    Google Scholar 

  67. Vu, Q. A.; Lee, J. H.; Nguyen, V. L.; Shin, Y. S.; Lim, S. C.; Lee, K.; Heo, J.; Park, S.; Kim, K.; Lee, Y. H. et al. Tuning carrier tunneling in van der Waals heterostructures for ultrahigh detectivity. Nano Lett. 2017, 17, 453–459.

    CAS  Google Scholar 

  68. Wang, S. S.; Rong, Y. M.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 2014, 26, 6371–6379.

    CAS  Google Scholar 

  69. Ahn, J. H.; Lee, M. J.; Heo, H.; Sung, J. H.; Kim, K.; Hwang, H.; Jo, M. H. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett. 2015, 15, 3703–3708.

    CAS  Google Scholar 

  70. Van Der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.

    CAS  Google Scholar 

  71. Shaw, J. C.; Zhou, H. L.; Chen, Y.; Weiss, N. O.; Liu, Y.; Huang, Y.; Duan, X. F. Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 2014, 7, 511–517.

    CAS  Google Scholar 

  72. Yang, Y. B.; Dash, J. K.; Xiang, Y.; Wang, Y.; Shi, J.; Dinolfo, P. H.; Lu, T. M.; Wang, G. C. Tuning the phase and optical properties of ultrathin SnS, films. J. Phys. Chem. C 2016, 120, 13199–13214.

    CAS  Google Scholar 

  73. Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

    CAS  Google Scholar 

  74. Peng, G.; Yang, X.; Wang, S. Y.; Zhang, J. Y.; Qi, G. J.; Zhang, S.; Liu, K.; Zhu, Z. H.; Li, Z.; Wang, G. et al. Controllable epitaxial growth of MoSe2 bilayers with different stacking orders by reverse-flow chemical vapor deposition. ACS Appl. Mater. Interfaces 2020, 12, 23347–23355.

    CAS  Google Scholar 

  75. Yan, C. Y.; Gan, L.; Zhou, X.; Guo, J.; Huang, W. J.; Huang, J. W.; Jin, B.; Xiong, J.; Zhai, T. Y.; Li, Y. R. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Adv. Funct. Mater. 2017, 27, 1702918.

    Google Scholar 

  76. Tang, L.; Li, T.; Luo, Y. T.; Feng, S. M.; Cai, Z. Y.; Zhang, H.; Liu, B. L.; Cheng, H. M. Vertical chemical vapor deposition growth of highly uniform 2D transition metal dichalcogenides. ACS Nano 2020, 14, 4646–4653.

    CAS  Google Scholar 

  77. Cai, Z. Y.; Lai, Y. J.; Zhao, S. L.; Zhang, R. J.; Tan, J. Y.; Feng, S. M.; Zou, J. Y.; Tang, L.; Lin, J. H.; Liu, B. L. et al. Dissolution-precipitation growth of uniform and clean two dimensional transition metal dichalcogenides. Nat. Sci. Rev., in press, DOI: https://doi.org/10.1093/nsr/nwaa115.

  78. Song, I.; Park, C.; Hong, M.; Baik, J.; Shin, H. J.; Choi, H. C. Patternable large-scale molybdenium disulfide atomic layers grown by gold-assisted chemical vapor deposition. Angew. Chem., Int. Ed. 2014, 53, 1266–1269.

    CAS  Google Scholar 

  79. Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.

    Google Scholar 

  80. Zhang, X. Q.; Lin, C. H.; Tseng, Y. W.; Huang, K. H.; Lee, Y. H. Synthesis of lateral heterostructures of semiconducting atomic layers. Nano Lett. 2015, 15, 410–415.

    CAS  Google Scholar 

  81. Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

    CAS  Google Scholar 

  82. Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

    CAS  Google Scholar 

  83. Ju, M.; Liang, X. Y.; Liu, J. X.; Zhou, L.; Liu, Z.; Mendes, R. G.; Rümmeli, M. H.; Fu, L. Universal substrate-trapping strategy to grow strictly monolayer transition metal dichalcogenides crystals. Chem. Mater. 2017, 29, 6095–6103.

    CAS  Google Scholar 

  84. Lu, Y.; Chen, T. X.; Ryu, G. H.; Huang, H. F.; Sheng, Y. W.; Chang, R. J.; Warner, J. H. Self-limiting growth of high-quality 2D monolayer MoS2 by direct sulfurization using precursor-soluble substrates for advanced field-effect transistors and photodetectors. ACS Appl. Nano Mater. 2019, 2, 369–378.

    CAS  Google Scholar 

  85. Prakash, A. D.; Singh, M.; Mishra, R. K.; Valsala, T. P.; Tyagi, A. K.; Sarkar, A.; Kaushik, C. P. Studies on modified borosilicate glass for enhancement of solubility of molybdenum. J. Non-Cryst. Solids 2019, 510, 172–178.

    CAS  Google Scholar 

  86. Mezey, L. Z.; Giber, J. Numerical values of the surface free energies of solid chemical elements. Appl. Phys. A 1984, 35, 87–89.

    Google Scholar 

  87. Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.

    CAS  Google Scholar 

  88. Lin, Y. C.; Zhang, W. J.; Huang, J. K.; Liu, K. K.; Lee, Y. H.; Liang, C. T.; Chu, C. W.; Li, L. J. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 2012, 4, 6637–6641.

    CAS  Google Scholar 

  89. Najmaei, S.; Liu, Z.; Zhou, W.; Zou, X. L.; Shi, G.; Lei, S. D.; Yakobson, B. I.; Idrobo, J. C.; Ajayan, P. M.; Lou, J. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 2013, 12, 754–759.

    CAS  Google Scholar 

  90. Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.

    CAS  Google Scholar 

  91. Zhao, M.; Su, J. W.; Zhao, Y.; Luo, P.; Wang, F. K.; Han, W.; Li, Y.; Zu, X. T.; Qiao, L.; Zhai, T. Y. Sodium-mediated epitaxial growth of 2D ultrathin Sb2Se3 flakes for broadband photodetection. Adv. Funct. Mater. 2020, 30, 1909849.

    CAS  Google Scholar 

  92. Xu, L. P.; Zhang, P.; Jiang, H. N.; Wang, X.; Chen, F. F.; Hu, Z. G.; Gong, Y. J.; Shang, L. Y.; Zhang, J. Z.; Jiang, K. et al. Large-scale growth and field-effect transistors electrical engineering of atomiclayer SnS2. Small 2019, 15, 1904116.

    CAS  Google Scholar 

  93. Huang, L.; Hu, Z. M.; Jin, H. R.; Wu, J. B.; Liu, K. S.; Xu, Z. H.; Wan, J.; Zhou, H.; Duan, J. J.; Hu, B. et al. Salt-assisted synthesis of 2D materials. Adv. Funct. Mater. 2020, 30, 1908486.

    CAS  Google Scholar 

  94. Jin, H. R.; Hu, Z. M.; Li, T. Q.; Huang, L.; Wan, J.; Xue, G. B.; Zhou, J. Mass production of high-quality transition metal dichalcogenides nanosheets via a molten salt method. Adv. Funct. Mater. 2019, 29, 1900649.

    Google Scholar 

  95. Niu, L. Y.; Li, K.; Zhen, H. Y.; Chui, Y. S.; Zhang, W. J.; Yan, F.; Zheng, Z. J. Salt-assisted high-throughput synthesis of single- and few-layer transition metal dichalcogenides and their application in organic solar cells. Small 2014, 10, 4651–4657.

    CAS  Google Scholar 

  96. Wang, X. Z.; Li, Y. K.; Zhuo, L.; Zheng, J. C.; Peng, X. L.; Jiao, Z. F.; Xiong, X. L.; Han, J. F.; Xiao, W. D. Controllable growth of two-dimensional WSe2 using salt as co-solvent. CrystEngComm 2018, 20, 6267–6272.

    CAS  Google Scholar 

  97. Chen, J. Y.; Zhao, X. X.; Tan, S. J. R.; Xu, H.; Wu, B.; Liu, B.; Fu, D. Y.; Fu, W.; Geng, D. C.; Liu, Y. P. et al. Chemical vapor deposition of large-size monolayer MoSe2 crystals on molten glass. J. Am. Chem. Soc. 2017, 139, 1073–1076.

    CAS  Google Scholar 

  98. Gao, Y.; Hong, Y. L.; Yin, L. C.; Wu, Z. T.; Yang, Z. Q.; Chen, M. L.; Liu, Z. B.; Ma, T.; Sun, D. M.; Ni, Z. H. et al. Ultrafast growth of high-quality monolayer WSe2 on Au. Adv. Mater. 2017, 29, 1700990.

    Google Scholar 

  99. Zeng, L. H.; Wu, D.; Lin, S. H.; Xie, C.; Yuan, H. Y.; Lu, W.; Lau, S. P.; Chai, Y.; Luo, L. B.; Li, Z. J. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater. 2019, 29, 1806878.

    Google Scholar 

  100. Zeng, L. H.; Lin, S. H.; Li, Z. J.; Zhang, Z. X.; Zhang, T. F.; Xie, C.; Mak, C. H.; Chai, Y.; Lau, S. P.; Luo, L. B. et al. Fast, self-driven, air-stable, and broadband photodetector based on vertically aligned PtSe2/GaAs heterojunction. Adv. Funct. Mater. 2018, 28, 1705970.

    Google Scholar 

  101. Sahoo, P. K.; Memaran, S.; Xin, Y.; Balicas, L.; Gutiérrez, H. R. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 2018, 553, 63–67.

    CAS  Google Scholar 

  102. Tan, C. L.; Chen, J. Z.; Wu, X. J.; Zhang, H. Epitaxial growth of hybrid nanostructures. Nat. Rev. Mater. 2018, 3, 17089.

    CAS  Google Scholar 

  103. Yoo, Y.; Degregorio, Z. P.; Johns, J. E. Seed crystal homogeneity controls lateral and vertical heteroepitaxy of monolayer MoS2 and WS2. J. Am. Chem. Soc. 2015, 137, 14281–14287.

    CAS  Google Scholar 

  104. Tan, C. L.; Zhang, H. Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 2015, 137, 12162–12174.

    CAS  Google Scholar 

  105. Chen, K.; Wan, X.; Wen, J. X.; Xie, W. G.; Kang, Z. W.; Zeng, X. L.; Chen, H. J.; Xu, J. B. Electronic properties of MoS2-WS2 heterostructures synthesized with two-step lateral epitaxial strategy. ACS Nano 2015, 9, 9868–9876.

    CAS  Google Scholar 

  106. Chen, J. Y.; Zhou, W.; Tang, W.; Tian, B. B.; Zhao, X. X.; Xu, H.; Liu, Y. P.; Geng, D. C.; Tan, S. J. R.; Fu, W. et al. Lateral epitaxy of atomically sharp WSe2/WS2 heterojunctions on silicon dioxide substrates. Chem. Mater. 2016, 28, 7194–7197.

    CAS  Google Scholar 

  107. Ling, X.; Lin, Y. X.; Ma, Q.; Wang, Z. Q.; Song, Y.; Yu, L. L.; Huang, S. X.; Fang, W. J.; Zhang, X.; Hsu, A. L. et al. Parallel stitching of 2D materials. Adv. Mater. 2016, 28, 2322–2329.

    CAS  Google Scholar 

  108. Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524–528.

    CAS  Google Scholar 

  109. Chen, F.; Yao, Y.; Su, W. T.; Ding, S.; Fu, L. Optical performance and growth mechanism of a 2D WS2-MoWS2 hybrid heterostructure fabricated by a one-step CVD strategy. CrystEngComm 2020, 22, 660–665.

    CAS  Google Scholar 

  110. Gong, Y. J.; Lei, S. D.; Ye, G. L.; Li, B.; He, Y. M.; Keyshar, K.; Zhang, X.; Wang, Q. Z.; Lou, J.; Liu, Z. et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett. 2015, 15, 6135–6141.

    CAS  Google Scholar 

  111. Leong, W. S.; Ji, Q. Q.; Mao, N. N.; Han, Y. M.; Wang, H. Z.; Goodman, A. J.; Vignon, A.; Su, C.; Guo, Y. F.; Shen, P. C. et al. Synthetic lateral metal-semiconductor heterostructures of transition metal disulfides. J. Am. Chem. Soc. 2018, 140, 12354–12358.

    CAS  Google Scholar 

  112. Yuan, Y. D.; Zhang, X. H.; Liu, H. W.; Yang, T. F.; Zheng, W. H.; Zheng, B. Y.; Jiang, F.; Li, L. H.; Li, D.; Zhu, X. L. et al. Growth of CdSe/MoS2 vertical heterostructures for fast visible-wavelength photodetectors. J. Alloys Compd. 2020, 815, 152309.

    CAS  Google Scholar 

  113. Zhang, J.; Wang, J. H.; Chen, P.; Sun, Y.; Wu, S.; Jia, Z. Y.; Lu, X. B.; Yu, H.; Chen, W.; Zhu, J. Q. et al. Observation of strong interlayer coupling in MoS2/WS2 heterostructures. Adv. Mater. 2016, 28, 1950–1956.

    CAS  Google Scholar 

  114. Yang, T.; Zheng, B.; Wang, Z.; Xu, T.; Pan, C.; Zou, J.; Zhang, X.; Qi, Z.; Liu, H.; Feng, Y. et al. van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p-n junctions. Nat. Commun. 2017, 8, 1906.

    Google Scholar 

  115. Gong, Y. J.; Lin, J. H.; Wang, X. L.; Shi, G.; Lei, S. D.; Lin, Z.; Zou, X. L.; Ye, G. L.; Vajtai, R.; Yakobson, B. I. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 2014, 13, 1135–1142.

    CAS  Google Scholar 

  116. Woods, J. M.; Jung, Y.; Xie, Y. J.; Liu, W.; Liu, Y. H.; Wang, H. L.; Cha, J. J. One-step synthesis of MoS2/WS2 layered heterostructures and catalytic activity of defective transition metal dichalcogenide films. ACS Nano 2016, 10, 2004–2009.

    CAS  Google Scholar 

  117. Georgiou, T.; Jalil, R.; Belle, B. D.; Britnell, L.; Gorbachev, R. V.; Morozov, S. V.; Kim, Y. J.; Gholinia, A.; Haigh, S. J.; Makarovsky, O. et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat. Nanotechnol. 2013, 8, 100–103.

    CAS  Google Scholar 

  118. Zhang, T.; Jiang, B.; Xu, Z.; Mendes, R. G.; Xiao, Y.; Chen, L. F.; Fang, L. W.; Gemming, T.; Chen, S.; Rummeli, M. H. et al. Twinned growth behaviour of two-dimensional materials. Nat. Commun. 2016, 7, 13911.

    CAS  Google Scholar 

  119. Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.

    CAS  Google Scholar 

  120. Zhang, Z. P.; Gong, Y.; Zou, X. L.; Liu, P. R.; Yang, P. F.; Shi, J. P.; Zhao, L. Y.; Zhang, Q.; Gu, L.; Zhang, Y. F. Epitaxial growth of two-dimensional metal-semiconductor transition-metal dichalcogenide vertical stacks (VSe2/MX2) and their band alignments. ACS Nano 2019, 13, 885–893.

    CAS  Google Scholar 

  121. Samad, L.; Bladow, S. M.; Ding, Q.; Zhuo, J. Q.; Jacobberger, R. M.; Arnold, M. S.; Jin, S. Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 2016, 10, 7039–7046.

    CAS  Google Scholar 

  122. Zhai, X. K.; Xu, X.; Peng, J. B.; Jing, F. L.; Zhang, Q. L.; Liu, H. J.; Hu, Z. G. Enhanced optoelectronic performance of CVD-grown metal-semiconductor NiTe2/MoS2 heterostructures. ACS Appl. Mater. Interfaces 2020, 12, 24093–24101.

    CAS  Google Scholar 

  123. Levendorf, M. P.; Kim, C. J.; Brown, L.; Huang, P. Y.; Havener, R. W.; Muller, D. A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632.

    CAS  Google Scholar 

  124. Zhou, J. D.; Tang, B. J.; Lin, J. H.; Lv, D. H.; Shi, J.; Sun, L. F.; Zeng, Q. S.; Niu, L.; Liu, F. C.; Wang, X. W. et al. Morphology engineering in monolayer MoS2-WS2 lateral heterostructures. Adv. Funct. Mater. 2018, 28, 1801568.

    Google Scholar 

  125. Huang, C. M.; Wu, S. F.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 2014, 13, 1096–1101.

    CAS  Google Scholar 

  126. Muraki, K.; Fukatsu, S.; Shiraki, Y.; Ito, R. Surface segregation of in atoms during molecular beam epitaxy and its influence on the energy levels in InGaAs/GaAs quantum wells. Appl. Phys. Lett. 1992, 61, 557–559.

    CAS  Google Scholar 

  127. Mahjouri-Samani, M.; Lin, M. W.; Wang, K.; Lupini, A. R.; Lee, J.; Basile, L.; Boulesbaa, A.; Rouleau, C. M.; Puretzky, A. A.; Ivanov, I. N. et al. Patterned arrays of lateral heterojunctions within monolayer two-dimensional semiconductors. Nat. Commun. 2015, 6, 7749.

    CAS  Google Scholar 

  128. Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

    CAS  Google Scholar 

  129. Tsai, T. H.; Liang, Z. Y.; Lin, Y. C.; Wang, C. C.; Lin, K. I.; Suenaga, K.; Chiu, P. W. Photogating WS2 photodetectors using embedded WSe2 charge puddles. ACS Nano 2020, 14, 4559–4566.

    CAS  Google Scholar 

  130. Gao, J.; Li, B. C.; Tan, J. W.; Chow, P.; Lu, T. M.; Koratkar, N. Aging of transition metal dichalcogenide monolayers. ACS Nano 2016, 10, 2628–2635.

    CAS  Google Scholar 

  131. Kotsakidis, J. C.; Zhang, Q. H.; de Parga, A. L. V.; Currie, M.; Helmerson, K.; Gaskill, D. K.; Fuhrer, M. S. Oxidation of monolayer WS2 in ambient is a photoinduced process. Nano Lett. 2019, 19, 5205–5215.

    CAS  Google Scholar 

  132. Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

    Google Scholar 

  133. Cheng, J. B.; Wang, C. L.; Zou, X. M.; Liao, L. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater. 2019, 7, 1800441.

    Google Scholar 

  134. Xiang, D.; Han, C.; Hu, Z. H.; Lei, B.; Liu, Y. Y.; Wang, L.; Hu, W. P.; Chen, W. Surface transfer doping-induced, high-performance graphene/silicon Schottky junction-based, self-powered photodetector. Small 2015, 11, 4829–4836.

    CAS  Google Scholar 

  135. Xu, Z. J.; Lin, S. S.; Li, X. Q.; Zhang, S. J.; Wu, Z. Q.; Xu, W. L.; Lu, Y. H.; Xu, S. Monolayer MoS2/GaAs heterostructure self-driven photodetector with extremely high detectivity. Nano Energy 2016, 23, 89–96.

    CAS  Google Scholar 

  136. Yang, S. X.; Wang, C.; Ataca, C.; Li, Y.; Chen, H.; Cai, H.; Suslu, A.; Grossman, J. C.; Jiang, C.; Liu, Q. et al. Self-driven photodetector and ambipolar transistor in atomically thin GaTe-MoS2 p-n vdW heterostructure. ACS Appl. Mater. Interfaces 2016, 8, 2533–2539.

    CAS  Google Scholar 

  137. Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843.

    CAS  Google Scholar 

  138. Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V. et al. Strong light-matter interactions in heterostructures of atomically thin films. Science 2013, 340, 1311–1314.

    CAS  Google Scholar 

  139. Bernardi, M.; Palummo, M.; Grossman, J. C. Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 2013, 13, 3664–3670.

    CAS  Google Scholar 

  140. Yao, J. D.; Zheng, Z. Q.; Shao, J. M.; Yang, G. W. Stable, highlyresponsive and broadband photodetection based on large-area multilayered WS2 films grown by pulsed-laser deposition. Nanoscale 2015, 7, 14974–14981.

    CAS  Google Scholar 

  141. Zhao, W. J.; Ribeiro, R. M.; Eda, G. Electronic structure and optical signatures of semiconducting transition metal dichalcogenide nanosheets. Acc. Chem. Res. 2015, 48, 91–99.

    CAS  Google Scholar 

  142. Zheng, Z. Q.; Zhang, T. M.; Yao, J.; Zhang, Y.; Xu, J. R.; Yang, G. W. Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices. Nanotechnology 2016, 27, 225501.

    Google Scholar 

  143. Lim, Y. R.; Song, W.; Han, J. K.; Lee, Y. B.; Kim, S. J.; Myung, S.; Lee, S. S.; An, K. S.; Choi, C. J.; Lim, J. Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors. Adv. Mater. 2016, 28, 5025–5030.

    CAS  Google Scholar 

  144. Liu, N.; Tian, H.; Schwartz, G.; Tok, J. B. H.; Ren, T. L.; Bao, Z. N. Large-area, transparent, and flexible infrared photodetector fabricated using p-n junctions formed by N-doping chemical vapor deposition grown graphene. Nano Lett. 2014, 14, 3702–3708.

    CAS  Google Scholar 

  145. Tan, T.; Jiang, X. T.; Wang, C.; Yao, B. C.; Zhang, H. 2D material optoelectronics for information functional device applications: Status and challenges. Adv. Sci. 2020, 7, 2000058.

    CAS  Google Scholar 

  146. Choi, S.; Lee, H.; Ghaffari, R.; Hyeon, T.; Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 2016, 28, 4203–4218.

    CAS  Google Scholar 

  147. De Fazio, D.; Goykhman, I.; Yoon, D.; Bruna, M.; Eiden, A.; Milana, S.; Sassi, U.; Barbone, M.; Dumcenco, D.; Marinov, K. et al. High responsivity, large-area graphene/MoS2 flexible photodetectors. ACS Nano 2016, 10, 8252–8262.

    CAS  Google Scholar 

  148. Xie, C.; Yan, F. Flexible photodetectors based on novel functional materials. Small 2017, 13, 1701822.

    Google Scholar 

  149. Jo, S. H.; Kang, D. H.; Shim, J.; Jeon, J.; Jeon, M. H.; Yoo, G.; Kim, J.; Lee, J.; Yeom, G. Y.; Lee, S. et al. A high-performance WSe2/h-BN photodetector using a triphenylphosphine (PPh3)-based n-doping technique. Adv. Mater. 2016, 28, 4824–4831.

    CAS  Google Scholar 

  150. Zhang, W. J.; Huang, J. K.; Chen, C. H.; Chang, Y. H.; Cheng, Y. J.; Li, L. J. High-gain phototransistors based on a CVD MoS2 monolayer. Adv. Mater. 2013, 25, 3456–3461.

    CAS  Google Scholar 

  151. Rong, Y. M.; He, K.; Pacios, M.; Robertson, A. W.; Bhaskaran, H.; Warner, J. H. Controlled preferential oxidation of grain boundaries in monolayer tungsten disulfide for direct optical imaging. ACS Nano 2015, 9, 3695–3703.

    CAS  Google Scholar 

  152. Wang, L.; Jie, J. S; Shao, Z. B.; Zhang, Q.; Zhang, X. H.; Wang, Y. M.; Sun, Z.; Lee, S. T. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible-near infrared photodetectors. Adv. Funct. Mater. 2015, 25, 2910–2919.

    CAS  Google Scholar 

  153. Lopez-Sanchez, O.; Lembke, D.; Kayci, M.; Radenovic, A.; Kis, A. Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 2013, 8, 497–501.

    CAS  Google Scholar 

  154. Choi, W.; Cho, M. Y.; Konar, A.; Lee, J. H.; Cha, G. B.; Hong, S. C.; Kim, S.; Kim, J.; Jena, D.; Joo, J. et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv. Mater. 2012, 24, 5832–5836.

    CAS  Google Scholar 

  155. Tsai, D. S.; Liu, K. K.; Lien, D. H.; Tsai, M. L.; Kang, C. F.; Lin, C. A.; Li, L. J.; He, J. H. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 2013, 7, 3905–3911.

    CAS  Google Scholar 

  156. Li, L.; Wang, W. K.; Chai, Y.; Li, H. Q.; Tian, M. L.; Zhai, T. Y. Few-layered PtS2 phototransistor on h-BN with high gain. Adv. Funct. Mater. 2017, 27, 1701011.

    Google Scholar 

  157. Wang, Z.; Wang, P.; Wang, F.; Ye, J. F.; He, T.; Wu, F.; Peng, M.; Wu, P. S.; Chen, Y. F.; Zhong, F. et al. A noble metal dichalcogenide for high-performance field-effect transistors and broadband photodetectors. Adv. Funct. Mater. 2019, 30, 1907945.

    Google Scholar 

  158. Su, G. X.; Hadjiev, V. G.; Loya, P. E.; Zhang, J.; Lei, S. D.; Maharjan, S.; Dong, P.; Ajayan, P. M. A.; Lou, J.; Peng, H. B. Chemical vapor deposition of thin crystals of layered semiconductor SnS2 for fast photodetection application. Nano Lett. 2015, 15, 506–513.

    CAS  Google Scholar 

  159. Abderrahmane, A.; Ko, P. J.; Thu, T. V.; Ishizawa, S.; Takamura, T.; Sandhu, A. High photosensitivity few-layered MoSe2 back-gated field-effect phototransistors. Nanotechnology 2014, 25, 365202.

    CAS  Google Scholar 

  160. Huang, H.; Wang, J. L.; Hu, W. D.; Liao, L.; Wang, P.; Wang, X. D.; Gong, F.; Chen, Y.; Wu, G. J.; Luo, W. J. et al. Highly sensitive visible to infrared MoTe2 photodetectors enhanced by the photogating effect. Nanotechnology 2016, 27, 445201.

    Google Scholar 

  161. Yin, L.; Zhan, X. Y.; Xu, K.; Wang, F.; Wang, Z. X.; Huang, Y.; Wang, Q. S.; Jiang, C.; He, J. Ultrahigh sensitive MoTe2 phototransistors driven by carrier tunneling. Appl. Phys. Lett. 2016, 108, 043503.

    Google Scholar 

  162. Huo, N. J.; Yang, S. X.; Wei, Z. M.; Li, S. S.; Xia, J. B.; Li, J. B. Photoresponsive and gas sensing field-effect transistors based on multilayer WS2 nanoflakes. Sci. Rep. 2014, 4, 5209.

    CAS  Google Scholar 

  163. Zhang, W. J.; Chiu, M. H.; Chen, C. H.; Chen, W.; Li, L. J.; Wee, A. T. S. Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. ACS Nano 2014, 8, 8653–8661.

    CAS  Google Scholar 

  164. Yu, X. C.; Yu, P.; Wu, D.; Singh, B.; Zeng, Q. S.; Lin, H.; Zhou, W.; Lin, J. H.; Suenaga, K.; Liu, Z. et al. Atomically thin noble metal dichalcogenide: A broadband mid-infrared semiconductor. Nat. Commun. 2018, 9, 1545.

    Google Scholar 

  165. Liang, Q. J.; Wang, Q. X.; Zhang, Q.; Wei, J. X.; Lim, S. X.; Zhu, R.; Hu, J. X.; Wei, W.; Lee, C.; Sow, C. et al. High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater. 2019, 31, 1807609.

    Google Scholar 

  166. Xu, K.; Wang, Z. X.; Wang, F.; Huang, Y.; Wang, F. M.; Yin, L.; Jiang, C.; He, J. Ultrasensitive phototransistors based on few-layered HfS2. Adv. Mater. 2015, 27, 7881–7887.

    CAS  Google Scholar 

  167. Wang, D. G.; Meng, J. H.; Zhang, X. W.; Guo, G. C.; Yin, Z. G.; Liu, H.; Cheng, L. K.; Gao, M. L.; You, J. B.; Wang, R. Z. Selective direct growth of atomic layered HfS2 on hexagonal boron nitride for high performance photodetectors. Chem. Mater. 2018, 30, 3819–3826.

    CAS  Google Scholar 

  168. Tao, Y. R.; Wu, X. C.; Wang, W.; Wang, J. N. Flexible photodetector from ultraviolet to near infrared based on a SnS2 nanosheet microsphere film. J. Mater. Chem. C 2015, 3, 1347–1353.

    CAS  Google Scholar 

  169. Xia, J.; Zhu, D. D.; Wang, L.; Huang, B.; Huang, X.; Meng, X. M. Large-scale growth of two-dimensional SnS2 crystals driven by screw dislocations and application to photodetectors. Adv. Funct. Mater. 2015, 25, 4255–4261.

    CAS  Google Scholar 

  170. Yu, J.; Suleiman, A. A.; Zheng, Z.; Zhou, X.; Zhai, T. Y. Giant-enhanced SnS2 photodetectors with broadband response through oxygen plasma treatment. Adv. Funct. Mater. 2020, 30, 2001650.

    CAS  Google Scholar 

  171. Zhou, X.; Gan, L.; Tian, W. M.; Zhang, Q.; Jin, S. Y.; Li, H. Q.; Bando, Y.; Golberg, D.; Zhai, T. Y. Ultrathin SnSe2 flakes grown by chemical vapor deposition for high-performance photodetectors. Adv. Mater. 2015, 27, 8035–8041.

    CAS  Google Scholar 

  172. Zhang, E. Z.; Jin, Y. B.; Yuan, X.; Wang, W. Y.; Zhang, C.; Tang, L.; Liu, S. S.; Zhou, P.; Hu, W. D.; Xiu, F. X. ReS2-based field-effect transistors and photodetectors. Adv. Funct. Mater. 2015, 25, 4076–4082.

    CAS  Google Scholar 

  173. Liu, E. F.; Long, M. S.; Zeng, J. W.; Luo, W.; Wang, Y. J.; Pan, Y. M.; Zhou, W.; Wang, B. G.; Hu, W. D.; Ni, Z. H. et al. High responsivity phototransistors based on few-layer ReS2 for weak signal detection. Adv. Funct. Mater. 2016, 26, 1938–1944.

    CAS  Google Scholar 

  174. Shim, J.; Oh, A.; Kang, D. H.; Oh, S.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Kim, M.; Choi, C.; Lee, J. et al. High-performance 2D rhenium disulfide (ReS2) transistors and photodetectors by oxygen plasma treatment. Adv. Mater. 2016, 28, 6985–6992.

    CAS  Google Scholar 

  175. Lee, C. H.; Lee, G. H.; Van Der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F. et al. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 9, 676–681.

    CAS  Google Scholar 

  176. Wang, J. J.; Wang, F.; Wang, Z. X.; Cheng, R. Q.; Yin, L.; Wen, Y.; Zhang, Y.; Li, N. N.; Zhan, X. Y.; Xiao, X. H. et al. Controlling injection barriers for ambipolar 2D semiconductors via quasi-van der Waals contacts. Adv. Sci. 2019, 6, 1801841.

    Google Scholar 

  177. Zhang, W. J.; Chuu, C. P.; Huang, J. K.; Chen, C. H.; Tsai, M. L.; Chang, Y. H.; Liang, C. T.; Chen, Y. Z.; Chueh, Y. L.; He, J. H. et al. Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci. Rep. 2014, 4, 3826.

    CAS  Google Scholar 

  178. Yu, W. Z.; Li, S. J.; Zhang, Y. P.; Ma, W. L.; Sun, T.; Yuan, J.; Fu, K.; Bao, Q. L. Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility. Small 2017, 13, 1700268.

    Google Scholar 

  179. Xu, H.; Han, X. Y.; Dai, X.; Liu, W.; Wu, J.; Zhu, J. T.; Kim, D. Y.; Zou, G. F.; Sablon, K. A.; Sergeev, A. et al. High detectivity and transparent few-layer MoS2/glassy-graphene heterostructure photodetectors. Adv. Mater. 2018, 30, 1706561.

    Google Scholar 

  180. Wang, X. T.; Huang, L.; Peng, Y. T.; Huo, N. J.; Wu, K. D.; Xia, C. X.; Wei, Z. M.; Tongay, S.; Li, J. B. Enhanced rectification, transport property and photocurrent generation of multilayer ReSe2/MoS2 p-n heterojunctions. Nano Res. 2016, 9, 507–516.

    CAS  Google Scholar 

  181. Tan, H. J.; Xu, W. S.; Sheng, Y. W.; Lau, C. S.; Fan, Y.; Chen, Q.; Tweedie, M.; Wang, X. C.; Zhou, Y. Q.; Warner, J. H. Lateral graphene-contacted vertically stacked WS2/MoS2 hybrid photodetectors with large gain. Adv. Mater. 2017, 29, 1702917.

    Google Scholar 

  182. Zhou, X.; Hu, X. Z.; Zhou, S. S.; Song, H. Y.; Zhang, Q.; Pi, L. J.; Li, L.; Li, H. Q.; Lü, J.; Zhai, T. Y. Tunneling diode based on WSe2/SnS2 heterostructure incorporating high detectivity and responsivity. Adv. Mater. 2018, 30, 1703286.

    Google Scholar 

  183. Ye, K.; Liu, L. X.; Liu, Y. J.; Nie, A. M.; Zhai, K.; Xiang, J. Y.; Wang, B. C.; Wen, F. S.; Mu, C. P.; Zhao, Z. S. et al. Lateral bilayer MoS2-WS2 heterostructure photodetectors with high responsivity and detectivity. Adv. Opt. Mater. 2019, 7, 1900815.

    CAS  Google Scholar 

  184. Wen, Y.; He, P.; Wang, Q. S.; Yao, Y. Y.; Zhang, Y.; Hussain, S.; Wang, Z. X.; Cheng, R. Q.; Yin, L.; Sendeku, M. C. et al. Gapless van der Waals heterostructures for infrared optoelectronic devices. ACS Nano 2019, 13, 14519–14528.

    CAS  Google Scholar 

  185. Wen, Y.; He, P.; Yao, Y. Y.; Zhang, Y.; Cheng, R. Q.; Yin, L.; Li, N. N.; Li, J.; Wang, J. J.; Wang, Z. X. et al. Bridging the van der Waals interface for advanced optoelectronic devices. Adv. Mater. 2020, 32, 1906874.

    CAS  Google Scholar 

  186. Chen, C. Y.; Qiao, H.; Lin, S. H.; Luk, C. M.; Liu, Y.; Xu, Z. Q.; Song, J. C.; Xue, Y. Z.; Li, D. L.; Yuan, J. et al. Highly responsive MoS2 photodetectors enhanced by graphene quantum dots. Sci. Rep. 2015, 5, 11830.

    Google Scholar 

  187. Hu, C.; Dong, D. D.; Yang, X. K.; Qiao, K. K.; Yang, D.; Deng, H.; Yuan, S. J.; Khan, J.; Lan, Y.; Song, H. S. et al. Synergistic effect of hybrid PbS quantum dots/2D-WSe2 toward high performance and broadband phototransistors. Adv. Funct. Mater. 2017, 27, 1603605.

    Google Scholar 

  188. Kufer, D.; Nikitskiy, I.; Lasanta, T.; Navickaite, G.; Koppens, F. H. L.; Konstantatos, G. Hybrid 2D-0D MoS2-PbS quantum dot photodetectors. Adv. Mater. 2015, 27, 176–180.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 11722543, U1867215, 11875211, U1932134, 12074293, and 12025503), Hubei Provincial Natural Science Foundation (No. 2019CFA036), and the Fundamental Research Funds for the Central Universities (No. 2042020kf0211).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenqing Li or Xiangheng Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Y., Chen, R., Xu, H. et al. Recent progress about 2D metal dichalcogenides: Synthesis and application in photodetectors. Nano Res. 14, 1819–1839 (2021). https://doi.org/10.1007/s12274-020-3160-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3160-7

Keywords

Navigation